1
|
Sun Y, Cao Z, Zhang X, Zhu X, Xu Z, Zhou H, Wei X, Du W, Xu L. Rod-Shaped Au@Ce Nano-Platforms for Enhancing Photodynamic Tumor Collaborative Therapy. SMALL METHODS 2024:e2400945. [PMID: 39097952 DOI: 10.1002/smtd.202400945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Tumor photodynamic therapy (PDT) relies on intratumoral free radicals, while the limited oxygen source and the depletion of tissue oxygen may exacerbate the hypoxia. As the treatment progresses, there will eventually be a problem of insufficient free radicals. Here, it is found that Au@CeO2 nano-rods (Au@Ce NRs), assembled by gold nano-rods (Au NRs) and ceria nanoparticles (CeO2 NPs), can efficaciously absorb near-infrared light (NIR) to promote the release of oxygen and free radicals. Au@Ce NRs exhibit a higher proportion of Ce3+ (Ce2O3) after oxygen release, while Ce3+ is subsequently oxidized to Ce4+ (CeO2) by trace H2O2. Interestingly, Au@Ce NRs re-oxidized by trace H2O2 can re-releasing oxygen and free radicals again upon NIR treatment, achieving oxygenation/oxygen evolution, similar to charging/discharging. This loop maximizes the conversion of limited oxygen source into highly cytotoxic free radicals. As a result, when B16-F10 cells are treated by NIR/Au@Ce NRs, more tumor cells undergo apoptosis, consistent with the higher level of free radicals. Importantly, NIR/Au@Ce NRs successfully suppresses tumor growth and promotes the generation of epidermal collagen fibers in the transplanted tumor model. Therefore, the rod-shaped Au@Ce NRs provide an ideal platform for maximizing the utilization of intratumoral oxygen sources and improving the treatment of melanoma.
Collapse
Affiliation(s)
- Yuxiang Sun
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Ziqi Cao
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.600, Yishan Road, Xuhui, Shanghai, 200233, P. R. China
| | - Xiaoli Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Xingchen Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Zhenyang Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Hantong Zhou
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Xiaoer Wei
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.600, Yishan Road, Xuhui, Shanghai, 200233, P. R. China
| | - Wenxian Du
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.600, Yishan Road, Xuhui, Shanghai, 200233, P. R. China
| | - Li Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| |
Collapse
|
2
|
Godoy ML, Milt VG, Miró EE, Banús ED. Co,Ce nanoparticles supported on stacked wire mesh cartridges. Activity and stability in diesel soot combustion. CHEMOSPHERE 2024; 362:142734. [PMID: 38950745 DOI: 10.1016/j.chemosphere.2024.142734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
In this work, Co3O4 nanoparticles were successfully synthesized by precipitating a precursor salt solution in the form of microdroplets generated by a nebulizer, as an efficient, fast and low-cost approach. After drying and calcination, synthesized particles were deposited on stacked wire mesh monoliths by immersing the structures in a suspension containing synthesized Co3O4 particles and commercial ceria nanoparticles as a binder. These structured catalysts were evaluated for the combustion of diesel soot which constitutes a crucial step in the regeneration of catalytic particulate filters (CDPFs). Thermal and mechanical stability of Co,Ce washcoated monoliths were investigated. For this, successive catalytic evaluations of the structured system, with intermediate treatments at 900 °C (accelerated aging), were carried out indicating a very good activity and stability of the catalysts developed. Adherence tests showed good adhesion of the catalytic layer to the metallic substrate. Fresh and aged catalysts were fully characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Laser Raman Spectroscopy (LRS) and Temperature-Programmed Reduction (TPR). It was found that the catalytic coating resulted composed of nanometric CeO2 and Co3O4 along with chromium, iron and manganese oxides coming from the migration of the metallic substrate, in the catalytic cartridge calcined at 600 °C. Despite after calcination at 900 °C spinels of Co, Fe, Cr and Mn were observed, these oxides did not significantly affected the catalytic activity. Although this aging treatment at 900 °C was severe and is not expected under real conditions, it highlights the potential application of the catalytic metallic cartridges here developed.
Collapse
Affiliation(s)
- María Laura Godoy
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE, UNL - CONICET), Universidad Nacional Del Litoral, Facultad de Ingeniería Química, Santiago Del Estero 2829, 3000, Santa Fe, Argentina.
| | - Viviana G Milt
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE, UNL - CONICET), Universidad Nacional Del Litoral, Facultad de Ingeniería Química, Santiago Del Estero 2829, 3000, Santa Fe, Argentina.
| | - Eduardo E Miró
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE, UNL - CONICET), Universidad Nacional Del Litoral, Facultad de Ingeniería Química, Santiago Del Estero 2829, 3000, Santa Fe, Argentina.
| | - Ezequiel D Banús
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE, UNL - CONICET), Universidad Nacional Del Litoral, Facultad de Ingeniería Química, Santiago Del Estero 2829, 3000, Santa Fe, Argentina.
| |
Collapse
|
3
|
Yuan Y, Xie Z, Turaczy KK, Hwang S, Zhou J, Chen JG. Controlling Product Distribution of Polyethylene Hydrogenolysis Using Bimetallic RuM 3 (M = Fe, Co, Ni) Catalysts. CHEM & BIO ENGINEERING 2024; 1:67-75. [PMID: 38434798 PMCID: PMC10906090 DOI: 10.1021/cbe.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 03/05/2024]
Abstract
Plastic hydrogenolysis is an attractive approach for producing value-added chemicals due to its mild reaction conditions, but controlling product distribution is challenging due to the formation of undesired CH4. This work reports several bimetallic RuM3/CeO2 (M = Fe, Co, Ni) catalysts that shift the product of low-density polyethylene hydrogenolysis toward longer-chain hydrocarbons. These catalysts were characterized by using X-ray absorption fine structure spectroscopy, electron microscopy imaging, and H2 temperature-programmed reduction. The combined catalytic evaluation and characterization results revealed that the product distribution was regulated by the formation of bimetallic alloys. A model compound, n-hexadecane, was selected to further understand the differences in hydrogenolysis over the Ru-based catalysts. Although a longer reaction time shifted the product toward smaller molecules, the bimetallic (RuCo3/CeO2) catalyst limited the further conversion of C2-C5 into CH4. This work highlights the role of bimetallic alloys in tailoring the interaction with hydrocarbons, thereby controlling the product distribution of polymer hydrogenolysis.
Collapse
Affiliation(s)
- Yong Yuan
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zhenhua Xie
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Kevin K. Turaczy
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Sooyeon Hwang
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Jiahua Zhou
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jingguang G. Chen
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
4
|
Ahasan MR, Wang R. CeO 2 nanorods supported CuO x-RuO x bimetallic catalysts for low temperature CO oxidation. J Colloid Interface Sci 2024; 654:1378-1392. [PMID: 37918097 DOI: 10.1016/j.jcis.2023.10.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/30/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
Bimetallic catalysts often outperform monometallic catalysts due to changeable structural orientation, synergistic effects, and integration of two different metal or metal oxide properties. Here, a series of CeO2 nanorods (NR) supported bimetallic CuOx and RuOx catalysts (Cu: Ru ratios of 9:1, 7:3, and 5:5) were prepared using a wet impregnation method. In situ DRIFTS, H2 temperature programmed reduction (H2-TPR), CO temperature programmed desorption (CO-TPD), and other characterization techniques were used to investigate the effect of the Cu:Ru ratio on the activity of low-temperature CO oxidation. Among three catalysts, CeO2 NR supported 7 wt% Cu-3 wt% Ru catalyst after a reduction activation treatment showed the best performance with 100 % CO conversion at 166 °C and the lowest activation energy of 18.37 kJ mol-1. Raman and XPS profiles revealed that the origin of the superior performance is at least partially related to the high surface oxygen vacancy concentration and other distinct oxygen species (physi-/chemi-sorbed oxygen and bulk lattice oxygen), leading to outstanding adsorption and oxidation property of CO.
Collapse
Affiliation(s)
- Md Robayet Ahasan
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, United States
| | - Ruigang Wang
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, United States.
| |
Collapse
|
5
|
Adsorption-catalysis design with cerium oxide nanorods supported nickel-cobalt-oxide with multifunctional reaction interfaces for anchoring polysulfides and accelerating redox reactions in lithium sulfur battery. J Colloid Interface Sci 2023; 635:466-480. [PMID: 36599244 DOI: 10.1016/j.jcis.2022.12.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The charge and discharge working mechanisms in lithium sulfur batteries contain multi-step complex reactions involving two-electron transfer and multiple phase transformations. The dissolution and diffusion of lithium polysulfides cause a huge loss of active material and fast capacity decay, preventing the practical use of lithium sulfur batteries. Herein, CeO2 nanorods supported bimetallic nickel cobalt oxide (NiCo2Ox) was investigated as a cathode host material for lithium sulfur batteries, which can provide adsorption-catalysis dual synergy to restrain the shuttle of polysulfides and stimulate rapid redox reaction for the conversion of polysulfides. The polar CeO2 nanorods with abundant surface defects exhibit chemisorption towards lithium polysulfides and the excellent electrocatalytic activity of NiCo2Ox nanoclusters can rev up the chain transformation of lithium polysulfides. The electrochemical results show that the battery with NiCo2Ox/CeO2 nanorods can demonstrate high discharge capacity, stable cycling, low voltage polarization and high sulfur utilization. The battery with NiCo2Ox/CeO2 nanorods unveils a high specific capacity of 1236 mAh g-1 with a very low capacity fading of 0.09% per cycle after 100 cycles at a 0.2C current rate. Moreover, the excellent performance with high sulfur loading (>5 mg cm-2) verifies a huge promise for future commercial applications.
Collapse
|
6
|
Ahn SY, Jang WJ, Shim JO, Jeon BH, Roh HS. CeO 2-based oxygen storage capacity materials in environmental and energy catalysis for carbon neutrality: extended application and key catalytic properties. CATALYSIS REVIEWS 2023. [DOI: 10.1080/01614940.2022.2162677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Seon-Yong Ahn
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, South Korea
| | - Won-Jun Jang
- Department of Environmental and Energy Engineering, Kyungnam University, Changwon-si, South Korea
| | - Jae-Oh Shim
- Department of Chemical Engineering, Wonkwang University, Iksan-si, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Hyun-Seog Roh
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, South Korea
| |
Collapse
|
7
|
Sun N, Xiang L, Zhuge B, Kan E, Yu N, Li L, Kuai L. Atomically Incorporating Ni into Mesoporous CeO 2 Matrix via Synchronous Spray-Pyrolysis as Efficient Noble-Metal-Free Catalyst for Low-Temperature CO Oxidation. Inorg Chem 2023; 62:782-791. [PMID: 36583676 DOI: 10.1021/acs.inorgchem.2c03293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Low-temperature catalytic CO oxidation is an important chemical process in versatile applications, such as the H2 utilization for low-temperature H2 air fuel cells. Pt-group metal catalysts are efficient but highly cost-consuming. This work demonstrates an excellent and sixpenny catalyst with earth-abundant Ni and Ce, in which Ni ions are atomically incorporated into the CeO2 matrix (Ni-Ce-Ox) by synchronous spray-pyrolysis (SSP) of mixture nitrates of Ni and Ce. The Ni-Ce-Ox catalyst presents a mesoporous structure. Revealed by a model reaction of 1% CO, 1% O2, and 98% balance He at a space velocity of 13,200 mL/gcat/h, Ni-Ce-Ox catalysts display a typical volcano-shaped relationship between reactivity and Ni incorporation amount. The optimized Ni incorporation appears with a high Ni/Ce atomic ratio of 0.25, endowing the T50 (temperature corresponding to a CO conversion of 50%), which is lower-shifted by 165 °C than that of pristine CeO2 (266 °C). The density functional theory (DFT) calculations further indicate that the much-reduced oxygen vacancy formation energy at Ni-Ce single-atom sites boosted the adsorption activation of the CO molecule and therefore promoted the CO oxidation process. Besides, the2 Ni-Ce-Ox from the SSP method presents better performance than the counterparts from immersion and hydrothermal methods. This work paves a way to access efficient noble-metal-free catalysts for low-temperature CO oxidation.
Collapse
Affiliation(s)
- Na Sun
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Beijing Middle Road, Wuhu241000, China
| | - Linlin Xiang
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Beijing Middle Road, Wuhu241000, China
| | - Bingsen Zhuge
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Beijing Middle Road, Wuhu241000, China
| | - Erjie Kan
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Beijing Middle Road, Wuhu241000, China
| | - Nan Yu
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Jiuhua South Road, Wuhu241002, China
| | - Lei Li
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, Yangtze Normal University, Chongqing408100, China
| | - Long Kuai
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Beijing Middle Road, Wuhu241000, China
| |
Collapse
|
8
|
Borshch VN, Bystrova IM, Pugacheva EV, Smirnova EM, Stavitskaya AV, Vinokurov VA. Low-Temperature Combustion Synthesis of Halloysite-Based Catalysts for the Deep Oxidation of Hydrocarbons and Carbon Monoxide and the Methanation of Carbon Dioxide. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422060027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Li Q, Zhao H, Yang J, Zhao J, Yan L, Song H, Chou L. Catalytic behavior of Mo–Bi–Fe–Co–K–M–O (M=Ce, Gd, CeGd) catalysts for selective oxidation of isobutene. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Cui X, Zhang X, Yang Y, Chen T, Wang Y. The noble metals M (M = Pd, Ag, Au) decorated CeO 2catalysts derived from solution combustion method for efficient low-temperature CO catalytic oxidation: effects of different M loading on catalytic performances. NANOTECHNOLOGY 2022; 33:415705. [PMID: 35793617 DOI: 10.1088/1361-6528/ac7ed3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The noble metal nanoparticles have attracted attention due to their excellent catalytic performance for CO oxidation at low temperatures. M-CeO2(M = Pd, Ag, Au) catalysts with different atomic ratios of M/Ce were deposited via solution combustion method. Among them, 3 at% Pd-CeO2, 5 at% Ag-CeO2and 1 at% Au-CeO2catalysts have better catalytic performances. Especially, 5 at% Ag-CeO2catalyst shows better low-temperature CO oxidation performance. The catalytic activity for CO oxidation follows the follows the following sequence: 5 at% Ag-CeO2(T50 = 69 °C) > 3 at% Pd-CeO2(T50 = 99 °C) >1 at% Au-CeO2(T50 = 115 °C). Meanwhile, the catalysts are characterized by means of powder x-ray diffraction, scanning electron microscope, transmission electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller and H2-TPR. The characterization results show that the 5 at% Ag-CeO2catalyst has excellent catalytic activity due to the good dispersion of Ag nanoparticles, the specific surface area of the material, and the reduction catalyst between different valence ions. Moreover, the surface of the catalyst enhances the mutual synergy, effectively promotes the generation of oxygen vacancies, and increases the active oxygen content of the catalyst surface. Finally, the catalytic mechanism of M-CeO2catalysts is summarized.
Collapse
Affiliation(s)
- Xiuxiu Cui
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Xu Zhang
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Yaqi Yang
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Ting Chen
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Yude Wang
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, 650091 Kunming, People's Republic of China
| |
Collapse
|
11
|
Insight into the selective oxidation of isobutene to methacrolein over Ce-accelerated Mo-Bi-Fe-Co-K-O catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Solid-State Construction of CuO x/Cu 1.5Mn 1.5O 4 Nanocomposite with Abundant Surface CuO x Species and Oxygen Vacancies to Promote CO Oxidation Activity. Int J Mol Sci 2022; 23:ijms23126856. [PMID: 35743296 PMCID: PMC9224245 DOI: 10.3390/ijms23126856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
Carbon monoxide (CO) oxidation performance heavily depends on the surface-active species and the oxygen vacancies of nanocomposites. Herein, the CuOx/Cu1.5Mn1.5O4 were fabricated via solid-state strategy. It is manifested that the construction of CuOx/Cu1.5Mn1.5O4 nanocomposite can produce abundant surface CuOx species and a number of oxygen vacancies, resulting in substantially enhanced CO oxidation activity. The CO is completely converted to carbon dioxide (CO2) at 75 °C when CuOx/Cu1.5Mn1.5O4 nanocomposites were involved, which is higher than individual CuOx, MnOx, and Cu1.5Mn1.5O4. Density function theory (DFT) calculations suggest that CO and O2 are adsorbed on CuOx/Cu1.5Mn1.5O4 surface with relatively optimal adsorption energy, which is more beneficial for CO oxidation activity. This work presents an effective way to prepare heterogeneous metal oxides with promising application in catalysis.
Collapse
|
13
|
Wei Z, Wang R. Chemically etched CeO2-x nanorods with abundant surface defects as effective cathode additive for trapping lithium polysulfides in Li-S batteries. J Colloid Interface Sci 2022; 615:527-542. [DOI: 10.1016/j.jcis.2022.01.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022]
|
14
|
Wang Y, Wang R. Effects of chemical etching and reduction activation of CeO 2 nanorods supported ruthenium catalysts on CO oxidation. J Colloid Interface Sci 2022; 613:836-846. [PMID: 35091258 DOI: 10.1016/j.jcis.2022.01.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Abstract
In this work, pristine and NaBH4 etched CeO2 nanorods supported ruthenium (Ru) catalysts were synthesized and employed to investigate the effects of chemical etching and reduction activation treatment on CO oxidation. With 1 wt% Ru loading, the CeO2 nanorods supported catalyst samples, after 6 wt% NaBH4 etching treatment, showed significantly promoted H2 consumption under 100 °C and low apparent activation energy (i.e., Ea ∼ 31.2 kJ/mol) for CO oxidation. In-situ CO-DRIFTS profiles revealed that, for the reduced sample, the observed CO adsorption at ∼ 2020 cm-1 at 40 °C may be related to a strong RuOx-CeO2 interaction induced by the NaBH4 etching treatment, which was supported by the oxygen vacancy analysis results of X-ray photoelectron spectroscopy and CO-temperature programmed desorption. The enriched surface defects on CeO2 support due to the chemical etching and reduction treatments are believed to promote the interaction between RuOx species and CeO2, which is responsible for the enhanced activity of CO oxidation.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, United States
| | - Ruigang Wang
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, United States.
| |
Collapse
|
15
|
Liu B, Yan L, Zhao H, Yang J, Zhao J, Song H, Chou L. Role of cerium dopants in MoVNbO multi-metal oxide catalysts for selective oxidation of ethane. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Dong N, Chen M, Ye Q, Zhang D, Dai H. An investigation on catalytic performance and reaction mechanisms of Fe/OMS-2 for the oxidation of carbon monoxide, ethyl acetate, and toluene. J Environ Sci (China) 2022; 112:258-268. [PMID: 34955210 DOI: 10.1016/j.jes.2021.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 06/14/2023]
Abstract
The octahedral molecular sieve (OMS-2)-supported Fe (xFe/OMS-2: x = 1, 3, 5, and 10) catalysts were prepared using the pre-incorporation method. Physicochemical properties of the as-synthesized materials were characterized by means of various techniques, and their catalytic activities for CO, ethyl acetate, and toluene oxidation were evaluated. Among all of the samples, performed the best, with the reaction temperature required to achieve 90% conversion (T90%) being 160°C for CO oxidation, 210°C for ethyl acetate oxidation, and 285°C for toluene oxidation. Such a good catalytic performance of 5Fe/OMS-2 was associated with its high (Mn3+ + Mn2+) content and adsorbed oxygen species concentration, and good low-temperature reducibility and lattice oxygen mobility as well as strong interaction between Fe and OMS-2. In addition, catalytic mechanisms of the oxidation of three pollutants over the 5Fe/OMS-2 catalyst were also studied. It was found that CO, ethyl acetate or toluene was first adsorbed, then the related intermediates were formed, and finally the formed intermediates were completely converted into CO2 and H2O.
Collapse
Affiliation(s)
- Ning Dong
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Mengyue Chen
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Qing Ye
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Dan Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, and Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
17
|
Qiu Z, Guo X, Mao J, Zhou R. Trace CO elimination in H 2-rich streams with a wide operation temperature window: Co deposited CuO-CeO 2 catalysts. Phys Chem Chem Phys 2022; 24:2070-2079. [PMID: 35015005 DOI: 10.1039/d1cp05121k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work provides a new strategy to eliminate trace CO in H2-rich gas in a wide operation temperature window for the application of hydrogen fuel cells. We engineered Co deposited CuO-CeO2 catalysts with a Co/(Cu + Ce) molar ratio of 1/1 that manages to maintain the CO level at below 100 ppm from 85 to 240 °C in the H2-rich reformate stream. CO-PROX and CO methanation reaction respectively occurred in the low and high temperature ranges. Multiple characterization techniques demonstrate that the molar ratio of Co/(Cu + Ce) significantly affects the synergistic interactions between the Cu, Co and Ce species, and ultimately the CO oxidation and CO methanation reactions. At low reaction temperatures, the Cu-Ce interaction mainly dominates the CO-PROX process, while at high reaction temperatures, CO methanation reaction takes place due to the reduction of Co3O4 to Co0 and the Co-Ce interaction takes charge of the CO methanation. Moreover, the increment of Co/(Cu + Ce) from 1/2 to 1 gives rise to the reprecipitation of the partially dissolved Cu species on Co3O4, which strengthens the Cu-Co interaction and stabilizes surface Cu+ and Co3+, thus promoting the low temperature CO-PROX catalytic performance.
Collapse
Affiliation(s)
- Zhihuan Qiu
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, P. R. China.
| | - Xiaolin Guo
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, P. R. China
| | - Jianxin Mao
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, P. R. China.
| | - Renxian Zhou
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, P. R. China.
| |
Collapse
|
18
|
Stegmayer MÁ, Irusta S, Miró EE, Milt VG. Electrospinning synthesis and characterization of nanofibers of Co, Ce and mixed Co-Ce oxides. Their application to oxidation reactions of diesel soot and CO. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Yi X, Wang J, Liu Y, Chen Y, Chen J. Promotional effect of Fe and Ce co-doping on a V 2O 5–WO 3/TiO 2 catalyst for SCR of NO x with high K and Pb resistance. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00818a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cooperation of Fe and Ce on V2O5–WO3/TiO2 improves the K and Pb resistance by promoting the redox and NOx adsorption ability.
Collapse
Affiliation(s)
- Xianfang Yi
- Center for Excellence in Regional Atmospheric Environment, and Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jinxiu Wang
- Center for Excellence in Regional Atmospheric Environment, and Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yuqiu Liu
- Center for Excellence in Regional Atmospheric Environment, and Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yanting Chen
- Center for Excellence in Regional Atmospheric Environment, and Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, and Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
20
|
Li Y, Li L, Sun W, Chen C, Luo S, Shen J, Jiang C, Jing F. Porous Silica Coated Ceria as a Switch in Tandem Oxidative Dehydrogenation and Dry Reforming of Ethane with CO
2. ChemCatChem 2021. [DOI: 10.1002/cctc.202100364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yingchun Li
- School of Chemical Engineering Sichuan University No. 24 South Section 1 Yihuan Road 610065 Chengdu P. R. China
| | - Linyi Li
- School of Chemical Engineering Sichuan University No. 24 South Section 1 Yihuan Road 610065 Chengdu P. R. China
| | - Wenjing Sun
- China-America Cancer Research Institute Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Guangdong Medical University No.1 Xincheng Blvd Songshan Lake National High-tech Industrial Development Zone 523808 Dongguan P. R. China
| | - Congmei Chen
- Shenzhen Cloud Computing Center National Supercomputing Center in Shenzhen 1068(west) Xueyuan Avenue 518055 Shenzhen P. R. China
| | - Shizhong Luo
- School of Chemical Engineering Sichuan University No. 24 South Section 1 Yihuan Road 610065 Chengdu P. R. China
| | - Jun Shen
- School of Chemical Engineering Sichuan University No. 24 South Section 1 Yihuan Road 610065 Chengdu P. R. China
| | - Chengfa Jiang
- School of Chemical Engineering Sichuan University No. 24 South Section 1 Yihuan Road 610065 Chengdu P. R. China
| | - Fangli Jing
- School of Chemical Engineering Sichuan University No. 24 South Section 1 Yihuan Road 610065 Chengdu P. R. China
| |
Collapse
|
21
|
In-situ DRIFTS study of chemically etched CeO2 nanorods supported transition metal oxide catalysts. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Waikar J, More R, Lavande N, More P. Lattice expansion and smaller CuO CeO2− particles formation by magnesium interaction for low temperature CO oxidation. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Zhao S, Kang D, Liu Y, Wen Y, Xie X, Yi H, Tang X. Spontaneous Formation of Asymmetric Oxygen Vacancies in Transition-Metal-Doped CeO2 Nanorods with Improved Activity for Carbonyl Sulfide Hydrolysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02832] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shunzheng Zhao
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Dongjuan Kang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yunpeng Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfeng Wen
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xizhou Xie
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Honghong Yi
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Xiaolong Tang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
24
|
Chen K, Liu K, An P, Li H, Lin Y, Hu J, Jia C, Fu J, Li H, Liu H, Lin Z, Li W, Li J, Lu YR, Chan TS, Zhang N, Liu M. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat Commun 2020; 11:4173. [PMID: 32820168 PMCID: PMC7441147 DOI: 10.1038/s41467-020-18062-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023] Open
Abstract
Iron phthalocyanine (FePc) is a promising non-precious catalyst for the oxygen reduction reaction (ORR). Unfortunately, FePc with plane-symmetric FeN4 site usually exhibits an unsatisfactory ORR activity due to its poor O2 adsorption and activation. Here, we report an axial Fe-O coordination induced electronic localization strategy to improve its O2 adsorption, activation and thus the ORR performance. Theoretical calculations indicate that the Fe-O coordination evokes the electronic localization among the axial direction of O-FeN4 sites to enhance O2 adsorption and activation. To realize this speculation, FePc is coordinated with an oxidized carbon. Synchrotron X-ray absorption and Mössbauer spectra validate Fe-O coordination between FePc and carbon. The obtained catalyst exhibits fast kinetics for O2 adsorption and activation with an ultralow Tafel slope of 27.5 mV dec-1 and a remarkable half-wave potential of 0.90 V. This work offers a new strategy to regulate catalytic sites for better performance.
Collapse
Affiliation(s)
- Kejun Chen
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, 410083, China
| | - Kang Liu
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, 410083, China
| | - Pengda An
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, 410083, China.,School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Huangjingwei Li
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, 410083, China
| | - Yiyang Lin
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, 410083, China
| | - Junhua Hu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Junwei Fu
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, 410083, China
| | - Hongmei Li
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Wenzhang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiahang Li
- Changjun High School of Changsha, Changsha, 410002, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, 300, Hsinchu, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 300, Hsinchu, Taiwan
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Min Liu
- State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha, 410083, China.
| |
Collapse
|