1
|
Zhang W, Zhang T, Zhong Y, Zhang Y, Wang L, Zhu F, Wang X, Zhou L, Zhou X. Dynamic borate ester bond reinforced hydroxyethyl cellulose/corn starch crosslinked film for simple recycling and regeneration. Int J Biol Macromol 2024; 279:135231. [PMID: 39218188 DOI: 10.1016/j.ijbiomac.2024.135231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Endowing biodegradable plastics with easy recyclability can reduce competition with food resources and further enhance their environmental friendliness. In this work, 4-carboxyphenylboronic acid was grafted onto the side chains of hydroxyethyl cellulose and compounded with inexpensive cornstarch. Upon the introduction of tannic acid, stable and reversible borate ester bond rapidly formed, yielding composite biodegradable plastic films with outstanding mechanical properties and facile recyclability. The formation of a dynamic cross-linked network mitigates the aggregation of gelatinized starch molecules, enhancing the flexibility and durability of the crosslinked film. Testing revealed that while maintaining high tensile strength, the elongation at break of the crosslinked film increased by 952.86 %. The static water contact angle was improved from 32.74° to 78.82°, with a change of <5° within 1 min, demonstrating enhanced water resistance. Excellent antioxidant and thermal stability were also characterized, the crosslinked film can be easily dissolved by heating in water at pH = 6.5 and reshaped in water at pH = 7.2. After five times of regeneration, the tensile strength loss was as low as 5.68 %. This eco-friendly and efficient recycling process is promising during green chemistry.
Collapse
Affiliation(s)
- Wenshuo Zhang
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Zhang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China; Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China.
| | - Yuye Zhong
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yinhui Zhang
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Laiguo Wang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| | - Feng Zhu
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| | - Xie Wang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| | - Le Zhou
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| | - Xuehua Zhou
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| |
Collapse
|
2
|
Vialetto J, Ramakrishna SN, Stock S, von Klitzing R, Isa L. Modulating the conformation of microgels by complexation with inorganic nanoparticles. J Colloid Interface Sci 2024; 672:797-804. [PMID: 38870770 DOI: 10.1016/j.jcis.2024.05.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
HYPOTHESIS The complexation of microgels with rigid nanoparticles is an effective way to impart novel properties and functions to the resulting hybrid particles for applications such as in optics, catalysis, or for the stabilization of foams/emulsions. The nanoparticles affect the conformation of the polymer network, both in bulk aqueous environments and when the microgels are adsorbed at a fluid interface, in a non-trivial manner by modulating the microgel size, stiffness and apparent contact angle. EXPERIMENTS Here, we provide a detailed investigation, using light scattering, in-situ atomic force microscopy and nano-indentation experiments, of the interaction between poly(N-isopropylacrylamide) microgels and hydrophobized silica nanoparticles after mixing in aqueous suspension to shed light on the network reorganization upon nanoparticle incorporation. FINDINGS The addition of nanoparticles decreases the microgels' bulk swelling and thermal response. When adsorbed at an oil-water interface, a higher ratio of nanoparticles influences the microgel's stiffness as well as their hydrophobic/hydrophilic character by increasing their effective contact angle, consequently modulating the monolayer response upon interfacial compression. Overall, these results provide fundamental understanding on the complex conformation of hybrid microgels in different environments and give inspiration to design new materials where the combination of a soft polymer network and nanoparticles might result in additional functionalities.
Collapse
Affiliation(s)
- Jacopo Vialetto
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland; Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Shivaprakash N Ramakrishna
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Sebastian Stock
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Regine von Klitzing
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Zhang Y, Xu J, Gong J, Li Y. Fabrication and Stability Improvement of Monoglyceride Oleogel/Polyglycerol Polyricinoleate-Stabilized W/O High Internal Phase Pickering Emulsions. Foods 2024; 13:1944. [PMID: 38928884 PMCID: PMC11203119 DOI: 10.3390/foods13121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
To decrease the lipid content in water-in-oil (W/O) emulsions, high internal phase Pickering W/O emulsions (HIPPE) were fabricated using magnetic stirring using a combination of monoglyceride (MAG) oleogel and polyglycerol polyacrylate oleate (PGPR) as stabilizers. Effects of MAGs (glyceryl monostearate-GMS, glycerol monolaurate-GML and glycerol monocaprylate-GMC) and internal phase components on the formation and properties of HIPPEs were investigated. The results showed that milky-white stabilized W/O HIPPE with up to 85 wt% aqueous phase content was successfully prepared, and the droplet interfaces presented a network of MAG crystals, independent of the MAG type. All HIPPEs exhibited great stability under freeze-thaw cycles but were less plastic. Meanwhile, GML-oleogel-based HIPPEs had larger particle size and were less thermal stable than GMS and GMC-based HIPPEs. Compared to guar gum, the internal phase components of sodium chloride and sucrose were more effective in reducing the particle size of HIPPEs, improving their stability and plasticity, and stabilizing them during 100-day storage. HIPPEs presented great spreadability, ductility and plasticity after whipping treatment. This knowledge provides a new perspective on the use of oleogels as co-stabilizers for the formation of W/O HIPPEs, which can be used as a potential substitute for creams.
Collapse
Affiliation(s)
- Yingzhu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.X.); (J.G.)
| | - Jinqi Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.X.); (J.G.)
| | - Jinhua Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.X.); (J.G.)
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.X.); (J.G.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
4
|
Qi L, Hang T, Jiang W, Li S, Zhang H, Liang X, Lei L, Bi Q, Jiang H, Li Y. Proteinaceous Microsphere-Based Water-in-Oil Pickering Emulsions for Preservation of Chlorella Cells. Polymers (Basel) 2024; 16:647. [PMID: 38475330 DOI: 10.3390/polym16050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae are highly regarded as ideal materials for the creation of liquid biofuels and have substantial potential for growth and utilization. However, traditional storage and culture methods for microalgae are plagued by challenges such as uncontrolled growth, bacterial contamination, and self-shading among algae. These issues severely impede the photosynthetic process and the efficient extraction of biomass energy. This study tackles these problems by utilizing magnetic hydrophobic protein particles to stabilize water-in-oil Pickering emulsions. This allows for the micro-compartment storage and magnetic transfer of algae. Additionally, the successful encapsulation of Chlorella cells in high-internal-phase water-in-oil Pickering emulsions effectively mitigates the settling problem of Chlorella cells in the liquid phase, thereby enabling the potential use of Pickering emulsions for the confined cultivation of microalgae.
Collapse
Affiliation(s)
- Lin Qi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Teng Hang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Weijie Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Sinong Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiang Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Lei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qiangqiang Bi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Yoshida K, Kajiwara M, Okazaki Y, Véronique L, Zinna F, Sojic N, Bouffier L, Lacour J, Ravaine V, Oda R. Modulation of circularly polarized luminescence by swelling of microgels functionalized with enantiopure [Ru(bpy) 3] 2+ luminophores. Chem Commun (Camb) 2024; 60:1743-1746. [PMID: 38240695 DOI: 10.1039/d3cc04391f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Chemoresponsive microgels functionalized with enantiomeric Δ- or Λ-[Ru(bpy)3]2+ showed tunable chiroptical properties upon swelling and shrinking. The tuning is triggered by a modulation of the local mobility of [Ru(bpy)3]2+ upon addition of fructose, controlling interactions and distances between [Ru(bpy)3]2+ and phenylboronic acid.
Collapse
Affiliation(s)
- Kyohei Yoshida
- CNRS, Université de Bordeaux, Bordeaux INP, CBMN, UMR 5248, 33607, Pessac, France.
- Kumamoto Industrial Research Institute, Materials Development Department, Kumamoto, JP 862-0901, Japan
| | - Maino Kajiwara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yutaka Okazaki
- Graduate School of Energy Science 3, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Lapeyre Véronique
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Francesco Zinna
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via Moruzzi 13, 56124 PISA, Italy
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Laurent Bouffier
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Reiko Oda
- CNRS, Université de Bordeaux, Bordeaux INP, CBMN, UMR 5248, 33607, Pessac, France.
- WPI-Advanced Institute for Materials Research, Tohoku University, Katahira, Aoba-Ku, 980-8577 Sendai, Japan
| |
Collapse
|
6
|
Rey M, Kolker J, Richards JA, Malhotra I, Glen TS, Li NYD, Laidlaw FHJ, Renggli D, Vermant J, Schofield AB, Fujii S, Löwen H, Clegg PS. Interactions between interfaces dictate stimuli-responsive emulsion behaviour. Nat Commun 2023; 14:6723. [PMID: 37872193 PMCID: PMC10593850 DOI: 10.1038/s41467-023-42379-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Stimuli-responsive emulsions offer a dual advantage, combining long-term storage with controlled release triggered by external cues such as pH or temperature changes. This study establishes that thermo-responsive emulsion behaviour is primarily determined by interactions between, rather than within, interfaces. Consequently, the stability of these emulsions is intricately tied to the nature of the stabilizing microgel particles - whether they are more polymeric or colloidal, and the morphology they assume at the liquid interface. The colloidal properties of the microgels provide the foundation for the long-term stability of Pickering emulsions. However, limited deformability can lead to non-responsive emulsions. Conversely, the polymeric properties of the microgels enable them to spread and flatten at the liquid interface, enabling stimuli-responsive behaviour. Furthermore, microgels shared between two emulsion droplets in flocculated emulsions facilitate stimuli-responsiveness, regardless of their internal architecture. This underscores the pivotal role of microgel morphology and the forces they exert on liquid interfaces in the control and design of stimuli-responsive emulsions and interfaces.
Collapse
Affiliation(s)
- Marcel Rey
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
- Department of Physics, University of Gothenburg, SE-41296, Gothenburg, Sweden.
| | - Jannis Kolker
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - James A Richards
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Isha Malhotra
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Thomas S Glen
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - N Y Denise Li
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Fraser H J Laidlaw
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Damian Renggli
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Andrew B Schofield
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Hartmut Löwen
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Paul S Clegg
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
7
|
Akgonullu DZ, Murray BS, Connell SD, Fang Y, Linter B, Sarkar A. Synthetic and biopolymeric microgels: Review of similarities and difference in behaviour in bulk phases and at interfaces. Adv Colloid Interface Sci 2023; 320:102983. [PMID: 37690329 DOI: 10.1016/j.cis.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
This review discusses the current knowledge of interfacial and bulk interactions of biopolymeric microgels in relation to the well-established properties of synthetic microgels for applications as viscosity modifiers and Pickering stabilisers. We present a timeline showing the key milestones in designing microgels and their bulk/ interfacial performance. Poly(N-isopropylacrylamide) (pNIPAM) microgels have remained as the protagonist in the synthetic microgel domain whilst proteins or polysaccharides have been primarily used to fabricate biopolymeric microgels. Bulk properties of microgel dispersions are dominated by the volume fraction (ϕ) of the microgel particles, but ϕ is difficult to pinpoint, as addressed by many theoretical models. By evaluating recent experimental studies over the last five years, we find an increasing focus on the analysis of microgel elasticity as a key parameter in modulating their packing at the interfaces, within the provinces of both synthetic and biopolymeric systems. Production methods and physiochemical factors shown to influence microgel swelling in the aqueous phase can have a significant impact on their bulk as well as interfacial performance. Compared to synthetic microgels, biopolymer microgels show a greater tendency for polydispersity and aggregation and do not appear to have a core-corona structure. Comprehensive studies of biopolymeric microgels are still lacking, for example, to accurately determine their inter- and intra- particle interactions, whilst a wider variety of techniques need to be applied in order to allow comparisons to real systems of practical usage.
Collapse
Affiliation(s)
- Daisy Z Akgonullu
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK
| | - Brent S Murray
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK
| | - Simon D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, UK
| | - Yuan Fang
- PepsiCo, Valhalla, New York, NY, USA
| | | | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| |
Collapse
|
8
|
Petrunin AV, Bochenek S, Richtering W, Scotti A. Harnessing the polymer-particle duality of ultra-soft nanogels to stabilise smart emulsions. Phys Chem Chem Phys 2023; 25:2810-2820. [PMID: 36052753 DOI: 10.1039/d2cp02700c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Micro- and nanogels are widely used to stabilise emulsions and simultaneously implement their responsiveness to the external stimuli. One of the factors that improves the emulsion stability is the nanogel softness. Here, we study how the softest nanogels that can be synthesised with precipitation polymerisation of N-isopropylacrylamide (NIPAM), the ultra-low crosslinked (ULC) nanogels, stabilise oil-in-water emulsions. We show that ULC nanogels can efficiently stabilise emulsions already at low mass concentrations. These emulsions are resistant to droplet flocculation, stable against coalescence, and can be easily broken upon an increase in temperature. The resistance to flocculation of the ULC-stabilised emulsion droplets is similar to the one of emulsions stabilised by linear pNIPAM. In contrast, the stability against coalescence and the temperature-responsiveness closely resemble those of emulsions stabilised by regularly crosslinked pNIPAM nanogels. The reason for this combination of properties is that ULC nanogels can be thought of as colloids in between flexible macromolecules and particles. As a polymer, ULC nanogels can efficiently stretch at the interface and cover it uniformly. As a regularly crosslinked nanogel particle, ULC nanogels protect emulsion droplets against coalescence by providing a steric barrier and rapidly respond to changes in external stimuli thus breaking the emulsion. This polymer-particle duality of ULC nanogels can be exploited to improve the properties of emulsions for various applications, for example in heterogeneous catalysis or in food science.
Collapse
Affiliation(s)
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
| |
Collapse
|
9
|
Dhiraj HS, Ishizuka F, Elshaer A, Zetterlund PB, Aldabbagh F. Lactate and glucose induced self‐assembly of hydrophobic boronic acid‐substituted polymers. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Harpal S. Dhiraj
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales Australia
| | - Amr Elshaer
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales Australia
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| |
Collapse
|
10
|
Toor R, Neujahr Copstein A, Trébuchet C, Goudeau B, Garrigue P, Lapeyre V, Perro A, Ravaine V. Responsive microgels-based colloidosomes constructed from all-aqueous pH-switchable coacervate droplets. J Colloid Interface Sci 2023; 630:66-75. [DOI: 10.1016/j.jcis.2022.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/21/2022]
|
11
|
Tatry MC, Laurichesse E, Vermant J, Ravaine V, Schmitt V. Interfacial rheology of model water-air microgels laden interfaces: Effect of cross-linking. J Colloid Interface Sci 2023; 629:288-299. [PMID: 36155924 DOI: 10.1016/j.jcis.2022.08.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The mechanical properties of model air/water interfaces covered by poly(N-isopropylacrylamide) microgels depend on the microgels deformability or in other words on the amount of cross-linker added during synthesis. EXPERIMENTS The study is carried out by measuring the apparent dilational, the compression and the shear moduli using three complementary methods: (1) the pendant drop method with perturbative areas, (2) the Langmuir trough compression, and (3) shear rheology using a double wall ring cell mounted onto a Langmuir through. FINDINGS In the range of surface coverages studied, the interfaces exhibit a solid-like behavior and elasticity goes through a maximum as a function of the surface pressure. This is observable whatever the investigation method. This maximum elasticity depends on the microgel deformability: the softer the microgels the higher the value of the moduli. The mechanical behavior of model interfaces is discussed, taking into account the core-shell structure of the particles and their packing at the interface.
Collapse
Affiliation(s)
- Marie-Charlotte Tatry
- Centre de Recherche Paul Pascal (CRPP), UMR 5031, Univ. Bordeaux, CNRS, 115 Avenue du Dr Albert Schweitzer, 33600 Pessac, France; Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France.
| | - Eric Laurichesse
- Centre de Recherche Paul Pascal (CRPP), UMR 5031, Univ. Bordeaux, CNRS, 115 Avenue du Dr Albert Schweitzer, 33600 Pessac, France.
| | - Jan Vermant
- Laboratory of Soft Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland.
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France.
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal (CRPP), UMR 5031, Univ. Bordeaux, CNRS, 115 Avenue du Dr Albert Schweitzer, 33600 Pessac, France.
| |
Collapse
|
12
|
The lipid digestion behavior of oil-in-water Pickering emulsions stabilized by whey protein microgels of various rigidities. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Han D, Goudeau B, Lapeyre V, Ravaine V, Jiang D, Fang D, Sojic N. Enhanced electrochemiluminescence at microgel-functionalized beads. Biosens Bioelectron 2022; 216:114640. [PMID: 36030741 DOI: 10.1016/j.bios.2022.114640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022]
Abstract
Bead-based assays are successfully combined with electrochemiluminescence (ECL) technology for detection of a wide range of biomarkers. Herein, we demonstrate a novel approach to enhance the ECL signal by decorating micrometric beads with [Ru(bpy)3]2+-grafted microgels (diameter ∼100 nm). Rapid and stable light emission was spatially resolved at the level of single functionalized beads. An enhancement of the ECL signal of microgel-labeled beads by 9-fold was observed in comparison to molecularly linked [Ru(bpy)3]2+ beads prepared by a sandwich immunoassay or an amide bond. Imaging the ECL signal at the single bead level shows that the size of the ECL-emitting layer is extended using the microgels. The reported method offers a great promise for the optimization of bead-based ECL detection and subsequent development of ECL microscopy.
Collapse
Affiliation(s)
- Dongni Han
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607, Pessac, France; School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211126, China
| | - Bertrand Goudeau
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607, Pessac, France
| | - Véronique Lapeyre
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607, Pessac, France
| | - Valérie Ravaine
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607, Pessac, France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering. Nanjing University. Nanjing, Jiangsu, 210093, China
| | - Danjun Fang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211126, China.
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607, Pessac, France.
| |
Collapse
|
14
|
Pan LH, Wu CL, Luo SZ, Luo JP, Zheng Z, Jiang ST, Zhao YY, Zhong XY. Preparation and characteristics of sucrose-resistant emulsions and their application in soft candies with low sugar and high lutein contents and strong antioxidant activity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Li Y, Zhang S, Jiang H, Guan X, Ngai T. Multifunctional Silica-Modified Hybrid Microgels Templated from Inverse Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6571-6578. [PMID: 35587898 DOI: 10.1021/acs.langmuir.2c00349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microgels are regarded as soft colloids with environmental responsiveness. However, the majority of reported microgels are inherently hydrophilic, resulting in aqueous dispersions, and only used in water-based applications. Herein, we reported an efficient method for hybridization of poly(N-isopropylacrylamide) microgel by coating hydrophobic silica nanoparticles on their surface. The resultant hybrid microgel had switchable surface wettability and could be dispersed in both aqueous and oil phases. Meanwhile, the coated hydrophobic silica nanoparticles solved the difficulty in redispersing microgels caused by particle aggregation and film formation during the drying process, providing a significant advantage in dried storage. Furthermore, the introduction of hydrophobic silica nanoparticles endowed the hybrid microgel with a variety of applications, including cargo encapsulation, active release induced by emulsion reversion, and trace water absorption.
Collapse
Affiliation(s)
- Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shengwei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong 999077, P. R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong 999077, P. R. China
| |
Collapse
|
16
|
Jiang H, Zhang S, Sun G, Li Y, Guan X, Yang C, Ngai T. Engineering hybrid microgels as particulate emulsifiers for reversible Pickering emulsions. Chem Sci 2021; 13:39-43. [PMID: 35059148 PMCID: PMC8694365 DOI: 10.1039/d1sc05398a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Thermo-responsive microgels are unique stabilizers for stimuli-sensitive Pickering emulsions that can be switched between the state of emulsification and demulsification by changing the temperature. However, directly temperature-triggering the phase inversion of microgel-stabilized emulsions remains a great challenge. Here, a hybrid poly(N-isopropylacrylamide)-based microgel has now been successfully fabricated with tunable wettability from hydrophilicity to hydrophobicity in a controlled manner. Engineered microgels are synthesized from an inverse emulsion stabilized with hydrophobic silica nanoparticles, and the swelling-induced feature can make the resultant microgel behave like either hydrophilic or hydrophobic colloids. Remarkably, the phase inversion of such microgel-stabilized Pickering emulsions can be in situ regulated by temperature change. Moreover, the engineered microgels were capable of stabilizing water-in-oil Pickering emulsions and encapsulation of enzymes for interfacial bio-catalysis, as well as rapid cargo release triggered by phase inversion.
Collapse
Affiliation(s)
- Hang Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Shengwei Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Guanqing Sun
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Yunxing Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong P. R. China
| | - Cheng Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
| | - To Ngai
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 P. R. China
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong P. R. China
| |
Collapse
|
17
|
Guo H, Bai M, Wen C, Liu M, Tian S, Xu S, Liu X, Ma Y, Chen P, Li Q, Zhang X, Yang J, Zhang L. A Zwitterionic-Aromatic Motif-Based ionic skin for highly biocompatible and Glucose-Responsive sensor. J Colloid Interface Sci 2021; 600:561-571. [PMID: 34030011 DOI: 10.1016/j.jcis.2021.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022]
Abstract
Electronic skins that can sense external stimuli have been of great significance in artificial intelligence and smart wearable devices in recent years. However, most of current skin materials are unable to achieve high biocompatibility and anti-bacterial activity, which are particularly critical to wearable sensors for neonatal/premature monitoring or tissue-interfaced biosensors (such as electronic wound dressing and smart contact lens). Herein, a zwitterionic-aromatic motif-based conductive hydrogel with electrostatic and π-π interactions is designed for the development of ionic skin sensors. The hydrogel possesses high biocompatibility, anti-bacterial activity, especially glucose-responsive property which has not been achieved by previous ionic skins. Due to its unique molecular design, the zwitterionic-aromatic skin sensor exhibits excellent mechanical properties (robust elasticity and large stretchability) and high-sensitive pressure detection (including a gentle finger touch, small water droplets, and vocal cord vibration). More importantly, aromatic motives in phenylboronic acid segments endow the skin with glucose-responsive property. This skin sensor not only shows great potential in wearable e-skins, but also possesses a promising property for the tissue-interfaced and implantable continuous-glucose-monitor biosensors such as smart wound dressing with a high demand of biocompatibility.
Collapse
Affiliation(s)
- Hongshuang Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Ming Bai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Chiyu Wen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Min Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Shu Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Sijia Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Xinmeng Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Xiangyu Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China.
| |
Collapse
|
18
|
Liao YF, Zhou MH, Zhang Y, Peng YY, Jian JX, Lu F, Tong QX. Facile synthesis and marked pH-responsive behavior of novel foaming agents based on amide- and ester-linked morpholine fluorosurfactants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Lu Y, Zhu Y, Yang F, Xu Z, Liu Q. Advanced Switchable Molecules and Materials for Oil Recovery and Oily Waste Cleanup. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004082. [PMID: 34047073 PMCID: PMC8336505 DOI: 10.1002/advs.202004082] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/19/2021] [Indexed: 05/07/2023]
Abstract
Advanced switchable molecules and materials have shown great potential in numerous applications. These novel materials can express different states of physicochemical properties as controlled by a designated stimulus, such that the processing condition can always be maintained in an optimized manner for improved efficiency and sustainability throughout the whole process. Herein, the recent advances in switchable molecules/materials in oil recovery and oily waste cleanup are reviewed. Oil recovery and oily waste cleanup are of critical importance to the industry and environment. Switchable materials can be designed with various types of switchable properties, including i) switchable interfacial activity, ii) switchable viscosity, iii) switchable solvent, and iv) switchable wettability. The materials can then be deployed into the most suitable applications according to the process requirements. An in-depth discussion about the fundamental basis of the design considerations is provided for each type of switchable material, followed by details about their performances and challenges in the applications. Finally, an outlook for the development of next-generation switchable molecules/materials is discussed.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Yeling Zhu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Fan Yang
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| | - Zhenghe Xu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Qingxia Liu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| |
Collapse
|
20
|
Li S, Fan Y, Liu Y, Niu S, Han Z, Ren L. Smart Bionic Surfaces with Switchable Wettability and Applications. JOURNAL OF BIONIC ENGINEERING 2021; 18:473-500. [PMID: 34131422 PMCID: PMC8193597 DOI: 10.1007/s42235-021-0038-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to satisfy the needs of different applications and more complex intelligent devices, smart control of surface wettability will be necessary and desirable, which gradually become a hot spot and focus in the field of interface wetting. Herein, we review interfacial wetting states related to switchable wettability on superwettable materials, including several classical wetting models and liquid adhesive behaviors based on the surface of natural creatures with special wettability. This review mainly focuses on the recent developments of the smart surfaces with switchable wettability and the corresponding regulatory mechanisms under external stimuli, which is mainly governed by the transformation of surface chemical composition and geometrical structures. Among that, various external stimuli such as physical stimulation (temperature, light, electric, magnetic, mechanical stress), chemical stimulation (pH, ion, solvent) and dual or multi-triggered stimulation have been sought out to realize the regulation of surface wettability. Moreover, we also summarize the applications of smart surfaces in different fields, such as oil/water separation, programmable transportation, anti-biofouling, detection and delivery, smart soft robotic etc. Furthermore, current limitations and future perspective in the development of smart wetting surfaces are also given. This review aims to offer deep insights into the recent developments and responsive mechanisms in smart biomimetic surfaces with switchable wettability under external various stimuli, so as to provide a guidance for the design of smart surfaces and expand the scope of both fundamental research and practical applications.
Collapse
Affiliation(s)
- Shuyi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Yuyan Fan
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| |
Collapse
|
21
|
Pickering emulsions stabilized by thermoresponsive oligo(ethylene glycol)-based microgels: Effect of temperature-sensitivity on emulsion stability. J Colloid Interface Sci 2021; 589:96-109. [DOI: 10.1016/j.jcis.2020.12.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
|
22
|
Fernandez-Rodriguez MA, Martín-Molina A, Maldonado-Valderrama J. Microgels at interfaces, from mickering emulsions to flat interfaces and back. Adv Colloid Interface Sci 2021; 288:102350. [PMID: 33418470 DOI: 10.1016/j.cis.2020.102350] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022]
Abstract
In this review, we cover the topic of p(NIPAM) based microgels at interfaces, revisiting classical studies in light of the newest ones. In particular, we focus on their use as emulsifiers in the so-called mickering emulsions, i.e. Pickering emulsion stabilized by soft particles. Given the complexity of the experimental characterization and simulation of these soft particles at interfaces, the review is structured in progressive complexity levels, until we reach the highly interesting and promising responsiveness to stimuli of mickering emulsions. We start from the lowest level of complexity, the current understanding of the behavior of single microgels confined at a flat interface. Then, we discuss their collective behavior upon crowding, their responsiveness at interfaces, and their macroscopic properties as microgel films. Once we have the necessary characterization tools, we proceed to discuss the complex and convoluted picture of responsive mickering emulsions. The way is rough, with current controversial and contradicting studies, but it holds promising results as well. We state open questions worth of being tackled by the Soft Matter community, and we conclude that it is worth the trouble of continuing after the master theory of microgel interfacial activity, as it will pave the way to widely adopt responsive mickering emulsions as the worthy Pickering emulsion successors.
Collapse
Affiliation(s)
| | - Alberto Martín-Molina
- Department of Applied Physics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Institute Carlos I for Theoretical and Computational Physics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Julia Maldonado-Valderrama
- Department of Applied Physics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Excellence Unit "ModellingNature" (MNat), , University of Granada, Spain.
| |
Collapse
|
23
|
Velandia SF, Marchal P, Lemaitre C, Sadtler V, Roques-Carmes T. Evaluation of the repartition of the particles in Pickering emulsions in relation with their rheological properties. J Colloid Interface Sci 2021; 589:286-297. [PMID: 33472148 DOI: 10.1016/j.jcis.2021.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS The distribution of particles in Pickering emulsions can be estimated through a percolation-type approach coupled to the evolution of their rheological features with the dispersed phase volume fraction ϕ. EXPERIMENTS The rheological behavior of water-in-dodecane Pickering emulsions stabilized with hydrophobic silica nanoparticles is addressed. The emulsions viscosity and elastic modulus are investigated at ϕ varying from 0.1 to 0.75. Various rheological models are adjusted to the experimental data. FINDINGS The comparison of the elastic modulus evolution of the Pickering emulsions with those of emulsions stabilized with surfactants confirms a major contribution of the particles to the rheological behavior of Pickering emulsions and supports the existence of a three-dimensional network between the droplets. The applied percolation approach allows to quantitively estimate a nanoparticles viscoelastic link between the droplets and opposes the classic vision of interfacial monolayers stabilizing the Pickering emulsions. This network of interconnected particles and droplets contributes significantly to the viscosity as well as the elastic modulus of these emulsions. To our knowledge, the applied percolation-based model is the only one capable of providing a structural explanation while describing the abrupt viscosity and elastic modulus growth of Pickering emulsions across the range of ϕ.
Collapse
Affiliation(s)
- Santiago F Velandia
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France.
| | - Philippe Marchal
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France.
| | - Cécile Lemaitre
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France.
| | - Véronique Sadtler
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France.
| | - Thibault Roques-Carmes
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France.
| |
Collapse
|
24
|
Microgels self-assembly at liquid/liquid interface as stabilizers of emulsion: Past, present & future. Adv Colloid Interface Sci 2021; 287:102333. [PMID: 33360120 DOI: 10.1016/j.cis.2020.102333] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
The most recent developments on Pickering emulsions deal with the design of responsive emulsions able to undergo fast destabilization under the effect of an external stimulus. In this scenario, soft colloidal particles like microgels are considered novel class suitable emulsifiers. Microgels particles self-assemblies are highly deformable at interfaces covering higher surfaces than hard particles and their interfacial behavior strongly depends on external-stimuli. Microgels are very diverse owing to the large variety of them from the point of view of possible combinations of stimuli-responsiveness and different microstructures (crosslinking density and distribution). Herein, we illustrate the use of different types of responsive microgels not only from a structural point of view but also even from physical one. For that, the effect of different microgels parameters such as internal structure and charge density on mechanical properties of the interface will be discussed.
Collapse
|
25
|
Maingret V, Courrégelongue C, Schmitt V, Héroguez V. Dextran-Based Nanoparticles to Formulate pH-Responsive Pickering Emulsions: A Fully Degradable Vector at a Day Scale. Biomacromolecules 2020; 21:5358-5368. [DOI: 10.1021/acs.biomac.0c01489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Valentin Maingret
- Centre de Recherche Paul Pascal, UMR 5031 University Bordeaux CNRS, 115 Avenue du Dr Albert Schweitzer, 33600 Pessac, France
- Laboratoire de Chimie des Polymères Organiques, University Bordeaux, CNRS, Bordeaux INP, UMR 5629, Bordeaux, 16 Avenue Pey-Berland, 33607 Pessac, France
| | - Clémence Courrégelongue
- Centre de Recherche Paul Pascal, UMR 5031 University Bordeaux CNRS, 115 Avenue du Dr Albert Schweitzer, 33600 Pessac, France
- Laboratoire de Chimie des Polymères Organiques, University Bordeaux, CNRS, Bordeaux INP, UMR 5629, Bordeaux, 16 Avenue Pey-Berland, 33607 Pessac, France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, UMR 5031 University Bordeaux CNRS, 115 Avenue du Dr Albert Schweitzer, 33600 Pessac, France
| | - Valérie Héroguez
- Laboratoire de Chimie des Polymères Organiques, University Bordeaux, CNRS, Bordeaux INP, UMR 5629, Bordeaux, 16 Avenue Pey-Berland, 33607 Pessac, France
| |
Collapse
|
26
|
Xu YT, Yang T, Liu LL, Tang CH. One-step fabrication of multifunctional high internal phase pickering emulsion gels solely stabilized by a softer globular protein nanoparticle: S-Ovalbumin. J Colloid Interface Sci 2020; 580:515-527. [DOI: 10.1016/j.jcis.2020.07.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 01/04/2023]
|
27
|
Koroleva M, Yurtov E. Pickering emulsions stabilized with magnetite, gold, and silica nanoparticles: Mathematical modeling and experimental study. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|