1
|
Lingeshwaran L, Alagarasan JK, Siddharthan S, Sivasubramanian K, Velmurugan P, Oleyan Al-Otibi F, Manickam S, Lee M. Sustainable ultrasonic extraction of antibacterial Basella alba fruit dye for cotton, silk, and leather. ULTRASONICS SONOCHEMISTRY 2024; 111:107069. [PMID: 39307093 PMCID: PMC11439835 DOI: 10.1016/j.ultsonch.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Alternative to synthetic dyes containing harmful compounds, dyes derived from natural sources are gaining popularity due to their safer and eco-friendly nature. This study focuses on extracting red dye from Basella alba fruit and optimising the extraction methods, including ultrasonic bath, ultrasonic probe, and direct heating. The extracted dye was then used for dyeing cotton, silk, and leather without needing a mordant. Furthermore, the antibacterial properties of the extracted red dye were evaluated against skin bacteria. The UV-Visible spectrophotometric analysis revealed that the maximum red colour in the methanol extract (λmax 270 and λmax 542 nm) was achieved at 60 °C for 30 min using the ultrasonic water bath extraction method, followed by the ultrasonic probe and direct heating methods. The FTIR spectra confirmed the presence of flavonoids, betacyanin, and gomphrenin-I in the extracted dye. The ultrasonic dyeing process at 50 °C yielded a K/s value 6.3 for the dyed cotton, silk, and leather without using a mordant. Additionally, the fatness test indicated a high grade of 0.5-1.5 for the ultrasonic dyeing method compared to other dyeing techniques. The extracted dye exhibited significant antibacterial activity against all Pseudomonas sp. after extraction in methanol, with the highest inhibition observed against Pseudomonas sp. with a MIC of 1.56 mg/ml.
Collapse
Affiliation(s)
- Loganathan Lingeshwaran
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600126, India
| | - Jagadeesh Kumar Alagarasan
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, South Korea; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India
| | - Seema Siddharthan
- Department of Biotechnology, Dhanalakshmi Srinivasan College of Arts and Science for Women, Perambalur, Tamil Nadu 621212, India
| | - Kanagasabapathy Sivasubramanian
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600126, India
| | - Palanivel Velmurugan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600126, India.
| | - Fatimah Oleyan Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Moonyong Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, South Korea; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India.
| |
Collapse
|
2
|
Hossain N, Islam MA, Chowdhury MA. Synthesis and characterization of plant extracted silver nanoparticles and advances in dental implant applications. Heliyon 2022; 8:e12313. [PMID: 36590472 PMCID: PMC9794905 DOI: 10.1016/j.heliyon.2022.e12313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Dental implantology has always emphasized silver nanoparticles (AgNPs) for various applications due to their biocompatibility, antibacterial activity, and increased surface volume ratio offered by these particles. It is utilized to a large extent in the dental implant industry as a surface modification, biocompatible constituent and composite material. AgNPs may be produced inexpensively, sustainably, and environmentally responsibly by utilizing technologies that extract the plant material. The phytochemical components that are contained in plants make them a better, non-toxic, and more cost-effective alternative to both physical and chemical approaches. Because the size and shape of AgNP depend on their synthesis method and technique, and because the efficacy and toxicity of AgNP depend on both size and shape, synthesis methods and techniques have recently become the focus of a significant amount of research attention. In this review, we discussed Plant Extracted Ag-NP's whose sizes range up to 100nm. This review also focuses on recent research advancements in the Plant Extracted synthesis of AgNPs, as well as their characterization methodologies, current obstacles, future possibilities, and applications in dental implantology.
Collapse
Affiliation(s)
- Nayem Hossain
- Department of Mechanical Engineering IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mohammad Aminul Islam
- Department of Mechanical Engineering IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering Dhaka University of Engineering and Technology (DUET), Gazipur Gazipur-1707, Bangladesh
| |
Collapse
|
3
|
Wang A, Liang H, Chen F, Tian X, Jing S, Tsiakaras P. Preparation and characterization of novel Niln 2S 4/UiO-66 photocatalysts for the efficient degradation of antibiotics in water. CHEMOSPHERE 2022; 307:135699. [PMID: 35842045 DOI: 10.1016/j.chemosphere.2022.135699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Photocatalysis is considered an economical, environmentally friendly, and effective technology for removing pollutants. The construction of Z-Scheme heterojunctions has been identified as one of the feasible solutions capable of enhancing the photocatalytic activity. Herein, a series of visible light responsive photocatalysts (NiIn2S4/UiO-66 composites) with excellent activity and stability were prepared by using a solvothermal process. It is found that 20 mg L-1 of tetracycline (TC) could be almost completely degraded under visible light irradiation within 1 h, when the mass ratio of NiIn2S4 to UiO-66 is 0.5:1 (NISU-0.5) and the solution pH = 11. In addition, after six cycles, the degradation rate of tetracycline photocatalyzed by NISU-0.5 still reach up to 90%. Ultraviolet photoelectron spectra (UPS), X-ray photoelectron spectra (XPS) and electron spin resonance measurements (ESR) confirm the formation of the Z-Scheme heterostructure between NiIn2S4 and UiO-66. The synergistic effect between built-in electric field, energy band bending and coulomb interactions in interface of Z-Scheme heterojunction is conducive to restrain the recombination of photogenerated electrons and holes, which greatly improve the photocatalytic activity. In conclusion, this study offers a new thought for design and synthesis of Z-Scheme heterojunctions and provides a cost-effective strategy for solving environmental pollution and energy problems in the future.
Collapse
Affiliation(s)
- Anhu Wang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou, 221008, China; School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221008, China
| | - Huagen Liang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou, 221008, China; School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221008, China; Key Laboratory of Fuel Cell Technology of Guangdong Province, Guangzhou, 510640, China.
| | - Fu Chen
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou, 221008, China; School of Public Administration, Hohai University, Nanjing, 210098, China.
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China.
| | - Shengyu Jing
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834, Greece.
| |
Collapse
|
4
|
Moula AG, Hosen MD, Siddiquee MAB, Momin MA, Kaisar Z, Mamun MAA, Islam MA. Effect of dye bath pH in dyeing of cotton knitted fabric with reactive dye (Remazol Yellow RR) in exhaust method: impact on color strength, chromatic values and fastness properties. Heliyon 2022; 8:e11246. [DOI: 10.1016/j.heliyon.2022.e11246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/03/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
|
5
|
Ahmed HB, El-Shahat M, Allayeh AK, Emam HE. Maillard reaction for nucleation of polymer quantum dots from chitosan-glucose conjugate: Antagonistic for cancer and viral diseases. Int J Biol Macromol 2022; 224:858-870. [DOI: 10.1016/j.ijbiomac.2022.10.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
6
|
Kraskouski A, Hileuskaya K, Ladutska A, Kabanava V, Liubimau A, Novik G, Nhi TTY, Agabekov V. Multifunctional biocompatible films based on
pectin‐Ag
nanocomposites and
PVA
: Design, characterization and antimicrobial potential. J Appl Polym Sci 2022. [DOI: 10.1002/app.53023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aliaksandr Kraskouski
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
| | - Kseniya Hileuskaya
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
| | - Alena Ladutska
- Microbial Collection Laboratory Institute of Microbiology of NAS of Belarus Minsk Belarus
| | - Volha Kabanava
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
- Department of Higher Mathematics and Mathematical Physics Belarusian State University Minsk Belarus
| | - Aliaksandr Liubimau
- Department of Polymer Composite Materials Belarusian State Technological University Minsk Belarus
| | - Galina Novik
- Microbial Collection Laboratory Institute of Microbiology of NAS of Belarus Minsk Belarus
| | - Tran Thi Y. Nhi
- Laboratory of Natural Polymer Institute of Chemistry of Vietnamese Academy of Science and Technology Hanoi Vietnam
| | - Vladimir Agabekov
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
| |
Collapse
|
7
|
Zheng L, Seidi F, Liu Y, Wu W, Xiao H. Polymer-based and stimulus-responsive carriers for controlled release of agrochemicals. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Hojamberdiev M, Czech B, Wasilewska A, Boguszewska-Czubara A, Yubuta K, Wagata H, Daminova SS, Kadirova ZC, Vargas R. Detoxifying SARS-CoV-2 antiviral drugs from model and real wastewaters by industrial waste-derived multiphase photocatalysts. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128300. [PMID: 35077970 PMCID: PMC8767938 DOI: 10.1016/j.jhazmat.2022.128300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/01/2022] [Accepted: 01/16/2022] [Indexed: 05/28/2023]
Abstract
The use of antiviral drugs has surged as a result of the COVID-19 pandemic, resulting in higher concentrations of these pharmaceuticals in wastewater. The degradation efficiency of antiviral drugs in wastewater treatment plants has been reported to be too low due to their hydrophilic nature, and an additional procedure is usually necessary to degrade them completely. Photocatalysis is regarded as one of the most effective processes to degrade antiviral drugs. The present study aims at synthesizing multiphase photocatalysts by a simple calcination of industrial waste from ammonium molybdate production (WU photocatalysts) and its combination with WO3 (WW photocatalysts). The X-ray diffraction (XRD) results confirm that the presence of multiple crystalline phases in the synthesized photocatalysts. UV-Vis diffuse reflectance spectra reveal that the synthesized multiphase photocatalysts absorb visible light up to 620 nm. Effects of calcination temperature of industrial waste (550-950 °C) and WO3 content (0-100%) on photocatalytic activity of multiphase photocatalysts (WU and WW) for efficient removal of SARS-CoV-2 antiviral drugs (lopinavir and ritonavir) in model and real wastewaters are studied. The highest k1 value is observed for the photocatalytic removal of ritonavir from model wastewater using WW4 (35.64 ×10-2 min-1). The multiphase photocatalysts exhibit 95% efficiency in the photocatalytic removal of ritonavir within 15 of visible light irradiation. In contrast, 60 min of visible light irradiation is necessary to achieve 95% efficiency in the photocatalytic removal of lopinavir. The ecotoxicity test using zebrafish (Danio rerio) embryos shows no toxicity for photocatalytically treated ritonavir-containing wastewater, and the contrary trend is observed for photocatalytically treated lopinavir-containing wastewater. The synthesized multiphase photocatalysts can be tested and applied for efficient degradation of other SARS-CoV-2 antiviral drugs in wastewater in the future.
Collapse
Affiliation(s)
- Mirabbos Hojamberdiev
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland.
| | - Anna Wasilewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4a, Lublin 20-093, Poland
| | - Kunio Yubuta
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hajime Wagata
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
| | - Shahlo S Daminova
- Department of Inorganic Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan; Uzbekistan-Japan Innovation Center of Youth, University Str. 2B, Tashkent 100095, Uzbekistan
| | - Zukhra C Kadirova
- Department of Inorganic Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan; Uzbekistan-Japan Innovation Center of Youth, University Str. 2B, Tashkent 100095, Uzbekistan
| | - Ronald Vargas
- Instituto Tecnológico de Chascomús (INTECH) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) / Universidad Nacional de San Martín (UNSAM), Avenida Intendente Marino, Km 8,2, B7130IWA Chascomús, Provincia de Buenos Aires, Argentina
| |
Collapse
|
9
|
Yao T, Tan Y, Zhou Y, Chen Y, Xiang M. Preparation of core-shell MOF-5/Bi2WO6 composite for the enhanced photocatalytic degradation of pollutants. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
The Potential Application of Green-Synthesized Metal Nanoparticles in Dentistry: A Comprehensive Review. Bioinorg Chem Appl 2022; 2022:2311910. [PMID: 35281331 PMCID: PMC8913069 DOI: 10.1155/2022/2311910] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 12/26/2022] Open
Abstract
Orodental problems have long been managed using herbal medicine. The development of nanoparticle formulations with herbal medicine has now become a breakthrough in dentistry because the synthesis of biogenic metal nanoparticles (MNPs) using plant extracts can address the drawbacks of herbal treatments. Green production of MNPs such as Ag, Au, and Fe nanoparticles enhanced by plant extracts has been proven to be beneficial in managing numerous orodental disorders, even outperforming traditional materials. Nanostructures are utilized in dental advances and diagnostics. Oral disease prevention medicines, prostheses, and tooth implantation all employ nanoparticles. Nanomaterials can also deliver oral fluid or pharmaceuticals, treating oral cancers and providing a high level of oral healthcare. These are also found in toothpaste, mouthwash, and other dental care products. However, there is a lack of understanding about the safety of nanomaterials, necessitating additional study. Many problems, including medication resistance, might be addressed using nanoparticles produced by green synthesis. This study reviews the green synthesis of MNPs applied in dentistry in recent studies (2010–2021).
Collapse
|
11
|
Nasri R, Larbi T, Khemir H, Amlouk M, Zid MF. Synthesis, crystal structure and photocatalytic activity of a new NaLi1.07Co2.94(MoO4)5 nanoparticles for real tannery wastewater treatment. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
In situ growth of UIO-66-NH2 on thermally stabilized electrospun polyacrylonitrile nanofibers for visible-light driven Cr (VI) photocatalytic reduction. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Akshaykranth A, Jayarambabu N, Venkatappa Rao T, Rakesh Kumar R, Srinivasa Rao L. Antibacterial activity study of ZnO incorporated biodegradable poly (lactic acid) films for food packaging applications. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04126-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Ray P, Lodha T, Biswas A, Sau TK, Ramana CV. Particle specific physical and chemical effects on antibacterial activities: A comparative study involving gold nanostars, nanorods and nanospheres. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Malik V, Saya L, Gautam D, Sachdeva S, Dheer N, Arya DK, Gambhir G, Hooda S. Review on adsorptive removal of metal ions and dyes from wastewater using tamarind-based bio-composites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03991-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Hassabo AA, Ibrahim EI, Ali BA, Emam HE. Anticancer effects of biosynthesized Cu2O nanoparticles using marine yeast. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Wang Z, Lü S, Yang F, Kabir SF, Mahmud S, Liu H. Hyaluronate macromolecules reduced-stabilized colloidal palladium nanocatalyst for azo contaminated wastewater treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Tang J, Zhang T, Zhang Q, Duan Z, Li C, Hou D, Xv Q, Meng C, Zhang Y, Zhu Y. In-situ growth UiO-66 on Bi2O3 to fabrication p-p heterojunction with enhanced visible-light degradation of tetracycline. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Bian SW, Huang YL, Yue Y, Zhang W. Porous cotton/magnesium silicate composite films as high-performance adsorbents for organic dye removal. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Design of a novel PEBA/CDs polymeric fibrous composite nanostructure in order to remove navicula algal and improve the quality of drinking water. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03852-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Emam HE, Ahmed HB, Abdelhameed RM. Melt intercalation technique for synthesis of hetero-metallic@chitin bio-composite as recyclable catalyst for prothiofos hydrolysis. Carbohydr Polym 2021; 266:118163. [PMID: 34044959 DOI: 10.1016/j.carbpol.2021.118163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
The compatibility of homo-metallic and hetero-metallic bio-composite was promisingly investigated as recyclable catalyst for prothiofos hydrolysis. Chitin as water insoluble biopolymer was functionalized as a template for generation of homo-metallic (Ag@chitin, Au@chitin and Pd@chitin) and hetero-metallic (Au@Ag@chitin, Pd@Ag@chitin and Pd@Au@Ag@chitin) composites, by using melt intercalation technique. Investigation of the compatibility of the synthesized homo-metallic and hetero-metallic bio-composites in hydrolysis of prothiofos was performed and affirmed via HPLC results. Immobilization of Pd in the composites showed perfection in the catalytic performance for prothiofos hydrolysis. Pd@Au@Ag@chitin exhibited the highest hydrolysis result of 99% for prothiofos was hydrolyzed within 150 min with rate constant (k1) of 24.48 min-1. After five recycles for Pd@Au@Ag@chitin, the hydrolysis of prothiofos was lowered from 346 mg/g to 269 mg/g with reduction percentage of 22%. The synthesized bio-composite was highly effective as recyclable catalyst and can be easily served in the remediation of pesticides.
Collapse
Affiliation(s)
- Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic based Textiles, Textile Industries Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
22
|
Saedi Z, Hajinia N. Concurrent first- and second-order photodegradation of azo dyes using TMU-16 pillared-layer microporous metal organic framework under visible light. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Zhang YJ, Nie HX, Yu MH, Chang Z. Post-synthetic modification of tetrazine functionalized porous MOF for CO2 sorption performances modulation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Wang F, Yan B, Li Z, Wang P, Zhou M, Yu Y, Yuan J, Cui L, Wang Q. Rapid Antibacterial Effects of Silk Fabric Constructed through Enzymatic Grafting of Modified PEI and AgNP Deposition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33505-33515. [PMID: 34251171 DOI: 10.1021/acsami.1c08119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzymatic antibacterial finishing is an eco-friendly alternative to develop functional silk-based materials. However, the low accessibility of tyrosine residues distributed in fibroin chains restricts the laccase-mediated functionalization of silk fibers (SF). To address this issue, a highly reactive p-hydroxyphenylacetic acid-modified polyethyleneimine (mPEI) was enzymatically grafted onto fibroin using laccase, aiming at constructing an antibacterial matrix of mPEI on the fiber surface. Subsequently, in situ deposition of silver nanoparticles (i.e., AgNPs) into the newly built mPEI network was performed to form a rapid antibacterial layer. The results indicated that laccase efficiently catalyzes the mPEI coupling, the zeta potential of SF-g-mPEI increases from -32 to 21.70 mV, and the silver content reaches 1.81% after AgNP embedment. Based on the combined two-step treatments, the obtained silk fabric exhibited excellent antibacterial abilities against two bacteria, including Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The antibacterial rates of both bacteria reached 99.9% within 30 min of contact, remaining over 99.9% within 18 h of contact even after washing 10 times. The present work provides an enzyme-mediated method for construction of silk fabric with durable and rapid antibacterial activity.
Collapse
Affiliation(s)
- Feiyu Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Biaobiao Yan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zirong Li
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Li Cui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
Peng LG, Wang H, Liu J, Sun M, Ni FR, Chang MJ, Du HL, Yang J. Fabrication of fibrous BiVO4/Bi2S3/MoS2 heterojunction and synergetic enhancement of photocatalytic activity towards pollutant degradation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Iqbal M, Niazi MBK, Jahan Z, Ahmad T, Hussain Z, Sher F. Fabrication and characterization of carbon-based nanocomposite membranes for packaging application. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03763-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
In-vitro and antibacterial activities of novel POT/TiO2/PCL composites for tissue engineering and biomedical applications. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03707-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
|
29
|
Jayeoye TJ, Eze FN, Singh S, Olatunde OO, Benjakul S, Rujiralai T. Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications. Int J Biol Macromol 2021; 179:196-205. [PMID: 33675826 DOI: 10.1016/j.ijbiomac.2021.02.199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite ((PABA-SAL)@AuNPs) was fabricated. Aniline boronic acid (ABA) served as reductant of gold salt, all within the SAL solution. While ABA reduced gold salt to its nanoparticles, the ABA monomer was also oxidized to its conducting polymeric form (PABA). The presence of PABA in the reaction mixture exerted solubility and stability challenge, thus SAL was used as stabilizer and solubilizer for PABA. The numerous cis-diol groups of SAL could bind to boronic acid groups of PABA to furnish PABA-SAL repeating polymer structure for AuNPs anchoring. Sparkling ruby red (PABA-SAL)@AuNPs have absorption peaks at 529 and 718 nm. Average particle sizes of nanocomposite were within 15-20 nm, with hydrodynamic diameter of 48.6 ± 0.9 nm, zeta potential of -32.5 ± 1.6 mV and conductivity value of 2015.3 ± 3.2 μS/cm. (PABA-SAL)@AuNPs possessed antibacterial activities against seafood associated bacterial isolates, with MIC and MBC ranging from 4 to 8 μg/mL. The moderate antioxidant capacity of (PABA-SAL)@AuNPs was observed, without any deleterious damages on human red blood cells. It also has good biocompatibility on Caco-2 and RAW 264.7, with cell viability not less than 70%. These results confirm the high prospect of (PABA-SAL)@AuNPs for possible biomedical applications.
Collapse
Affiliation(s)
- Titilope John Jayeoye
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Analytical Chemistry and Environment Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand; Department of Chemistry/Biochemistry/Molecular Biology, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, Ebonyi State, Nigeria
| | - Fredrick Nwude Eze
- Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sudarshan Singh
- Excellence Research Laboratory on Natural Products, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Oladipupo Odunayo Olatunde
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Thitima Rujiralai
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Analytical Chemistry and Environment Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand.
| |
Collapse
|
30
|
Yousefi M, Zandavar H, Pourmortazavi SM, Rajabi HR, Sajadiasl F, Ganjali MR, Mirsadeghi S. UV and visible-assisted photocatalytic degradation of pharmaceutical pollutants in the presence of rational designed biogenic Fe 3O 4-Au nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12932-8. [PMID: 33641093 DOI: 10.1007/s11356-021-12932-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
In this study, we designed Fe3O4 nanoparticles and heterogeneous Fe3O4-Au nanocomposites with a mean size of 21 and 27 nm that synthesized by Foeniculum vulgare seed extract to photodegrade organic micropollutants under UV and visible light irradiation. The physiochemical characteristics of biogenic nanoparticles/nanocomposite are described by XRD, FTIR, UV-Vis, SEM, EDX, and X-ray elemental mapping. In the presence of nanoparticles and nanocomposites under UV irradiation, the total degradation of contaminants is about 85-90% after 2100 s, while under visible light irradiation, degradation efficiencies are about 70-85% after 4800-s irradiation. Total organic carbon analysis results confirmed photodegradation efficacies. Also, the scavenger's experiments show that hydroxyl radical is the most important specie in the degradation of pollutant model. It can be concluded clearly that Fe3O4 green nanoparticles and Fe3O4-Au green nanocomposite are very simple and effective photocatalyst for degradation of organic pollutants in very short time under illumination.
Collapse
Affiliation(s)
- Mohammad Yousefi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Zandavar
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | | | | | | | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| |
Collapse
|
31
|
Lignin-derived (nano)materials for environmental pollution remediation: Current challenges and future perspectives. Int J Biol Macromol 2021; 178:394-423. [PMID: 33636266 DOI: 10.1016/j.ijbiomac.2021.02.165] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022]
Abstract
The supply of affordable drinking and sufficiently clean water for human consumption is one of the world's foremost environmental problems and a large number of scientific research works are addressing this issue Various hazardous/toxic environmental contaminants in water bodies, both inorganic and organic (specifically heavy metals and dyes), have become a serious global problem. Nowadays, extensive efforts have been made to search for novel, cost effective and practical biosorbents derived from biomass resources with special attention to value added, biomass-based renewable materials. Lignin and (nano)material adorned lignin derived entities can proficiently and cost effectively remove organic/inorganic contaminants from aqueous media. As low cost of preparation is crucial for their wide applications in water/wastewater treatment (particularly industrial water), future investigations must be devoted to refining and processing the economic viability of low cost, green lignin-derived (nano)materials. Production of functionalized lignin, lignin supported metal/metal oxide nanocomposites or hydrogels is one of the effective approaches in (nano)technology. This review outlines recent research progresses, trends/challenges and future prospects about lignin-derived (nano)materials and their sustainable applications in wastewater treatment/purification, specifically focusing on adsorption and/or catalytic reduction/(photo)degradation of a variety of pollutants.
Collapse
|
32
|
Dai K, Zhao G, Wang Z, Peng X, Wu J, Yang P, Li M, Tang C, Zhuang W, Ying H. Novel Mesoporous Lignin-Calcium for Efficiently Scavenging Cationic Dyes from Dyestuff Effluent. ACS OMEGA 2021; 6:816-826. [PMID: 33458532 PMCID: PMC7808136 DOI: 10.1021/acsomega.0c05401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/11/2020] [Indexed: 05/11/2023]
Abstract
A novel adsorbent lignin-calcium was fabricated by a simple flocculation-sedimentation approach to remove methylene blue. The structure and morphology of the well-prepared sample were analyzed by multiple characterization methods. Lignin-calcium microspheres demonstrated a mesoporous and inserted layer structure with a coarse surface. Methylene blue (MB) adsorption by lignin-calcium complied with the Langmuir model, showing a maximum adsorption amount of 803.9 mg/g, exceeding that reported in the literature by 3-22-fold. The adsorption kinetics matched the pseudo-second-order model well. The pore volume diffusion model was technically applied to evaluate the mass transfer mechanisms. The effective pore volume diffusion coefficient was 6.28 × 10-12 m2/s. Furthermore, lignin-calcium exhibited excellent adsorbability for methylene blue across a pH range from 3 to 11 and could be regenerated by hydrochloric acid with an elution efficiency of 62.44%. Multiple mechanisms may support the adsorption. Altogether, the tailor-made lignin-calcium is promising as an efficient and sustainable adsorbent for scavenging cationic dyes from dyestuff effluent.
Collapse
Affiliation(s)
- Kun Dai
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
- National
Engineering Technique Research Center for Biotechnology, Nanjing 211816, China
- Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing 210023, China
| | - Gulin Zhao
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
- National
Engineering Technique Research Center for Biotechnology, Nanjing 211816, China
- Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing 210023, China
- . Fax: +86-25-58139389. Tel.: +86-25-86990001
| | - Zichen Wang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
- National
Engineering Technique Research Center for Biotechnology, Nanjing 211816, China
- Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing 210023, China
| | - Xiaoqiang Peng
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
- National
Engineering Technique Research Center for Biotechnology, Nanjing 211816, China
- Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing 210023, China
| | - Jinglan Wu
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
- National
Engineering Technique Research Center for Biotechnology, Nanjing 211816, China
- Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing 210023, China
| | - Pengpeng Yang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
- National
Engineering Technique Research Center for Biotechnology, Nanjing 211816, China
- Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing 210023, China
| | - Ming Li
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
- National
Engineering Technique Research Center for Biotechnology, Nanjing 211816, China
- Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing 210023, China
| | - Chenglun Tang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
- National
Engineering Technique Research Center for Biotechnology, Nanjing 211816, China
- Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing 210023, China
| | - Wei Zhuang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
- National
Engineering Technique Research Center for Biotechnology, Nanjing 211816, China
- Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing 210023, China
| | - Hanjie Ying
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
- National
Engineering Technique Research Center for Biotechnology, Nanjing 211816, China
- Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing 210023, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
| |
Collapse
|
33
|
Overview for multimetallic nanostructures with biomedical, environmental and industrial applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114669] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Saren RK, Banerjee S, Mondal B, Senapati S, Tripathy T. Studies of simultaneous electrochemical sensing of Hg 2+ and Cd 2+ ions and catalytic reduction properties of 4-nitrophenol by CuO, Au, and CuO@Au composite nanoparticles synthesised using a graft copolymer as a bio-template. NEW J CHEM 2021. [DOI: 10.1039/d1nj04702g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Simultaneous electrochemical detection of Hg2+ and Cd2+ ions and catalytic reduction of 4NP to 4AP using a novel synthesized graft copolymer/CuO@Au NPs composite.
Collapse
Affiliation(s)
- Rakesh Kumar Saren
- Postgraduate Division of Chemistry, Midnapore College (Autonomous), Paschim Medinipur, Midnapore 721101, West Bengal, India
| | - Shankha Banerjee
- Department of Biotechnology, BJM School of Bioscience, Indian Institute of Technology Madras, Chennai 600036, India
| | - Barun Mondal
- Postgraduate Division of Chemistry, Midnapore College (Autonomous), Paschim Medinipur, Midnapore 721101, West Bengal, India
| | - Sanjib Senapati
- Department of Biotechnology, BJM School of Bioscience, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tridib Tripathy
- Postgraduate Division of Chemistry, Midnapore College (Autonomous), Paschim Medinipur, Midnapore 721101, West Bengal, India
| |
Collapse
|
35
|
Ahmed HB, Emam HE. Environmentally exploitable biocide/fluorescent metal marker carbon quantum dots. RSC Adv 2020; 10:42916-42929. [PMID: 35514886 PMCID: PMC9058413 DOI: 10.1039/d0ra06383e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/08/2020] [Indexed: 11/21/2022] Open
Abstract
Carbon quantum dots are currently investigated to act as safe/potent alternatives for metal-based nanostructures to play the role of probes for environmental applications owing to their low toxicity, low cost, chemical inertness, biocompatibility and outstanding optical properties. The synthesis of biocide/fluorescent metal marker carbon quantum dots with hydrophilic character was performed via a quite simple and green technique. The natural biopolymer that was used in this study for the synthesis of carbon quantum dots is fragmented under strong alkaline conditions. Afterwards, under hydrothermal conditions, re-polymerization, aromatization and subsequent oxidation, the carbonic nanostructures were grown and clustered. Dialysis of the so-produced carbonic nanostructures was carried out to obtain highly purified/mono-dispersed carbon quantum dots with a size distribution of 1.5-6.5 nm. The fluorescence intensity of the synthesized carbon quantum dots under hydrothermal conditions for 3 h was affected by dialysis, however, the fluorescence intensity was significantly increased ca. 20 times. The synthesized carbon quantum dots were exploited as fluorescent markers in the detection of Zn2+ and Hg2+. The prepared carbon quantum dots also exhibited excellent antimicrobial potency against Bacillus cereus, Escherichia coli and Candida albicans. The detected minimal inhibitory concentration for the dialyzed CQDs towards the tested pathogens was 350-450 μL mL-1. The presented approach is a simple and green technique for the scaled-up synthesis of biocide/fluorescent marker carbon quantum dots instead of metal-based nanostructures for environmental applications, without using toxic chemicals or organic solvents.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University Ain-Helwan Cairo 11795 Egypt +201097411189
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Industries Research Division, National Research Centre, Scopus Affiliation ID 60014618 33 EL Buhouth St., Dokki Giza 12622 Egypt +201008002487
| |
Collapse
|
36
|
In situ synthesis of silver nanoparticles on modified poly(ethylene terephthalate) fibers by grafting for obtaining versatile antimicrobial materials. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03486-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Abdelhameed RM, El-Shahat M, Emam HE. Employable metal (Ag & Pd)@MIL-125-NH2@cellulose acetate film for visible-light driven photocatalysis for reduction of nitro-aromatics. Carbohydr Polym 2020; 247:116695. [DOI: 10.1016/j.carbpol.2020.116695] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
|
38
|
Sun T, Gao J, Shi H, Han D, Zangeneh MM, Liu N, Liu H, Guo Y, Liu X. Decorated Au NPs on agar modified Fe 3O 4 NPs: Investigation of its catalytic performance in the degradation of methylene orange, and anti-human breast carcinoma properties. Int J Biol Macromol 2020; 165:787-795. [PMID: 32980407 DOI: 10.1016/j.ijbiomac.2020.09.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
This work describes an eco-friendly approach for in situ immobilization of Au nanoparticles on the surface of Fe3O4 nanoparticles, with help of Agar and ultrasound irradiations, without using any toxic reducing and capping agents. The structure, morphology, and physicochemical properties were characterized by various analytical techniques such as Fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), inductively coupled plasma (ICP) and vibrating sample magnetometer (VSM). The desired catalyst showed great efficiency in the reductive degradation of methylene orange (MO) dye over NaBH4 at room temperature. The MO was fully reduced in only 70 s and achieved rate constant of 9.6 × 10-2 s-1. The catalyst was reused for 10 runs without significant loss in catalytic activity. Cell viability of Fe3O4/agar/Au NPs was very low against breast adenocarcinoma (MCF7), breast carcinoma (Hs 578Bst), infiltrating ductal cell carcinoma (Hs 319.T), and metastatic carcinoma (MDA-MB-453) cell lines without any cytotoxicity on the normal cell line. According to the above findings, the Fe3O4/agar/Au NPs may be administrated for the treatment of several types of human breast carcinoma in humans.
Collapse
Affiliation(s)
- Tao Sun
- Department of Breast and Thyroid Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang road, Jinan, Shandong Province 250013, China
| | - Jun Gao
- Department of Breast and Thyroid Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang road, Jinan, Shandong Province 250013, China
| | - Hongyan Shi
- Department of ENT(ear-nose-throat), Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250013, China
| | - Dan Han
- Eye, Plastic and Oral Wards, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250013, China
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Na Liu
- Department of Breast and Thyroid Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang road, Jinan, Shandong Province 250013, China
| | - Hui Liu
- Department of Breast and Thyroid Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang road, Jinan, Shandong Province 250013, China
| | - Yanhong Guo
- Department of Breast and Thyroid Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang road, Jinan, Shandong Province 250013, China
| | - Xianqiang Liu
- Department of Breast and Thyroid Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang road, Jinan, Shandong Province 250013, China.
| |
Collapse
|
39
|
Xu ZX, Bai XL, Li LF, Xu SF. Semi-conductive chiral Co-CPs with helixes based on lactic acid derivatives: Synthesis, structures and photocatalyic properties. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Tanzifi M, Tavakkoli Yaraki M, Beiramzadeh Z, Heidarpoor Saremi L, Najafifard M, Moradi H, Mansouri M, Karami M, Bazgir H. Carboxymethyl cellulose improved adsorption capacity of polypyrrole/CMC composite nanoparticles for removal of reactive dyes: Experimental optimization and DFT calculation. CHEMOSPHERE 2020; 255:127052. [PMID: 32679636 DOI: 10.1016/j.chemosphere.2020.127052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
In this study, polypyrrole/carboxymethyl cellulose nanocomposite particles (PPy/CMC NPs) were synthesized and applied for removal of reactive red 56 (RR56)and reactive blue 160 (RB160) as highly toxic dyes. The amount of CMC was found significantly effective on the surface adsorption efficiency. Different optimization methods including the genetic programming, response surface methodology, and artificial neural network (ANN) were used to optimize the effect of different parameters including pH, adsorption time, initial dye concentration and adsorbent dose. The maximum adsorption of RR56 and RB160 were found under the following optimum conditions: pH of 4 and 5, adsorption time of 55 min and 52 min for RR56 and RB160, respectively, initial dye concentration of 100 mg/L and adsorbent dose of 0.09 g for both dyes. were obtained for RR56 and RB160, respectively. Also, the results indicated that ANN method could predict the experimental adsorption data with higher accuracy than other methods. The analysis of ANN results indicated that the adsorbent dose is the main factor in RR56 removal, followed by time, pH and initial concentration, respectively. However, initial concentration mostly determines the RB160 removal process. The isotherm data for both dyes followed the Langmuir isotherm model with a maximum adsorption capacity of 104.9 mg/g and 120.7 mg/g for RR56 and RB160, respectively. In addition, thermodynamic studies indicated the endothermic adsorption process for both studied dyes. Moreover, DFT calculations were carried out to obtain more insight into the interactions between the dyes and adsorbent. The results showed that the hydrogen bondings and Van der Waals interactions are dominant forces between the two studied dyes and PPy/CMC composite. Furthermore, the interaction energies calculated by DFT confirmed the experimental adsorption data, where PPy/CMC resulted in higher removal of both dyes compared to PPy. The developed nanocomposite showed considerable reusability up to 3 cylces of the batch adsorption process.
Collapse
Affiliation(s)
- Marjan Tanzifi
- Department of Chemical Engineering, Ilam University, Ilam, 69315-516, Iran; Nanotechnology Research Institute, Babol Noshirvani University of Technology, Shariati Ave., Babol, Iran.
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore; Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore.
| | - Zahra Beiramzadeh
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Leily Heidarpoor Saremi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Hojatollah Moradi
- Surface Phenomenon and Liquid-Liquid Extraction Research Lab, School of Chemical Engineering, University College of Engineering, University of Tehran, Iran
| | - Mohsen Mansouri
- Department of Chemical Engineering, Ilam University, Ilam, 69315-516, Iran
| | - Mojtaba Karami
- Department of Computer and Information Technology, Ilam University, Ilam, Iran
| | - Hossein Bazgir
- Department of Chemical Engineering, Ilam University, Ilam, 69315-516, Iran
| |
Collapse
|
41
|
Emam HE, Saad NM, Abdallah AE, Ahmed HB. Acacia gum versus pectin in fabrication of catalytically active palladium nanoparticles for dye discoloration. Int J Biol Macromol 2020; 156:829-840. [DOI: 10.1016/j.ijbiomac.2020.04.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
|
42
|
|