1
|
Deb R, Singh A, Dalal A. Bridge Radius Evolution during Coalescence of Ferrofluid Droplets Suspended in a Nonmagnetic Outer Fluid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 39748615 DOI: 10.1021/acs.langmuir.4c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Understanding the droplet coalescence/merging is vital for many areas of microfluidics such as biochemical reactors, drug delivery, inkjet printing, oil recovery, etc. In the present study, we carried out numerical simulations of two magnetic droplets suspended in a nonmagnetic fluid matrix and coalescing under the influence of an external magnetic field. We observed that the applied magnetic field played a key role in the merging dynamics of the magnetic droplets. When the two droplets make the first contact with each other, a microscopic liquid bridge forms between the two and grows rapidly in the lateral direction until it coalesces into one. The temporal evolution of the neck radius with the onset of coalescence gives the growth rate of the liquid bridge. In the present study, parameters such as magnetic Bond number, magnetic susceptibility, and the viscosity ratio of the outer ambient fluid to droplet fluid were varied, and the bridge radius growth rate was assessed. The current study aims to discern how parameters such as magnetic Bond number, magnetic susceptibility, and the viscosity ratio influence the growth rate of the liquid bridge that forms between the droplets during coalescence. It is observed that the growth rate of the bridge radius is significantly affected by the change in magnetic Bond number and magnetic susceptibility for a high viscosity ratio. In contrast, for low viscosity ratio cases, the influence of magnetic Bond number and magnetic susceptibility on the rate of bridge growth is negligible. This unveils the implicit relationship among the three aforementioned parameters. Furthermore, we observe that the spatial structure of the neck region varied with the viscosity ratio and affected the rate of expansion of the neck radius. This study reveals how a magnetic influence can manipulate the structure of the neck region of two merging droplets and in turn affect the growth rate.
Collapse
Affiliation(s)
- Rupresha Deb
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anugrah Singh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Amaresh Dalal
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
2
|
Habibi S, Bautista MA, Bryant SL, Shor RJ, Natale G. A novel synthesis method of magnetic Janus particles for wastewater applications. J Colloid Interface Sci 2024; 669:952-964. [PMID: 38759594 DOI: 10.1016/j.jcis.2024.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
HYPOTHESIS Magnetic particles are widely used in many adsorption and removal processes. Among the many types of magnetic colloids, magnetic Janus particles offer significant possibilities for the effective removal of several components from aqueous solutions. Nevertheless, the synthesis of structures integrating different types of materials requires scalable fabrication processes to overcome the limitations of the available methodologies. Herein, we hypothesized a fabrication process for dual-surface functionalized magnetic Janus particles. EXPERIMENTS The primary silica particles with surface-attached amine groups are further asymmetrically modified by iron oxide nanoparticles, exploiting Pickering emulsion and electroless deposition techniques. The dual surface functionality of the particles is designed for its versatility and demonstrated in two wastewater-related applications. FINDINGS We show that our design can simultaneously remove chromium (VI) and phenol from aqueous solution. The fabricated magnetic-responsive Janus particles are also an effective adsorbent for genomic Deoxyribonucleic acid (DNA) and show superior performance to commercial magnetic beads. Thus, this study provides a novel platform for designing magnetic Janus particles with multifunctional surfaces for wastewater treatment applications.
Collapse
Affiliation(s)
- Samin Habibi
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Maria A Bautista
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Roman J Shor
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Giovanniantonio Natale
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
3
|
Cui Z, Yan M, Wang Q, Si J, Liu X. Fabrication and characterization of porous deacetylated cellulose acetate casting membrane with excellent oil/water separation performance. J Appl Polym Sci 2023. [DOI: 10.1002/app.53864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhixiang Cui
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
- Key Laboratory of Materials Processing and Mold Zhengzhou University Zhengzhou China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application Fuzhou China
- Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou China
| | - Mangao Yan
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
| | - Qianting Wang
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application Fuzhou China
- Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou China
| | - Junhui Si
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application Fuzhou China
- Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou China
| | | |
Collapse
|
4
|
Zhang H, Qu T, Wang H, Wu W, Lu F, Ou J, Zhu G, Gao L, Cheng L. Preparation of asymmetric Janus hollow silica microparticle and its application on oily wastewaters. Sci Rep 2023; 13:4135. [PMID: 36914714 PMCID: PMC10011370 DOI: 10.1038/s41598-023-30269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Janus nanoparticles have aroused the interest of scholars because of their highly efficient emulsification of spilled oils in wastewater. In this work, interfacially active Janus hollow glass microparticles (J-HGMPs) of asymmetric wettability were designed and synthesized in order to achieve more efficient separation of emulsified oil droplets from oily wastewater. Surface characteristic techniques such as FTIR, SEM, zeta potential and contact angle measurements had been employed to assess the amphiphilic surface properties of J-HGMPs. The oil removal/recovery performance of J-HGMPs in different oil-water systems and their interfacial activities were studied. As a particulate emulsifier, J-HGMPs could remove/recover > 96% oil from oil-water mixed phase. The results showed that J-HGMPs had strong interfacial activities and anchored firmly at oil/water interfaces. This high adsorption energy was also evaluated and verified via the calculation of Gibbs free energy. Overall, this study provided a novel and low-cost oil recovery method via a convenient buoyancy force that could be effectively applied in the treatment of oil spills while achieving the goal of benign and green environmental protection.
Collapse
Affiliation(s)
- Hailong Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Ting Qu
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Hairong Wang
- Zhoushan Institute of Calibration and Testing for Quality and Technology Supervision, Zhoushan, 316000, Zhejiang, China
| | - Weixing Wu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Fangfang Lu
- Zhoushan Institute of Calibration and Testing for Quality and Technology Supervision, Zhoushan, 316000, Zhejiang, China
| | - Jiguang Ou
- ENN (Zhou Shan) Natural Gas Pipelines Co., Ltd, Zhoushan, 316021, Zhejiang, China
| | - Genmin Zhu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Liangjun Gao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National-Local Joint Engineering Laboratory of Harbor Oil and Gas Storage and Transportation Technology, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China.
| | - Longsheng Cheng
- ENN (Zhou Shan) Natural Gas Pipelines Co., Ltd, Zhoushan, 316021, Zhejiang, China
| |
Collapse
|
5
|
Investigation of grafting silane coupling agents on superhydrophobicity of carbonyl iron/SiO 2 particles for efficient oil/water mixture and emulsion separation. Sci Rep 2023; 13:788. [PMID: 36646864 PMCID: PMC9842716 DOI: 10.1038/s41598-023-28131-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
The present study demonstrated the wettability properties of grafting silane coupling agents on carbonyl iron (CI)/SiO2 particles for efficient oil/water mixture and emulsion separation. CI particles were first reacted with Tetraethoxysilane (TEOS) to create a magnetic component. Then, CI/SiO2 particles were altered by 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS) and Hexamethyldisilazane (HDMS) to create magnetic superhydrophobic/superoleophilic, recyclable, and reusable sorbent powders. The water contact angle (WCA) values of the as-prepared particles, CI, CI/SiO2, CI/SiO2@FAS, and CI/SiO2@HMDS, were 5.4° ± 1.3°, 6.4° ± 1.4°, 151.9° ± 2.1°, and 170.1° ± 1.1°, respectively. In addition, the oil contact angles (OCAs) of a variety of oils were found to be equivalent to 0°. Hence, superhydrophobic/superoleophilic particles for kind of different oils were shown sorption capacities of 1.7-3.1 g/g and 2.5-4.3 g/g for CI/SiO2@FAS, and CI/SiO2@HMDS, respectively. Besides, for 1%w/w hexane/water emulsion separation efficiency higher than 99%, the lowest mass was obtained at 50 and 200 mg for CI/SiO2@HDMS and CI/SiO2@HDMS, respectively, suggesting a new effective material for separating tiny oil droplets. Also, the reusability and chemical durability of the superhydrophobic samples made them a prime candidate for use in different harsh conditions.
Collapse
|
6
|
Yang Y, Zhu M, Jin K, Wang Y, Wang J, Zhang Z, Shen L, Feng X, Mi Y. Preparation of a demulsifier for oily wastewater using thorn fir bark as raw materials via a hydrothermal and solvent-free amination route. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85525-85536. [PMID: 35799004 DOI: 10.1007/s11356-022-21860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
In current work, a TB-EDA demulsifier for disposing oily wastewater was prepared using thorn fir bark (TB) as starting materials via a hydrothermal and solvent-free amination route. Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrometer (EDS), and Fourier transform infrared spectroscope (FT-IR) were employed to characterize the TB-EDA demulsifier. Three-phase contact angle (CA), interfacial activity, formation of interfacial film (FIF), coalescence time of droplets (CTD), dynamic interfacial tension (IFT), and Zeta potential were carried out to study the possible demulsification mechanism. Bottle test was performed to investigate the effect of the TB-EDA dosage, salinity, and pH value on the demulsification performance at room temperature. Light transmittance (DL) and oil removal rate (DR) of separated water were 94.7% and 97.2%, respectively, with 100 mg/L of TB-EDA demulsifier in oily wastewater at room temperature. In addition, the TB-EDA demulsifier has an excellent salt tolerance even at the salinity of 50,000 mg/L. The corresponding DL and DR could reach 99.8% and 99.9%, respectively.
Collapse
Affiliation(s)
- Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Mingzhao Zhu
- The 3rd Oil Production Plant, PetroChina Changqing Oilfield Company, Yan'an, 717500, People's Republic of China
| | - Kechun Jin
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Yancheng Wang
- The 3rd Oil Production Plant, PetroChina Changqing Oilfield Company, Yan'an, 717500, People's Republic of China
| | - Jiangbo Wang
- The 3rd Oil Production Plant, PetroChina Changqing Oilfield Company, Yan'an, 717500, People's Republic of China
| | - Zongtan Zhang
- Oil & Gas Field Capacity Construction Division, PetroChina Tarim Oilfield Company, Korla, 841000, People's Republic of China
| | - Liwei Shen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China.
| |
Collapse
|
7
|
He X, Lu Q. Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review. Carbohydr Polym 2022; 301:120351. [DOI: 10.1016/j.carbpol.2022.120351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|
8
|
Xu H, Wang T, Che Z. Bridge evolution during the coalescence of immiscible droplets. J Colloid Interface Sci 2022; 628:869-877. [DOI: 10.1016/j.jcis.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
|
9
|
Ye F, Jiang X, Liu H, Ai G, Shen L, Yang Y, Feng X, Yuan H, Zhang Z, Mi Y, Yan X. Amine functional cellulose derived from wastepaper toward oily wastewater treatment and its demulsification mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Cui Z, Fan Y, Liu X, Si J, Wang Q. Fabrication and characteristic of
3‐D
porous thermoplastic polyurethane/deacetylated cellulose acetate composite foam with outstanding mechanical property and oil/water separation performance. J Appl Polym Sci 2022. [DOI: 10.1002/app.52268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhixiang Cui
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
- Key Laboratory of Materials Processing and Mold Zhengzhou University Zhengzhou China
- Fu Jian Provincial Key Laboratory of Advanced Materials Processing and Application Fuzhou China
- Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou China
| | - Yue Fan
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
- Fu Jian Provincial Key Laboratory of Advanced Materials Processing and Application Fuzhou China
- Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou China
| | | | - Junhui Si
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
- Fu Jian Provincial Key Laboratory of Advanced Materials Processing and Application Fuzhou China
- Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou China
| | - Qianting Wang
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
- Fu Jian Provincial Key Laboratory of Advanced Materials Processing and Application Fuzhou China
- Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou China
| |
Collapse
|
11
|
|
12
|
Robust superhydrophilic and underwater superoleophobic membrane optimized by Cu doping modified metal-organic frameworks for oil-water separation and water purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119755] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Papan J, Boštjančič PH, Mertelj A, Lisjak D. Preparation of Barium-Hexaferrite/Gold Janus Nanoplatelets Using the Pickering Emulsion Method. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2797. [PMID: 34835561 PMCID: PMC8621987 DOI: 10.3390/nano11112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
Janus particles, which have two surfaces exhibiting different properties, are promising candidates for various applications. For example, magneto-optic Janus particles could be used for in-vivo cancer imaging, drug delivery, and photothermal therapy. The preparation of such materials on a relatively large scale is challenging, especially if the Janus structure consists of a hard magnetic material like barium hexaferrite nanoplatelets. The focus of this study was to adopt the known Pickering emulsion, i.e., Granick's method, for the preparation of barium-hexaferrite/gold Janus nanoplatelets. The wax-in-water Pickering emulsions were stabilized with a combination of cetyltrimethyl ammonium bromide and barium hexaferrite nanoplatelets at 80 °C. Colloidosomes of solidified wax covered with the barium hexaferrite nanoplatelets formed after cooling the Pickering emulsions to room temperature. The formation and microstructure of the colloidosomes were thoroughly studied by optical and scanning electron microscopy. The process was optimized by various processing parameters, such as the composition of the emulsion system and the speed and time of emulsification. The colloidosomes with the highest surface coverage were used to prepare the Janus nanoplatelets by decorating the exposed surfaces of the barium hexaferrite nanoplatelets with gold nanospheres using mercaptan chemistry. Transmission electron microscopy was used to inspect the barium-hexaferrite/gold Janus nanoplatelets that were prepared for the first time.
Collapse
Affiliation(s)
- Jelena Papan
- Department of Complex Matter, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (P.H.B.); (A.M.); (D.L.)
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Patricija Hribar Boštjančič
- Department of Complex Matter, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (P.H.B.); (A.M.); (D.L.)
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Alenka Mertelj
- Department of Complex Matter, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (P.H.B.); (A.M.); (D.L.)
| | - Darja Lisjak
- Department of Complex Matter, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (P.H.B.); (A.M.); (D.L.)
| |
Collapse
|
14
|
Yang F, He X, Tan W, Liu G, Yi T, Lu Q, Wei X, Xie H, Long Q, Wang G, Guo C, Pensini E, Lu Z, Liu Q, Xu Z. Adhesion-Shielding based synthesis of interfacially active magnetic Janus nanoparticles. J Colloid Interface Sci 2021; 607:1741-1753. [PMID: 34598031 DOI: 10.1016/j.jcis.2021.08.202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS A unique adhesion-shielding (AS)-based method could be used to manufacture magnetic Janus nanoparticles (IM-JNPs) of promising interfacial activities, asymmetric surface wettability, and great performance on deoiling from oily wastewater under the external magnetic field. EXPERIMENTS The IM-JNPs were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The interfacial properties of IM-JNPs were investigated by the measurements of interfacial pressure-area isotherms (π-A), oil-water interfacial tension, and the related crumpling ratio. The Langmuir-Blodgett (L-B) technique was used to determine the asymmetric surface wettability of the IM-JNPs. The performance and recyclability of IM-JNPs for treating oily wastewater were also investigated. FINDINGS Using the proposed AS-based method, 17.9 g IM-JNPs were synthesized at a time and exhibited excellent interfacial properties, as indicated by decreasing oil-water interfacial tension from 38 to 27 mN/m. The crumpling behavior of the oil droplet further demonstrated the irreversible deposition of IM-JNPs at the oil droplet surfaces. The L-B technique and water contact angle measurement confirmed the asymmetric surface wettability of the IM-JNPs. The IM-JNPs were applied to successful removal of > 90% emulsified oil droplets from the household-produced oily wastewater under the external magnetic field while realizing facile recyclability and regeneration.
Collapse
Affiliation(s)
- Fan Yang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, PR China; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xiao He
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada
| | - Wen Tan
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Gang Liu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Tingting Yi
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada
| | - Xiaoting Wei
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Hanjie Xie
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qiurong Long
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - GuiChao Wang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chuanfei Guo
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Erica Pensini
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhouguang Lu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qingxia Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, PR China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Zhenghe Xu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
15
|
Yan Y, Zeng X, Yang K, Zhou P, Xu S, Pi P, Li H, Fang J, Wang S, Wen X. Janus sand filter with excellent demulsification ability in separation of surfactant-stabilized oil/water emulsions: An experimental and molecular dynamics simulation study. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126346. [PMID: 34329000 DOI: 10.1016/j.jhazmat.2021.126346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/15/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Developing efficient separation materials for surfactant-stabilized oil/water emulsions is of great importance while significantly challenging. In this work, a sand filter with Janus channels was prepared by simply mixing superhydrophilic and superhydrophobic quartz sand in a mass ratio of 1:1. Due to the imbalanced force of droplets in those Janus channels, better separation performance under gravity was achieved for both surfactant-stabilized oil-in-water and water-in-oil emulsions than the superhydrophilic or superhydrophobic sand filter alone. It also received high flux (1080.13 L m-2 h-1 for dichloroethane-in-water emulsion and 1378.07 L m-2 h-1 for water-in-dichloroethane emulsion) and high separation efficiency (99.80% for dichloroethane-in-water emulsion and 99.98% for water-in-dichloroethane emulsion). Molecular dynamics based computational work and experimental studies revealed that the Janus channels of mixed sand layer exhibited greater interaction energy with emulsion droplets for more efficient adsorption, resulting in better demulsification capability and separation performance. The as-prepared Janus sand filters retained excellent separation performance after 50 cycles of the stability test. Together with the needs on only cheap and easily accessible raw materials and its environmentally friendly preparation method, this Janus sand filtration process exhibits its great potential for the separation of surfactant-stabilized oil/water emulsions.
Collapse
Affiliation(s)
- Yuanyang Yan
- School of Chemical and Chemical Engineering, Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology, Guangzhou 510640, PR China
| | - Xinjuan Zeng
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, PR China
| | - Kangquan Yang
- School of Chemical and Chemical Engineering, Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology, Guangzhou 510640, PR China
| | - Peizhang Zhou
- School of Chemical and Chemical Engineering, Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology, Guangzhou 510640, PR China
| | - Shouping Xu
- School of Chemical and Chemical Engineering, Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology, Guangzhou 510640, PR China
| | - Pihui Pi
- School of Chemical and Chemical Engineering, Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology, Guangzhou 510640, PR China
| | - Hao Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, PR China
| | - Jing Fang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, PR China
| | - Shengnian Wang
- Chemical Engineering, Center of Biomedical Engineering and Rehabilitation Science, Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, USA
| | - Xiufang Wen
- School of Chemical and Chemical Engineering, Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
16
|
Zhan Y, Zhang G, Feng Q, Yang W, Hu J, Wen X, Liu Y, Zhang S, Sun A. Fabrication of durable super-hydrophilic/underwater super-oleophobic poly(arylene ether nitrile) composite membrane via biomimetic co-deposition for multi-component oily wastewater separation in harsh environments. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Ali N, Hellen BJ, Duanmu C, Yang Y, Nawaz S, Khan A, Ali F, Gao X, Bilal M, Iqbal HMN. Effective remediation of petrochemical originated pollutants using engineered materials with multifunctional entities. CHEMOSPHERE 2021; 278:130405. [PMID: 33823342 DOI: 10.1016/j.chemosphere.2021.130405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/05/2023]
Abstract
The highly robust, effective, and sustainable remediation of hydrocarbon-contaminated wastewater matrices, which is mainly generated from petroleum and related petrochemical industries, is of supreme interest. Owing to the notable presence of suspended solids, oil, and grease, organic matter, highly toxic elements, high salts, and recalcitrant chemicals, crude oil emulsions, and hydrocarbon-contaminated wastewater are considered a potential threat to the environments, animals, plants, and humans. To effectively tackle this challenging issue, magnetic hybrid materials assembled at nano- and micro-scale with unique structural, chemical, and functional entities are considered robust candidates for demulsification purposes. The current research era on magnetic materials has superwettability, leading to an effective system of superwettability, which is vibrant and promising. The wettability of magnetic and magnetic hybrid materials explaining the theme of superhydrophobicity and superhydrophilicity under the liquid. Herein, we reviewed the applications of magnetic nanoparticles (MNPs) as effective demulsifiers. The demulsifier wettability, dose, pH, salinity, and surface morphology of compelling, magnetic nanoparticles are the main hidden factors in effective demulsifiers. There is a comprehensive discussion on the reuse and recyclability of MNPs after oil, water separation. Furthermore, the main challenges, coupled with the magnetic nanoparticles in the effective separation of emulsions, are intensified in detail. This review will compare the current literature and the utilization of MNPs for the demulsification of oil and water emulsions. This is envisioned that the MNPs would be critical in the petroleum and petrochemical industry to effectively eliminate water from a crude oil emulsion.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China.
| | - Buame Jacinta Hellen
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Chuansong Duanmu
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra 21300, Pakistan
| | - Xiaoyan Gao
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
18
|
Lu Y, Zhu Y, Yang F, Xu Z, Liu Q. Advanced Switchable Molecules and Materials for Oil Recovery and Oily Waste Cleanup. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004082. [PMID: 34047073 PMCID: PMC8336505 DOI: 10.1002/advs.202004082] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/19/2021] [Indexed: 05/07/2023]
Abstract
Advanced switchable molecules and materials have shown great potential in numerous applications. These novel materials can express different states of physicochemical properties as controlled by a designated stimulus, such that the processing condition can always be maintained in an optimized manner for improved efficiency and sustainability throughout the whole process. Herein, the recent advances in switchable molecules/materials in oil recovery and oily waste cleanup are reviewed. Oil recovery and oily waste cleanup are of critical importance to the industry and environment. Switchable materials can be designed with various types of switchable properties, including i) switchable interfacial activity, ii) switchable viscosity, iii) switchable solvent, and iv) switchable wettability. The materials can then be deployed into the most suitable applications according to the process requirements. An in-depth discussion about the fundamental basis of the design considerations is provided for each type of switchable material, followed by details about their performances and challenges in the applications. Finally, an outlook for the development of next-generation switchable molecules/materials is discussed.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Yeling Zhu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Fan Yang
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| | - Zhenghe Xu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Qingxia Liu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| |
Collapse
|
19
|
Xiong Y, Wu B, Huang X, Li C, Lu B, Liu J, Lu L, Li S, Peng K. Coupling magnetic particles with flocculants to enhance demulsification and separation of waste cutting emulsion for engineering applications. J Environ Sci (China) 2021; 105:173-183. [PMID: 34130834 DOI: 10.1016/j.jes.2020.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Magnetic particles were coupled with a flocculant to enhance the demulsification and separation of waste cutting emulsions. The optimal magnetic particle size and critical magnetic field conditions were investigated to achieve large-scale engineering application of magnetic demulsification separation for waste cutting emulsion treatment. The micro-scale magnetic particles were found to show comparable effects to nano-scale magnetic particles on enhancing the demulsification and separation of cutting emulsions, which are beneficial for broadening the selectivity of low-cost magnetic particles. The critical magnetic separation region was determined to be an area 40 mm from the magnetic field source. Compared to the flocculant demulsification, the magnetic demulsification separation exhibited a significant advantage in accelerating flocs-water separation by decreasing the separation time of flocs from 180-240 min to less than 15 min, compressing the flocs by reducing the floc volume ratio from 60%-90% to lower than 20%, and showing excellent adaptability to the variable properties of waste cutting emulsions. Coupled with the design of the magnetic disk separator, continuous demulsification separation of the waste cutting emulsion was achieved at 1.0 t/hr for at least 10 hr to obtain clear effluent with 81% chemical oxygen demand removal and 89% turbidity reduction. This study demonstrates the feasibility of applying magnetic demulsification separation to large-scale continuous treatment of waste emulsion. Moreover, it addresses the flocs-water separation problems that occur in practical flocculant demulsification engineering applications.
Collapse
Affiliation(s)
- Yongjiao Xiong
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Baoqiang Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Chenlu Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Bin Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Lijun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Shiyang Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Kaiming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
20
|
Zhou S, Pan J, Guo Z, Xiang Y, Zheng H, Liu S. Controllable Flowing of a Dielectric Fluid Droplet under the Action of Corona Discharge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6967-6973. [PMID: 34081482 DOI: 10.1021/acs.langmuir.1c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer microfluidic technology is widely used in chemistry, biology, medicine, nanoparticles synthesis, and other fields. In this article, we introduce a novel method for the controllable flowing of dielectric fluid droplets. Under the action of corona discharge, the dielectric fluid droplet can be controllably driven to one or more conductive plate electrodes that are connected to the negative electrode on the substrate. Phenomena of polymerization, migration, and separation and merger are experimentally verified in detail, and the spreading speeds and steady-state time are discussed. The experimental results show that the proposed method is accurate and controllable.
Collapse
Affiliation(s)
- Shangru Zhou
- College of Electromechanical Engineering, Changsha University, Changsha 410022, China
| | | | - Zhiming Guo
- College of Electromechanical Engineering, Changsha University, Changsha 410022, China
| | - Yanghui Xiang
- College of Electromechanical Engineering, Changsha University, Changsha 410022, China
| | | | | |
Collapse
|
21
|
Duan Y, Zhao X, Sun M, Hao H. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xia Zhao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Miaomiao Sun
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| |
Collapse
|