1
|
Liu Y, Zhang S, Jiao W, Chen J, Zhao S, Lv Y, Liu G, Xie K. Study on interface thermodynamic mechanism of membrane fouling in flat sheet ceramic membrane treating oilfield produced water. ENVIRONMENTAL TECHNOLOGY 2024; 45:315-328. [PMID: 35924836 DOI: 10.1080/09593330.2022.2109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2024]
Abstract
In this study, a flat sheet ceramic membrane experimental device was constructed, and the thermodynamics of membrane fouling interface was studied for oilfield produced water. The flux of ceramic membrane in three kinds of model solutions were measured with time, as well as the surface tension, contact Angle and Zeta potential of solid. The thermodynamic mechanism of membrane fouling interface combined with XDLVO theory were explored for three kinds of model solutions. The thermodynamic study of the interface of ceramic plate membrane shows that the total interaction energy between membrane and oil droplets decreases with the increase of the distance between two interfaces at initial stage of membrane fouling, and finally transforms from the mutual attraction to the mutual repulsion. The total interaction energy between reservoir and oil droplet is shown as mutual attraction, and the total interaction energy decreases with the increase of the distance between reservoir and oil droplet interface. The zeta potential of crude oil was affected by salinity to some extent. The electrostatic shielding effect of the salt ions leads to a decrease in the ζ-potential of the three solutions. They are in the order: model solution A > model solution B > model solution C. This leads to a decrease in the electrostatic interaction (EL). And since the oil layer has the same composition as the oil droplets, the EL interactions in the three solutions can behave as mutual repulsion.
Collapse
Affiliation(s)
- Yiyang Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, People's Republic of China
| | - Shoubin Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, People's Republic of China
| | - Wenhai Jiao
- Jinan Municipal Engineering Design & Research Institute (Group) Co., Ltd, Jinan, People's Republic of China
| | - Jingying Chen
- Shandong Jinnuo Construction Project Management Co., Ltd, Qingdao, People's Republic of China
| | - Shikai Zhao
- Shandong Industry Ceramics Research and Design Institute, Zibo, People's Republic of China
| | - Ying Lv
- Jinan Water Group Co, Ltd, Jinan, People's Republic of China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, People's Republic of China
| | - Kang Xie
- School of Civil Engineering and Architecture, University of Jinan, Jinan, People's Republic of China
| |
Collapse
|
2
|
Dynamic Interfacial Tensions of Surfactant and Polymer Solutions Related to High-Temperature and High-Salinity Reservoir. Molecules 2023; 28:molecules28031279. [PMID: 36770949 PMCID: PMC9920167 DOI: 10.3390/molecules28031279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Betaine is a new surfactant with good application prospects in high-temperature and high-salinity reservoirs. The interfacial properties of two kinds of betaine mixtures with a good synergistic effect were evaluated in this paper. On this basis, the effects of temperature-resistant, salt-resistant polymers with different contents of 2-acrylamide-2-methylpropanesulfonic acid (AMPS) on dynamic interfacial tensions (IFTs) against n-alkanes and crude oil were studied. The experimental results show that the IFTs between betaine ASB and n-alkanes can be reduced to ultra-low values by compounding with anionic surfactant petroleum sulfonate (PS) and extended anionic surfactant alkoxyethylene carboxylate (AEC), respectively. ASB@AEC is very oil-soluble with nmin value ≥14, and ASB@PS is relatively water-soluble with nmin value of 10. The water solubility of both ASB@PS and ASB@AEC is enhanced by the addition of water-soluble polymers. The HLB of the ASB@AEC solution becomes better against crude oil after the addition of polymers, and the IFT decreases to an ultra-low value as a result. On the contrary, the antagonistic effect in reducing the IFT can be observed for ASB@PS in the same case. In a word, polymers affect the IFTs of surfactant solutions by regulating the HLB.
Collapse
|
3
|
Kamarudin D, Hashim NA, Ong BH, Faried M, Suga K, Umakoshi H, Wan Mahari WA. Alternative fouling analysis of PVDF UF membrane for surface water treatment: The credibility of silver nanoparticles. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Enhanced oil recovery performance and mechanism of a wormlike micelles flooding system with zwitterionic-anionic surfactants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Combined in-situ attenuated total reflection-Fourier transform infrared spectroscopy and single molecule force studies of poly(acrylic acid) at electrolyte/oxide interfaces at acidic pH. J Colloid Interface Sci 2022; 615:563-576. [DOI: 10.1016/j.jcis.2022.01.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
|
6
|
Zhang B, Tang H, Gu X, Li X, Zhang B, Shen Y, Shi W. Discrepant effects of monovalent cations on membrane fouling induced by colloidal polymer: Evaluation and mechanism investigation. CHEMOSPHERE 2022; 295:133939. [PMID: 35149021 DOI: 10.1016/j.chemosphere.2022.133939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Understanding how ionic conditions affect membrane fouling induced by anionic polyacrylamide (APAM) is important for achieving long-term and stable operation of a polymer flooding produced wastewater (PFPW) membrane separation process. However, there is lack of studies on the effects of monovalent cations (Na+ and K+) on APAM-based membrane fouling. In this work, the effects of Na+ and K+ on filtration efficiency, flux decline behavior, fouling resistance, and cleaning efficiency were studied through a series of microfiltration tests. Moreover, the influencing mechanism of membrane fouling was further comprehensively revealed from the aspects of the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the hydration force, and the microstructure characterizations. The XDLVO theory agreed well with membrane fouling behavior at various ionic strengths. The increase in ionic strength (0-10,000 mg/L) of Na+ and K+ exacerbated the reduction of relative flux (J/J0) and the accumulation of fouling resistance, as well as made the porous APAM-induced fouling layer denser and more compact, boosting removal efficiency. Furthermore, K+ had a stronger aggravating effect on membrane fouling than Na+. Specifically, the final value of J/J0 for APAM+K+ (0.08) was lower than that for APAM + Na+ (0.12), and the fouling resistance for APAM+K+ (12.25 × 1011 m-1) was higher than that for APAM + Na+ (12.01 × 1011 m-1) at an ionic strength of 10,000 mg/L, which was owing to the larger hydration force caused by Na+ with a smaller ionic radius. This research offers practical guidance for the PFPW membrane filtering process.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Heli Tang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xiaolong Gu
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xiaohong Li
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co.Ltd., Chongqing, 400060, China.
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
7
|
Geng X, Li C, Zhang L, Guo H, Shan C, Jia X, Wei L, Cai Y, Han L. Screening and Demulsification Mechanism of Fluorinated Demulsifier Based on Molecular Dynamics Simulation. Molecules 2022; 27:molecules27061799. [PMID: 35335163 PMCID: PMC8953667 DOI: 10.3390/molecules27061799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
In order to solve the problem of demulsification difficulties in Liaohe Oilfield, 24 kinds of demulsifiers were screened by using the interface generation energy (IFE) module in the molecular dynamics simulation software Materials Studio to determine the ability of demulsifier molecules to reduce the total energy of the oil–water interface after entering the oil–water interface. Neural network analysis (NNA) and genetic function approximation (GFA) were used as technical means to predict the demulsification effect of the Liaohe crude oil demulsifier. The simulation results show that the SDJ9927 demulsifier with ethylene oxide (EO) and propylene oxide (PO) values of 21 (EO) and 44 (PO) reduced the total energy and interfacial tension of the oil–water interface to the greatest extent, and the interfacial formation energy reached −640.48 Kcal/mol. NNA predicted that the water removal amount of the SDJ9927 demulsifier was 7.21 mL, with an overall error of less than 1.83. GFA predicted that the water removal amount of the SDJ9927 demulsifier was 7.41mL, with an overall error of less than 0.9. The predicted results are consistent with the experimental screening results. SDJ9927 had the highest water removal rate and the best demulsification effect. NNA and GFA had high correlation coefficients, and their R2s were 0.802 and 0.861, respectively. The higher R2 was, the more accurate the prediction accuracy was. Finally, the demulsification mechanism of the interfacial film breaking due to the collision of fluorinated polyether demulsifiers was studied. It was found that the carbon–fluorine chain had high surface activity and high stability, which could protect the carbon–carbon bond in the demulsifier molecules to ensure that there was no re-emulsion due to the stirring external force.
Collapse
Affiliation(s)
- Xiaoheng Geng
- College of Petroleum Engineering, Southwest Petroleum University, Sichuan 610500, China;
- College of Chemical Engineering and Safety, Binzhou University, Binzhou 256600, China; (H.G.); (C.S.); (X.J.)
- Correspondence:
| | - Changjun Li
- College of Petroleum Engineering, Southwest Petroleum University, Sichuan 610500, China;
| | - Lin Zhang
- School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China; (L.Z.); (L.W.)
| | - Haiying Guo
- College of Chemical Engineering and Safety, Binzhou University, Binzhou 256600, China; (H.G.); (C.S.); (X.J.)
| | - Changqing Shan
- College of Chemical Engineering and Safety, Binzhou University, Binzhou 256600, China; (H.G.); (C.S.); (X.J.)
| | - Xinlei Jia
- College of Chemical Engineering and Safety, Binzhou University, Binzhou 256600, China; (H.G.); (C.S.); (X.J.)
- School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China; (L.Z.); (L.W.)
| | - Lixin Wei
- School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China; (L.Z.); (L.W.)
| | - Yinghui Cai
- Chambroad Chemical Industry Research Institute Co., Ltd., Binzhou 256505, China; (Y.C.); (L.H.)
| | - Lixia Han
- Chambroad Chemical Industry Research Institute Co., Ltd., Binzhou 256505, China; (Y.C.); (L.H.)
| |
Collapse
|
8
|
Irfan M, Waqas S, Arshad U, Khan JA, Legutko S, Kruszelnicka I, Ginter-Kramarczyk D, Rahman S, Skrzypczak A. Response Surface Methodology and Artificial Neural Network Modelling of Membrane Rotating Biological Contactors for Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1932. [PMID: 35269163 PMCID: PMC8911570 DOI: 10.3390/ma15051932] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023]
Abstract
Membrane fouling is a major hindrance to widespread wastewater treatment applications. This study optimizes operating parameters in membrane rotating biological contactors (MRBC) for maximized membrane fouling through Response Surface Methodology (RSM) and an Artificial Neural Network (ANN). MRBC is an integrated system, embracing membrane filtration and conventional rotating biological contactor in one individual bioreactor. The filtration performance was optimized by exploiting the three parameters of disk rotational speed, membrane-to-disk gap, and organic loading rate. The results showed that both the RSM and ANN models were in good agreement with the experimental data and the modelled equation. The overall R2 value was 0.9982 for the proposed network using ANN, higher than the RSM value (0.9762). The RSM model demonstrated the optimum operating parameter values of a 44 rpm disk rotational speed, a 1.07 membrane-to-disk gap, and a 10.2 g COD/m2 d organic loading rate. The optimization of process parameters can eliminate unnecessary steps and automate steps in the process to save time, reduce errors and avoid duplicate work. This work demonstrates the effective use of statistical modeling to enhance MRBC system performance to obtain a sustainable and energy-efficient treatment process to prevent human health and the environment.
Collapse
Affiliation(s)
- Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.)
| | - Sharjeel Waqas
- Chemical Engineering Department, University Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
- School of Chemical Engineering, The University of Faisalabad, Faisalabad 37610, Pakistan
| | - Ushtar Arshad
- Chemical Engineering Department, University Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Javed Akbar Khan
- Mechanical Engineering Department, University Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| | - Stanislaw Legutko
- Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Izabela Kruszelnicka
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland; (I.K.); (D.G.-K.)
| | - Dobrochna Ginter-Kramarczyk
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland; (I.K.); (D.G.-K.)
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.)
| | - Anna Skrzypczak
- Health-Fire-Environmental Specialist AIGO-TEC Sp. z o.o., Gnieźnieńska 6, 62-330 Nekla, Poland;
| |
Collapse
|
9
|
Wei D, Zhang X, Li C, Zhao M, Wei L. Efficiency and bacterial diversity of an improved anaerobic baffled reactor for the remediation of wastewater from alkaline-surfactant-polymer (ASP) flooding technology. PLoS One 2022; 17:e0261458. [PMID: 34995306 PMCID: PMC8741043 DOI: 10.1371/journal.pone.0261458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Abstract
Alkaline-surfactant-polymer (ASP) flooding technology is used to maximize crude oil recovery. However, the extensive use of alkaline materials makes it difficult to treat the water used. Here, an improved multi-zone anaerobic baffled reactor (ABR) using FeSO4 as electron acceptor was employed to treat the wastewater from ASP flooding technology, and the effects on major pollutants (hydrolyzed polyacrylamide, petroleum substances, surfactants suspended solids) and associated parameters (chemical oxygen demand, viscosity) were evaluated. Gas chromatography-mass spectrometry (GC-MS) was used to follow the degradation and evolution of organic compounds while high-throughput DNA sequencing was used to determine the bacterial diversity in the ABR. The results obtained after 90 d of operation showed decreases in all parameters measured and the highest mean removal rates were obtained for petroleum substances (98.8%) and suspended solids (77.0%). Amounts of petroleum substances in the ABR effluent could meet the requirements of a national standard for oilfield reinjection water. GC-MS analysis showed that a wide range of chemicals (e.g. aromatic hydrocarbons, esters, alcohols, ketones) could be sequentially removed from the influent by each zone of ABR. The high-throughput DNA sequencing showed that the bacteria Micropruina, Saccharibacteria and Synergistaceae were involved in the degradation of pollutants in the anaerobic and anoxic reaction zones, while Rhodobacteraceae and Aliihoeflea were the main functional microorganisms in the aerobic reaction zones. The results demonstrated that the improved ABR reactor had the potential for the treatment of wastewater from ASP flooding technology.
Collapse
Affiliation(s)
- Dong Wei
- School of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Xinxin Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, People’s Republic of China
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang zhou, Guangdong, People’s Republic of China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, Heilongjiang, People’s Republic of China
| | - Min Zhao
- School of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
- * E-mail: (MZ); (LW)
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, People’s Republic of China
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang zhou, Guangdong, People’s Republic of China
- * E-mail: (MZ); (LW)
| |
Collapse
|
10
|
Wang Y, Guo Z, Yang Y, Li Y, Guo Q, Cui P, Li W. Fabrication of magnetically responsive anti-fouling and easy-cleaning nanofiber membrane and its application for efficient oil-water emulsion separation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Roles of initial bacterial attachment and growth in the biofouling development on the microfiltration membrane: From viewpoints of individual cell and interfacial interaction energy. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Zhang B, Tang H, Shen Y, Zhang B, Liu G, Shi W. Comparative analysis of membrane fouling mechanisms induced by colloidal polymer: Effects of sodium and calcium ions. J Colloid Interface Sci 2021; 608:780-791. [PMID: 34689110 DOI: 10.1016/j.jcis.2021.10.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 11/15/2022]
Abstract
Polymer (anionic polyacrylamide, APAM) flooding produced wastewater has a relatively high degree of mineralization and abundant ionic species. A comprehensive and systematic investigation of the influence of ion identity on APAM-induced membrane fouling is extremely necessary but has not been conducted to date. A comparative investigation was performed herein to reveal the underlying mechanisms of the influence of Na+ and Ca2+ (1000 mg/L) on APAM-induced membrane fouling in the adsorption and microfiltration (MF) processes. Na+ and Ca2+ exhibited contrasting influences on the filtration efficiency, cleaning efficiency, and fouling resistance. Compared to Na+, Ca2+ promoted reversible fouling and the formation of a loose cake layer; moreover, a higher removal rate and flux recovery were achieved. Additionally, simulations based on adsorption kinetic and membrane fouling models, and a series of microscopic analyses were performed to validate the contradictory influences. During the APAM-based MF process, the membrane fouling was effectively mitigated at the applied ionic strength because of the stronger hydration repulsive force generated by hydrated Ca2+ compared to that by Na+. This study provides vital guidance for membrane fouling control in the microfiltration of polymer flooding produced wastewater.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Heli Tang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing 400060, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China.
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 50022, China.
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
13
|
New mechanistic insights into the effect of cations on membrane fouling caused by anionic polyacrylamide. J Colloid Interface Sci 2021; 606:10-21. [PMID: 34384962 DOI: 10.1016/j.jcis.2021.07.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
HYPOTHESIS Understanding the effect of cations on membrane fouling is crucial for the widespread application of the membrane technology. However, contradictory results have been reported based on different studies. Moreover, although the effect of the ionic strength has been studied extensively, limited information is available on the effect of the ion type on membrane fouling. EXPERIMENTS The physicochemical properties of the membrane and anionic polyacrylamide (APAM) were evaluated to calculate the APAM-membrane and APAM-APAM interfacial interaction energies under different conditions. Moreover, a series of microfiltration (MF) experiments was conducted to investigate the effects of the ionic conditions on the flux decline, pore blockage and cake layer resistances, and the flux recovery rate of APAM during the MF process. FINDINGS As the ionic strength increased, the rate of decrease in the normalized flux increased, the total and cake layer resistances increased significantly, the pore blockage resistance was affected slightly, and the recovery rates of the water flux after physical and chemical cleaning decreased gradually, which could be clearly explained using the Derjaguin-Landau-Verwey-Overbeek theory. Furthermore, compared with Na+, Ca2+ could effectively mitigate the membrane fouling at an identical ionic strength, which is attributed to the hydration forces of APAM-membrane and APAM-APAM.
Collapse
|
14
|
Qi P, Sun D, Gao J, Liu S, Wu T, Li Y. Demulsification and bio-souring control of alkaline-surfactant-polymer flooding produced water by Gordonia sp. TD-4. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Roles of a mixed hydrophilic/hydrophobic interface in the regulation of nanofiltration membrane fouling in oily produced wastewater treatment: Performance and interfacial thermodynamic mechanisms. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Effect of pH on anionic polyacrylamide adhesion: New insights into membrane fouling based on XDLVO analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|