1
|
Wang J, You C, Xu Y, Xie T, Wang Y. Research Advances in Electrospun Nanofiber Membranes for Non-Invasive Medical Applications. MICROMACHINES 2024; 15:1226. [PMID: 39459100 PMCID: PMC11509555 DOI: 10.3390/mi15101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
Non-invasive medical nanofiber technology, characterized by its high specific surface area, biocompatibility, and porosity, holds significant potential in various medical domains, including tissue repair and biosensing. It is increasingly becoming central to healthcare by offering safer and more efficient treatment options for contemporary medicine. Numerous studies have explored non-invasive medical nanofibers in recent years, yet a comprehensive overview of the field remains lacking. In this paper, we provide a comprehensive summary of the applications of electrospun nanofibers in non-invasive medical fields, considering multiple aspects and perspectives. Initially, we introduce electrospinning nanofibers. Subsequently, we detail their applications in non-invasive health, including health monitoring, personal protection, thermal regulation, and wound care, highlighting their critical role in improving human health. Lastly, this paper discusses the current challenges associated with electrospun nanofibers and offers insights into potential future development trajectories.
Collapse
Affiliation(s)
- Junhua Wang
- College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China; (J.W.); (C.Y.); (Y.X.)
- Henan Intelligent Manufacturing Equipment Engineering Technology Research Center, Luoyang 471003, China
- Henan Engineering Laboratory of Intelligent Numerical Control Equipment, Luoyang 471003, China
| | - Chongyang You
- College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China; (J.W.); (C.Y.); (Y.X.)
| | - Yanwei Xu
- College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China; (J.W.); (C.Y.); (Y.X.)
- Henan Intelligent Manufacturing Equipment Engineering Technology Research Center, Luoyang 471003, China
- Henan Engineering Laboratory of Intelligent Numerical Control Equipment, Luoyang 471003, China
| | - Tancheng Xie
- College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China; (J.W.); (C.Y.); (Y.X.)
- Henan Intelligent Manufacturing Equipment Engineering Technology Research Center, Luoyang 471003, China
- Henan Engineering Laboratory of Intelligent Numerical Control Equipment, Luoyang 471003, China
| | - Yi Wang
- Department of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Yang X, Ma H, Chen Y, Venkateswaran S, Hsiao BS. Functionalization of cellulose acetate nanofibrous membranes for removal of particulate matters and dyes. Int J Biol Macromol 2024; 269:131852. [PMID: 38679253 DOI: 10.1016/j.ijbiomac.2024.131852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Particulates and organic toxins, such as microplastics and dye molecules, are contaminants in industrial wastewater that must be purified due to environmental and sustainability concerns. Carboxylated cellulose acetate (CTA-COOH) nanofibrous membranes were fabricated using electrospinning followed by an innovative one-step surface hydrolysis/oxidation replacing the conventional two-step reactions. This approach offers a new pathway for the modification strategy of cellulose-based membranes. The CTA-COOH membrane was utilized for the removal of particulates and cationic dyes through filtration and adsorption, respectively. The filtration performance of the CTA-COOH nanofibrous membrane was carried out; high separation efficiency and low pressure drop were achieved, in addition to the high filtration selectivity against 0.6-μm and 0.8-μm nanoparticles. A cationic Bismarck Brown Y, was employed to challenge the adsorption capability of the CTA-COOH nanofibrous membrane, where the maximum adsorption capacity of the membrane for BBY was 158.73 mg/g. The self-standing CTA-COOH membrane could be used to conduct adsorption-desorption for 17 cycles with the regeneration rate as high as 97.0 %. The CTA-COOH nanofibrous membrane has excellent mechanical properties and was employed to manufacture a spiral wound adsorption cartridge, which exhibited remarkable separation efficiency in terms of treated water volume, which was 5.96 L, and retention rate, which was 100 %.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| | - Yi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shyam Venkateswaran
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
3
|
Dai Y, Zhang G, Peng Y, Li Y, Chi H, Pang H. Recent progress in 1D MOFs and their applications in energy and environmental fields. Adv Colloid Interface Sci 2023; 321:103022. [PMID: 39491441 DOI: 10.1016/j.cis.2023.103022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
Metal organic frameworks (MOFs) are porous coordination polymers with adjustable nanostructure, high porosity and large surface areas. These features make MOFs, their derivates and composites all delivered remarkable potential in energy and environmental fields, such as rechargeable batteries, supercapacitors, catalysts, water purification and desalination, gas treatment, toxic matter degradation, etc. In particular, one-dimensional (1D) MOFs have generated extensive attention due to their unique 1D nanostructures. To prepare 1D MOF nanostructures, it is necessary to explore and enhance synthesis routes. In this review, the preparation of 1D MOF materials and their recent process applied in energy and environmental fields will be discussed. The relationship between MOFs' 1D morphologies and the properties in their applications will also be analyzed. Finally, we will also summary and make perspectives about the future development of 1D MOFs in fabrication and applications in energy and environmental fields.
Collapse
Affiliation(s)
- Yunyi Dai
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Guangxun Zhang
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yi Peng
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yuan Li
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Heng Chi
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
4
|
Mondal R, Shanmughan A, Murugeswari A, Shanmugaraju S. Recent advances in fluorescence-based chemosensing of organoarsenic feed additives using luminescence MOFs, COFs, HOFs, and QDs. Chem Commun (Camb) 2023; 59:11456-11468. [PMID: 37674461 DOI: 10.1039/d3cc03125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Organoarsenics are low-toxicity compounds that are used widely as feed additives to promote livestock growth, enhance meat pigmentation, and fight against intestinal parasites. The organoarsenic compounds are commonly found in poultry waste and the degradation of organoarsenic produces the toxic carcinogen inorganic arsenic such as As(V) and As(III), which results in severe arsenic pollution of soil and groundwater. As a consequence, there exists a high necessity to develop suitable sensing methods for the trace detection and quantification of organoarsenic feed additives in wastewater. Among various detection methods, in particular, fluorescence-based sensing has become a popular and efficient method used extensively for sensing water contaminants and environmental contaminants. In the recent past, a wide variety of fluorescence chemosensors have been designed and employed for the efficient sensing and quantification of the concentration of organoarsenic feed additives in different environmental samples. This review article systematically highlights various fluorescence chemosensors reported to date for fluorescence-based sensing of organoarsenic feed additives. The fluorescence sensors discussed in this review are classified and grouped according to their structures and functions, and in each section, we provide a detailed report on the structure, photophysics, and fluorescence sensing properties of different chemosensors. Lastly, the future perspectives on the design and development of practically useful sensor systems for selective and discriminative sensing of organoarsenic compounds have been stated.
Collapse
Affiliation(s)
- Rajdeep Mondal
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
| | - Ananthu Shanmughan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
| | - A Murugeswari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
- Department of Physics, Anna University, Chennai 600025, India.
| | | |
Collapse
|
5
|
Wang L, Huang J, Li Z, Han Z, Fan J. Review of Synthesis and Separation Application of Metal-Organic Framework-Based Mixed-Matrix Membranes. Polymers (Basel) 2023; 15:polym15081950. [PMID: 37112097 PMCID: PMC10142373 DOI: 10.3390/polym15081950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are porous crystalline materials assembled from organic ligands and metallic secondary building blocks. Their special structural composition gives them the advantages of high porosity, high specific surface area, adjustable pore size, and good stability. MOF membranes and MOF-based mixed-matrix membranes prepared from MOF crystals have ultra-high porosity, uniform pore size, excellent adsorption properties, high selectivity, and high throughput, which contribute to their being widely used in separation fields. This review summarizes the synthesis methods of MOF membranes, including in situ growth, secondary growth, and electrochemical methods. Mixed-matrix membranes composed of Zeolite Imidazolate Frameworks (ZIF), University of Oslo (UIO), and Materials of Institute Lavoisier (MIL) frameworks are introduced. In addition, the main applications of MOF membranes in lithium-sulfur battery separators, wastewater purification, seawater desalination, and gas separation are reviewed. Finally, we review the development prospects of MOF membranes for the large-scale application of MOF membranes in factories.
Collapse
Affiliation(s)
- Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Research Institute, Jilin University, Yibin 644500, China
| | - Jingzhe Huang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zonghao Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiwu Han
- Key Laboratory of Bionics Engineering of Ministry of Education, Jilin University, Changchun 130022, China
| | - Jianhua Fan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| |
Collapse
|
6
|
Passos de Oliveira Santos R, Hao J, Daniel de Mello Innocentini M, Frollini E, Savastano Junior H, Rutledge GC. Composite electrospun membranes based on polyacrylonitrile and cellulose nanofibrils: relevant properties for their use as active filter layers. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Zhu Y, Wang K, Pan Z, Dai Y, Rong J, Zhang T, Xue S, Yang D, Qiu F. Electrostatic spray deposition of boronate affinity imprinted membrane to be used as adsorption separation material. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|
9
|
Abd‐Elhamid AI, Nayl AA. Nanomaterials in Filtration. NANOTECHNOLOGY FOR ENVIRONMENTAL REMEDIATION 2022:77-101. [DOI: 10.1002/9783527834143.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Zhu Y, Wang K, Lu J, Pan Z, Rong J, Zhang T, Yang D, Pan J, Qiu F. Teamed Boronate Affinity-Functionalized Zn-MOF/PAN-Derived Molecularly Imprinted Hollow Carbon Electrospinning Nanofibers for Selective Adsorption of Shikimic Acid. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27294-27308. [PMID: 35639583 DOI: 10.1021/acsami.2c06664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrospun micro-/nanofibers with tailor-made specific binding sites are extremely popular due to their tremendous potential in separation applications. In this work, teamed boronate affinity (TBA)-functionalized molecularly imprinted hollow carbon electrospun nanofibers (MI-HCESNFs) derived from ZIF-8/PAN fibers with selective binding sites toward shikimic acid (SA) are presented. Each ingredient used in this strategy plays its own part: HCESNFs with excellent structural characteristics as the highly porous electrospun substrate, KH560 as the grafting material for the follow-up polyethyleneimine (PEI) modification, PEI as the dendritic platform to approach more boronic acid owing to its long chain with abundant amino groups, and TBA molecular group as the functional monomer to specifically bind with SA under the neutral condition. Benefiting from the porous structure, the high density of boronic acid, and the highly accessible imprinted sites on the surface, MI-HCESNFs show strong affinity and selectivity to the SA molecules. The adsorption capacity of MI-HCESNFs can reach 127.8 mg g-1, which is 3.1 times larger than that of the non-imprinted material. Besides, MI-HCESNFs are stable when treated with continuous ultrasonication and can be recycled eight times with a slight loss of 8.615% on the adsorption quantity. This work presents a new strategy to prepare boronate affinity adsorbents based on the electrospinning technique for the capture of SA and also proposes a path for the integration of molecularly imprinted polymers and electrospinning.
Collapse
Affiliation(s)
- Yao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Ke Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jiahui Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Zhiyuan Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jian Rong
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
11
|
Liu P, Yang L, Shi A, Qian Y, Liu X, Dong D, Zhang X, Lv Y, Xiang J. Regional anticoagulation magnetic artificial blood vessels constructed by heparin-PLCL core-shell nanofibers for rapid deployment of veno-venous bypass. Biomater Sci 2022; 10:3559-3568. [PMID: 35621240 DOI: 10.1039/d2bm00205a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Veno-venous bypass (VVB) is necessary for maintaining hemodynamic and internal environment stabilities in complex liver surgeries. However, the current VVB strategies require systematic anticoagulation and are time-consuming, leading to unexpected complications. This study aims to overcome these limitations by using a novel magnetic artificial blood vessel constructed with heparin-PLCL core-shell nanofibers. Coaxial electrospinning was used to fabricate core-shell nanofibers with heparin encapsulated into the core layer. The microstructure, physical and chemical properties, hemocompatibility, and heparin release behavior were characterized. The regional anticoagulation magnetic artificial vessel was constructed with these nanofibers and used to perform VVB in a rat liver transplantation model for in vivo evaluation. The core-shell nanofibers appeared smooth and uniform without apparent defects. Fluorescence and TEM images indicated that heparin was successfully encapsulated into the core layer. In addition, the in vitro heparin release test presented a two-phase release profile, burst release at day 1 and sustained release from days 2 to 14, which resulted in better hemocompatibility. The VVB could be rapidly deployed in 3.65 ± 0.83 min by the magnetic artificial vessel without systemic anticoagulation. Moreover, the novel device could reduce portal pressure and abdominal organ congestion, protect intestinal function, and increase the survival rate of liver transplantation with a long anhepatic phase from 0 to 65%. In summary, VVB can be rapidly deployed using regional anticoagulation magnetic artificial blood vessels without systemic anticoagulation, which is promising for improving patient outcomes after complex liver surgery.
Collapse
Affiliation(s)
- Peng Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lifei Yang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Aihua Shi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yerong Qian
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Liu
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710061, China
| | - Dinghui Dong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xufeng Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yi Lv
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Junxi Xiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
12
|
Wang Z, Wang T, Zhang Z, Ji L, Pan L, Wang S. ZIF-67 grown on a fibrous substrate via a sacrificial template method for efficient PM2.5 capture and enhanced antibacterial performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Shao JJ, Ni J, Liang Y, Li GJ, Chen L, Wang FM. Luminescent MOFs for selective sensing of Ag+ and other ions(Fe(III) and Cr(VI))in aqueous solution. CrystEngComm 2022. [DOI: 10.1039/d2ce00057a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new title MOFs, [Zn(BTA)2]n(MOF-1), [Zn3(BTA)2(5-tbuip)2]n(MOF-2) (BTA=1H-Benzotriazole, 5-tbuip=5-tert-Butylisophthalcc Acid) have been synthesized by solvothermal method. The structures of two complexes have been determined by single-crystal X-ray diffraction analysis and further...
Collapse
|
14
|
Patel P, Yadav BK, Patel G. State-of-the-Art and Projected Developments of Nanofiber Filter Material for Face Mask Against COVID-19. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:262-270. [PMID: 34086552 DOI: 10.2174/1872210515666210604110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The Covid-19 epidemic was declared a pandemic by the World Health Organization in March 2020. It is difficult to foresee the future length and severity; it may extend to weeks, months, or even years to deplete the energy and resources of the health care facilities and the providers as there is marginal to no pharmacological medication available to treat the Covid-19. Unless an effective pharmacological treatment such as medicines and vaccines is developed and released publicly, wearing protective face masks and protecting personal health and hygiene is merely a choice to avoid the Covid-19 spread. This review summarizes the background knowledge on the Covid-19 disease and currently available face masks for highly infectious disease primary prevention. According to recent studies of Covid-19 prevention, diagnosis, and treatment, nanotechnologists have provided a revolutionary approach that involves both pharmacological and non-pharmacological steps, one of which is the use of nanofibers in facemasks and respirators. METHODS Various researches carried out in the field of nanomask and patented reports based on the application of nanomask were reviewed. CONCLUSION The most recent developments of nanofibers, including research publications, patents and commercial products in Covid-19 prevention, are extensively reviewed from scientific literature and appropriately represented in this study.
Collapse
Affiliation(s)
- Priya Patel
- Department of Pharmaceutics & Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Bindu Kumari Yadav
- Department of Pharmaceutics & Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Gayatri Patel
- Department of Pharmaceutics & Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| |
Collapse
|
15
|
Kim H, Prasad Tiwari A, Mukhiya T, Kim HY. Temperature-controlled in situ synthesized carbon nanotube-protected vanadium phosphate particle-anchored electrospun carbon nanofibers for high energy density symmetric supercapacitors. J Colloid Interface Sci 2021; 600:740-751. [DOI: 10.1016/j.jcis.2021.05.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 01/06/2023]
|
16
|
ZnO/Ag nanoparticles incorporated multifunctional parallel side by side nanofibers for air filtration with enhanced removing organic contaminants and antibacterial properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126564] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Lyu C, Zhao P, Xie J, Dong S, Liu J, Rao C, Fu J. Electrospinning of Nanofibrous Membrane and Its Applications in Air Filtration: A Review. NANOMATERIALS 2021; 11:nano11061501. [PMID: 34204161 PMCID: PMC8228272 DOI: 10.3390/nano11061501] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Air pollution caused by particulate matter and toxic gases is violating individual’s health and safety. Nanofibrous membrane, being a reliable filter medium for particulate matter, has been extensively studied and applied in the field of air purification. Among the different fabrication approaches of nanofibrous membrane, electrospinning is considered as the most favorable and effective due to its advantages of controllable process, high production efficiency, and low cost. The electrospun membranes, made of different materials and unique structures, exhibit good PM2.5 filtration performance and multi-functions, and are used as masks and filters against PM2.5. This review presents a brief overview of electrospinning techniques, different structures of electrospun nanofibrous membranes, unique characteristics and functions of the fabricated membranes, and summarization of the outdoor and indoor applications in PM filtration.
Collapse
Affiliation(s)
- Chenxin Lyu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Correspondence:
| | - Jun Xie
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Shuyuan Dong
- School of Mathematics, Jilin University, Changchun 130012, China;
| | - Jiawei Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Chengchen Rao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Liu Z, Ye J, Rauf A, Zhang S, Wang G, Shi S, Ning G. A flexible fibrous membrane based on copper(II) metal-organic framework/poly(lactic acid) composites with superior antibacterial performance. Biomater Sci 2021; 9:3851-3859. [PMID: 33890581 DOI: 10.1039/d1bm00164g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A flexible antibacterial fibrous membrane employing high antibacterial efficiency has great potential in healthcare applications. Herein, a three-dimensional copper(ii) metal-organic framework [Cu2(CA)(H2O)2, Cu-MOF-1] and poly(lactic acid) (PLA) composite fibrous membrane was prepared through a facile electrospinning method. The sphere-like Cu-MOF-1 was rapidly synthesized by a microwave-assisted hydrothermal reaction of Cu(ii) salts with citric acid (H4CA) in the presence of polyvinyl pyrrolidone (PVP). The surface morphology, thermal stability, mechanical properties and hydrophilicity test of the as-prepared Cu-MOF-1/PLA fibrous membrane were studied systematically. Compared with commercial copper nanoparticles (Cu-NPs), citric acid and copper citrate, Cu-MOF-1 showed higher antibacterial properties with the bacteriostatic rates of 97.9% and 99.3% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, when the used dose was 250 μg mL-1. The Cu-MOF-1/PLA fibrous membrane also exhibited outstanding bactericidal activities against E. coli and S. aureus with the antibacterial rates up to 99.3% and 99.8%, respectively. Mechanism investigation indicated that the slowly released Cu2+ ions could destroy the microenvironment of bacteria cells and destroy the integrity and permeability of the cell membrane, leading to enzyme inactivation. Therefore, the as-prepared flexible fibrous membrane will advance progress toward developing a broad spectrum antibacterial textile for healthcare protection related applications.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China. and Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology, CII, Johar Town, Lahore, 54770, Pakistan
| | - Siqi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Guangyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Suqi Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China.
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China. and Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
19
|
Yoo DK, Woo HC, Jhung SH. Ionic Salts@Metal-Organic Frameworks: Remarkable Component to Improve Performance of Fabric Filters to Remove Particulate Matters from Air. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23092-23102. [PMID: 33970607 DOI: 10.1021/acsami.1c02290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The elimination of particulate matters (PMs) from the air is very important for our sustainability. In this study, highly porous metal-organic frameworks (MOFs) like MIL-101 and UiO-67 were first modified, coated onto cotton, and applied in PM removal via filtration. Ionic salts (ISs) like CaCl2 and LiCl, after loading onto the MOFs, remarkably increased the PM removal efficiency. For example, CaCl2(20)@MIL-101/cotton shows 5.7 times the quality factor (QF, which is the most important parameter in filtration) of that of bare cotton and has the most competitive performances in PM removal (with the highest QF of 0.085 Pa-1) compared to any filter modified with porous materials or commercial filters. The noticeable performances of ISs@MOFs can be explained by the contribution of charge separation (that is effective for electrostatic interactions with PMs) of ISs and the high porosity of MOFs. Moreover, how MOFs with small pores of a few nanometers or less can remove large PMs with sizes in the micron range could be explained. Finally, loading ISs onto highly porous materials can be a promising strategy to improve the performances of filters to remove PMs from the air.
Collapse
Affiliation(s)
- Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ho Chul Woo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
20
|
Woo HC, Yoo DK, Jhung SH. Particulate matters removal by using cotton coated with isomeric metal-organic frameworks (MOFs): Effect of voidage of MOFs on removal. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Zhu K, Fan R, Wu J, Wang B, Lu H, Zheng X, Sun T, Gai S, Zhou X, Yang Y. MOF-on-MOF Membrane with Cascading Functionality for Capturing Dichromate Ions and p-Arsanilic Acid Turn-On Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58239-58251. [PMID: 33345540 DOI: 10.1021/acsami.0c17875] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is very significant that functional porous metal-organic frameworks are used to manufacture hierarchical components to achieve cascading functions that cannot be achieved by a single-layer metal-organic framework (MOF). Here, we report two cases of novel MOFs constructed by the same ligand, Cu(I)-tpt and Cu(II)-tpt (Htpt = 5-[4(1H-1,2,4-triazol-1-yl)]phenyl-2H-tetrazole), and prepared a Cu(II)-tpt-on-Cu(I)-tpt membrane by a layer-by-layer approach ignoring the lattice mismatch problem. The first Cu(I)-tpt layer is grown on an oriented Cu2O nanostructured array by a "one-pot" approach. The aligned second Cu(II)-tpt layer can be deposited using liquid-phase epitaxy. Notably, the prepared Cu(II)-tpt-on-Cu(I)-tpt membrane combines adsorption and fluorescence sensing, which exhibited significant adsorption for Cr2O72- (203.25 mg g-1) as typical highly poisonous ions with a fluorescence quenching response. Hence, based on the oxidation-reduction between Cr2O72- and p-arsanilic acid (p-ASA), the Cu(II)-tpt-on-Cu(I)-tpt membrane's ability to adsorb Cr2O72- could be used to design "on-off-on" mode fluorescence probes to detect p-ASA with high sensitivity (limit of detection (LOD) = 0.0556 μg L-1). p-ASA can be degraded into highly toxic inorganic arsenic compounds in the natural environment and has received widespread attention. Therefore, the integration of adsorption and fluorescence properties makes the Cu(II)-tpt-on-Cu(I)-tpt membrane a feasible multifunctional material for pollution control and detection.
Collapse
Affiliation(s)
- Ke Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Jingkun Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Bowen Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Haoyang Lu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Xubin Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Tiancheng Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Shuang Gai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Xuesong Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| |
Collapse
|
22
|
Effective and facile fabrication of MOFs/cellulose composite paper for air hazards removal by virtue of in situ synthesis of MOFs/chitosan hydrogel. Carbohydr Polym 2020; 250:116955. [DOI: 10.1016/j.carbpol.2020.116955] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022]
|
23
|
Ji SM, Tiwari AP, Kim HY. PAN-ZnO//PAN-Mn3O4/CeO2 Janus nanofibers: Controlled fabrication and enhanced photocatalytic properties under UV and visible light. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Cui J, Lu T, Li F, Wang Y, Lei J, Ma W, Zou Y, Huang C. Flexible and transparent composite nanofibre membrane that was fabricated via a "green" electrospinning method for efficient particulate matter 2.5 capture. J Colloid Interface Sci 2020; 582:506-514. [PMID: 32911399 DOI: 10.1016/j.jcis.2020.08.075] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/27/2022]
Abstract
Air particulate pollution from ever-increasing industrialization poses an enormous threat to public health. Thus, the development of a green air filter with high efficiency and performance is of urgent necessity. In this study, we introduce a new effective air filtration membrane that can be used for outdoor protection. The air filter's composite nanofibre materials were prepared from polyvinyl alcohol (PVA)-sodium lignosulfonate (LS) via a "green" electrospinning method and thermal crosslinking. The addition of LS helped increase the PM2.5 removal efficiency compared to that of a pure PVA nanofibre membrane. The pressure drops of the electrospun PVA-LS membranes exceeded those of the pristine PVA air filter. The remarkable air filtration performance was maintained even after 10 cycles of circulation filtration. In addition, the PVA-LS composite nanofibre membrane exhibited excellent mechanical properties and transparency due to the introduction of LS. This study provides new insight into the design and development of high-performance and high-visibility green filter media, which include personal protection and building screens.
Collapse
Affiliation(s)
- Jiaxin Cui
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Fanghua Li
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Yulin Wang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, and MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China.
| | - Yan Zou
- Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China.
| |
Collapse
|