1
|
Zhu Q, Wang Y, Cao L, Fan L, Gu F, Wang S, Xiong S, Gu Y, Yu A. Tailored interface engineering of Co 3Fe 7/Fe 3C heterojunctions for enhancing oxygen reduction reaction in zinc-air batteries. J Colloid Interface Sci 2024; 672:279-286. [PMID: 38843680 DOI: 10.1016/j.jcis.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
The rational construction of highly active and robust non-precious metal oxygen reduction electrocatalysts is a vital factor to facilitate commercial applications of Zn-air batteries. In this study, a precise and stable heterostructure, comprised of a coupling of Co3Fe7 and Fe3C, was constructed through an interface engineering-induced strategy. The coordination polymerization of the resin with the bimetallic components was meticulously regulated to control the interfacial characteristics of the heterostructure. The synergistic interfacial effects of the heterostructure successfully facilitated electron coupling and rapid charge transfer. Consequently, the optimized CST-FeCo displayed superb oxygen reduction catalytic activity with a positive half-wave potential of 0.855 V vs. RHE. Furthermore, the CST-FeCo air electrode of the liquid zinc-air battery revealed a large specific capacity of 805.6 mAh gZn-1, corresponding to a remarkable peak power density of 162.7 mW cm-2, and a long charge/discharge cycle stability of 220 h, surpassing that of the commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Qian Zhu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yu Wang
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Lei Cao
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Lanlan Fan
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Feng Gu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China; Aobo Particle Science and Technology Research Institute, Nanchang, 330000, China
| | - Shufen Wang
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China; Aobo Particle Science and Technology Research Institute, Nanchang, 330000, China
| | - Shixian Xiong
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yu Gu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | - Aibing Yu
- Centre for Simulation and Modelling of Particulate Systems, Southeast University - Monash University Joint Research Institute, Suzhou 215123, China
| |
Collapse
|
2
|
Shi Y, Yang D, Hu C, Lyu L. Water self-purification via electron donation effect of emerging contaminants arousing oxygen activation over ordered carbon-enhanced CoFe quantum dots. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100356. [PMID: 38192429 PMCID: PMC10772548 DOI: 10.1016/j.ese.2023.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
The release of emerging contaminants (ECs) into aquatic environments poses a significant risk to global water security. Advanced oxidation processes (AOPs), while effective in removing ECs, are often resource and energy-intensive. Here, we introduce a novel catalyst, CoFe quantum dots embedded in graphene nanowires (CoFeQds@GN-Nws), synthesized through anaerobic polymerization. It uniquely features electron-rich and electron-poor micro-regions on its surface, enabling a self-purification mechanism in wastewater. This is achieved by harnessing the internal energy of wastewater, particularly the bonding energy of pollutants and dissolved oxygen (DO). It demonstrates exceptional efficiency in removing ECs at ambient temperature and pressure without the need for external oxidants, achieving a removal rate of nearly 100.0%. The catalyst's structure-activity relationship reveals that CoFe quantum dots facilitate an unbalanced electron distribution, forming these micro-regions. This leads to a continuous electron-donation effect, where pollutants are effectively cleaved or oxidized. Concurrently, DO is activated into superoxide anions (O2•-), synergistically aiding in pollutant removal. This approach reduces resource and energy demands typically associated with AOPs, marking a sustainable advancement in wastewater treatment technologies.
Collapse
Affiliation(s)
| | | | - Chun Hu
- Institute of Environ. Res. at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Lai Lyu
- Institute of Environ. Res. at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Bai J, Cheng L, Liu S, Lian Y, Deng Y, Zhou Q, Xiang M, Tang Y, Su Y. Construct N-doped carbon anchored CoFe alloy nanoparticles with high content graphitic-N for electrocatalytic oxygen reduction. J Colloid Interface Sci 2024; 653:1785-1791. [PMID: 37806907 DOI: 10.1016/j.jcis.2023.09.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Oxygen reduction reaction (ORR) is an essential half-reaction in next-generation energy storage and conversion systems, such as metal-air batteries and fuel cells. However, its practical application is restricted by the slow intrinsic kinetics, and the high price and low storage of noble metal electrocatalysts. Herein, unique CoFe nanoparticles encapsulated in N-doped carbon (CoFe-NC-Z8-900) with high content graphite-N derived from CoFe-g-C3N4@ZIF-8 via stepwise pyrolysis is reported as effective ORR catalysts. The increase of graphitic nitrogen content can enhance both the electrical conductivity and the adsorption of oxygen-containing intermediates, resulting in improved catalytic performance. Fortunately, CoFe-NC-Z8-900 exhibits an exceptionally high half-wave potential (E1/2) of 0.914 V in a 0.1 M KOH solution. The excellent ORR electrocatalytic activity can be mainly attributed to the synergistic effect of the CoFe bimetal and the relatively high content of graphite-N. This study offers a unique method for creating powerful nitrogen-doped carbon coated metal nanoparticle electrocatalysts.
Collapse
Affiliation(s)
- Jirong Bai
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lei Cheng
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Shuxin Liu
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Yuebin Lian
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China.
| | - Yaoyao Deng
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Quanfa Zhou
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Mei Xiang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, Shanxi, China.
| |
Collapse
|
4
|
Shi Y, Xie Z, Hu C, Lyu L. Resourcelized conversion of livestock manure to porous cage microsphere for eliminating emerging contaminants under peroxymonosulfate trigger. iScience 2023; 26:106139. [PMID: 36879805 PMCID: PMC9984556 DOI: 10.1016/j.isci.2023.106139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Pollution and resource waste caused by the improper disposal of livestock manure, and the threat from the release of emerging contaminants (ECs), are global challenges. Herein, we address the both problems simultaneously by the resourcelized conversion of chicken manure into porous Co@CM cage microspheres (CCM-CMSs) for ECs degradation through the graphitization process and Co-doping modification step. CCM-CMSs exhibit excellent performance for ECs degradation and actual wastewater purification under peroxymonosulfate (PMS) initiation, and show adaptability to complex water environments. The ultra-high activity can maintain after continuous operation over 2160 cycles. The formation of C-O-Co bond bridge structure on the catalyst surface caused an unbalanced electron distribution, which allows PMS to trigger the sustainable electron donation of ECs and electron gain of dissolved oxygen processes, becoming the key to the excellent performance of CCM-CMSs. This process significantly reduces the resource and energy consumption of the catalyst throughout the life cycle of production and application.
Collapse
Affiliation(s)
- Yuhao Shi
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | - Zhiju Xie
- Institute of Rural Revitalization, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
| | - Lai Lyu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China
- Institute of Rural Revitalization, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Srinivas K, Ma F, Liu Y, Zhang Z, Wu Y, Chen Y. Metal-Organic Framework-Derived Fe-Doped Ni 3Se 4/NiSe 2 Heterostructure-Embedded Mesoporous Tubes for Boosting Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52927-52939. [PMID: 36382691 DOI: 10.1021/acsami.2c16133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It is crucial but challenging to promote sluggish kinetics of oxygen evolution reaction (OER) for water splitting via finely tuning the hierarchical nanoarchitecture and electronic structure of the catalyst. To address such issues, herein we present iron-doped Ni3Se4/NiSe2 heterostructure-embedded metal-organic framework-derived mesoporous tubes (Ni-MOF-Fe-Se-400) realized by an interfacial engineering strategy. Due to the hierarchical nanoarchitecture of conductive two-dimensional nanosheet-constructed MOF-derived mesoporous tubes, coupled with fine tuning of the electronic structure via Fe-doping and interactions between Ni3Se4/NiSe2 heterostructures, the Ni-MOF-Fe-Se-400 catalyst delivers superior OER activity: it requires only a low overpotential of 242 mV to achieve 10 mA cm-2 (Ej=10), surpassing the benchmark RuO2 (Ej=10 = 286 mV) and displays exceptional durability in the chronoamperometric i-t test with a small current decay (6.2%) after 72 h. Furthermore, the water splitting system comprises a Ni-MOF-Fe-Se-400 anode and a Pt/C cathode requires a low cell voltage of 1.576 V to achieve Ej=10 with an excellent Faradic efficiency (∼100%), outperforming the RuO2-Pt/C combination. This work presents a novel interfacial engineering strategy to finely adjust the morphology and electronic structure of the non-noble metal-based OER catalyst via a facile fabrication method.
Collapse
Affiliation(s)
- Katam Srinivas
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Fei Ma
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yanfang Liu
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Ziheng Zhang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yu Wu
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yuanfu Chen
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| |
Collapse
|
6
|
Hao J, Wu L, Lu X, Zeng Y, Jia B, Luo T, He S, Liang L. A stable Fe/Co bimetallic modified biochar for ofloxacin removal from water: adsorption behavior and mechanisms. RSC Adv 2022; 12:31650-31662. [PMID: 36380923 PMCID: PMC9634719 DOI: 10.1039/d2ra05334a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2023] Open
Abstract
In this study, Fe-Co-modified biochar (FMBC) loaded with iron (Fe) and cobalt (Co) bimetals after NaOH activation was prepared by pyrolysis using forestry waste cedar bark as a raw material to study its properties and the adsorption of ofloxacin (OFX). The surface structure and chemical properties were analyzed by BET, SEM-EDS, XRD, XPS, and FTIR characterization, and the results showed that the FMBC possessed a larger specific surface area and abundant surface functional groups. FMBC conformed to pseudo-second-order kinetic and Langmuir isotherm models, indicating that the OFX adsorption process on FMBC was a monolayer adsorption process and controlled by chemisorption. The saturation adsorption capacity of FMBC was 10 times higher than that of cedar bark biochar (BC). In addition, the effects of initial pH and coexisting ions on the adsorption process were investigated, and FMBC showed good adsorption, with the best adsorption capacity at pH = 7. Multiple adsorption mechanisms, including physical and chemical interactions, were involved in the adsorption of OFX by FMBC. TG, metal leaching, different water sources, and VSM tests showed that FMBC had good stability and was easily separated from water. Finally, the reusability performance of FMBC was investigated by various methods, and after five cycles it could still reach 75.78-89.31% of the adsorption capacity before recycling. Therefore, the FMBC synthesized in this study is a promising new adsorbent.
Collapse
Affiliation(s)
- Jiajie Hao
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Lieshan Wu
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Xiaowei Lu
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Yalin Zeng
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Bing Jia
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Tingting Luo
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Shixing He
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Liuling Liang
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre Nanning 530028 China
| |
Collapse
|
7
|
Wang Z, Zhang M, Song Z, Yaseen M, Huang Z, Wang A, Guisheng Z, Shao S. Synergistic catalytic enhancement of metal-organic framework derived nanoarchitectures decorated on graphene as a high-efficiency bifunctional electrocatalyst for methanol oxidation and oxygen reduction. J Colloid Interface Sci 2022; 624:88-99. [PMID: 35660914 DOI: 10.1016/j.jcis.2022.05.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Designing highly efficient, long-lasting, and cost-effective cathodic and anodic functional materials as a bifunctional electrocatalyst is essential for overcoming the bottleneck in fuel cell development. Herein, a novel two-step synthesis strategy is developed to synthesize metal-organic framework (MOF) derived nitrogen-doped carbon (NC) with improved spatial isolation and a higher loading amount of cobalt (Co) and nickel carbide (Ni3C) nanocrystal decorated on graphene (denoted as Co@NC-Ni3C/G). Benefiting from multiple active sites of high N-doping level, uniform dispersion of Co and Ni3C nanocrystals, and a large active area of graphene, the Co@NC-Ni3C/G hybrids exhibit excellent methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) efficiency in an alkaline environment. For MOR, the optimized Co@NC-Ni3C/G-350 catalyst achieved a current density of 44.8 mA cm-2 at an applied potential of 1.47 V (V vs. RHE), which is significantly higher than Co@NC-Ni3C (42.07 mA cm-2) and Co@NC (24.1 mA cm-2) in 0.5 M methanol + 1.0 M KOH solutions. In addition, during the CO retention test, the Co@NC-Ni3C/G-350 catalyst exhibits excellent CO tolerance capacity. Excitingly, the as-prepared Co@NC-Ni3C/G-350 hybrid exhibits significantly improved ORR catalytic efficiency in terms of positive onset and half-wave potential (Eonset = 0.90 V, E1/2 = 0.830 V vs. RHE), small Tafel slope (34 mV dec-1) and excellent durability (only reduced 0.016 V after 5000 s test). This work provides new insights into MOF-derived functional nanomaterials for anode and cathode co-catalysts for methanol fuel cells.
Collapse
Affiliation(s)
- Zhuokai Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mingmei Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Zixiang Song
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Maria Yaseen
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiye Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - An Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhu Guisheng
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Shouyan Shao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
8
|
Li S, Miao W, Lv E, Cao X, Li X, Zhang X, Yu H, Dong X. High‐performance ORR Catalyst of N‐doping Carbon‐coated Cobalt Nanoparticles Synthesized by DC Arc Plasma. ChemistrySelect 2022. [DOI: 10.1002/slct.202201823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaopeng Li
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education) School of Materials Science and Engineering Dalian University of Technology Dalian 116024 China
| | - Wenfang Miao
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education) School of Materials Science and Engineering Dalian University of Technology Dalian 116024 China
| | - Enmin Lv
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education) School of Materials Science and Engineering Dalian University of Technology Dalian 116024 China
| | - Xingru Cao
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education) School of Materials Science and Engineering Dalian University of Technology Dalian 116024 China
| | - Xiyang Li
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education) School of Materials Science and Engineering Dalian University of Technology Dalian 116024 China
| | - Xuefeng Zhang
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 110819 China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) School of Environmental Science and Technology Dalian University of Technology Dalian 116024 PR China
| | - Xinglong Dong
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams (Ministry of Education) School of Materials Science and Engineering Dalian University of Technology Dalian 116024 China
| |
Collapse
|
9
|
Bai J, Fu Y, Zhou P, Xu P, Wang L, Zhang J, Jiang X, Zhou Q, Deng Y. Synergies of Atomically Dispersed Mn/Fe Single Atoms and Fe Nanoparticles on N-Doped Carbon toward High-Activity Eletrocatalysis for Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29986-29992. [PMID: 35758264 DOI: 10.1021/acsami.2c08572] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PGM-free (platinum group metal) electrocatalysts are intensively investigated and used as low-cost catalysts for the oxygen reduction reaction (ORR) in the field of fuel cells, but further studying their performance improvement methods and actual reaction mechanism is still a big a challenge. In this work, a novel eletrocatalyst containing atomically dispersed Mn/Fe single atoms (SAs) and Fe nanoparticles (NPs) on N-doped carbonaceous (nanosheet/nanotube hybrids) is fabricated via a simple pyrolysis method. This high-activity ORR electrocatalyst has higher half-wave potential (E1/2 = 0.91 V) and superior long-term durability in alkaline solutions and outperforms Pt/C catalysts, which can be ascribed to the synergetic interaction between Mn/Fe SAs and Fe-NPs. FeNPs/MnFeSAs-NC-25 has stronger reactant adsorption ability and a lower dissociation energy barrier than FeNPs/FeSAs-NC, which is conducive to breaking the O-O bond and accelerating ORR kinetics. This work presents a method to synthesize carbon-based electrocatalysts with high ORR activity and stability and shows that a variety of active sites encapsulated in N-doped carbonaceous materials can be a class of competitive candidates for PGM-free electrocatalysts.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Yang Fu
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Peng Xu
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Lingling Wang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Jianping Zhang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Xiankai Jiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Quanfa Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| |
Collapse
|
10
|
Gao Y, Zhang S, Sun X, Zhao W, Zhuo H, Zhuang G, Wang S, Yao Z, Deng S, Zhong X, Wei Z, Wang JG. Computational screening of O-functional MXenes for electrocatalytic ammonia synthesis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64011-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Bai J, Ge W, Zhou P, Xu P, Wang L, Zhang J, Jiang X, Li X, Zhou Q, deng Y. Precise constructed atomically dispersed Fe/Ni sites on porous nitrogen-doped carbon for oxygen reduction. J Colloid Interface Sci 2022; 616:433-439. [DOI: 10.1016/j.jcis.2022.02.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/17/2022]
|
12
|
Ding C, Kang S, Li W, Gao W, Zhang Z, Zheng L, Cui L. Mesoporous structure and amorphous Fe-N sites regulation in Fe-g-C 3N 4 for boosted visible-light-driven photo-Fenton reaction. J Colloid Interface Sci 2021; 608:2515-2528. [PMID: 34774318 DOI: 10.1016/j.jcis.2021.10.168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022]
Abstract
Heterogeneous photo-Fenton catalysts prepared by doping metal ions in g-C3N4 are promising alternatives to traditional homogeneous Fenton catalysts, but are restricted by poor mesoporous structure and agglomerate of metal species. Recently, the highly uniformly dispersed metal-N active sites in various photocatalysts have been proved to be the critical reason for their enhanced catalytic activity. In this study based on reasonable control of mesoporous structure and metal-N active sites, mesoporous Fe-g-C3N4 was synthesized using a simple one-step thermal shrinkage polymerization method using ferrous oxalate as iron source and pore-forming agent. The Fe and N elements in the triazine ring skeleton of Fe-g-C3N4 form a σ-π bond, thus the photogenerated electrons can be quickly transferred to Fe3+ to form Fe2+ under the interaction of chemical bonds, accelerating the Fenton reaction rate. Density functional theory calculations results demonstrate that the energy band structure and electron cloud density distribution of Fe-Nx active structure are better than that of routine FeOx crystal structure with metal species agglomeration. In addition, the excellent mesoporous structure of Fe-g-C3N4 creates conditions for the high exposure of Fe-Nx active sites in the photo-Fenton reaction under visible light. The as-developed Fe-g-C3N4 system shows high recyclability and excellent photo-Fenton performance for removal of typical intractable pollutants (The degradation rate of dye and tetracycline reaches 98.2% and 98.7% at 60 and 120 min, respectively). This work provides a facile and sustainable route to develop mesoporous highly-active heterogeneous Fenton-like catalysts and even further general the design of general catalyst with ideal metal-N active sites, thereby promoting a feasible and efficient wastewater remediation solution.
Collapse
Affiliation(s)
- Chenjie Ding
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Shifei Kang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Wenxin Li
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Weikang Gao
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhihao Zhang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Lifeng Cui
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
13
|
Wang S, Zhang W, Jia F, Fu H, Liu T, Zhang X, Liu B, Núñez-Delgado A, Han N. Novel Ag 3PO 4/boron-carbon-nitrogen photocatalyst for highly efficient degradation of organic pollutants under visible-light irradiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112763. [PMID: 34022648 DOI: 10.1016/j.jenvman.2021.112763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Ag3PO4 is an indirect bandgap semiconductor with excellent photocatalytic activity. However, it has not been widely used so far for the treatment of polluted wastewaters. This scarce use in wastewater treatment can be mainly attributed to its large crystallite size, which would be due to rapid agglomeration during the synthesis process, as well as to the photo-corrosion problem affecting this material. Hence, it would be crucial to develop a photocatalytic system involving Ag3PO4 nanoparticles with enhanced properties, such as higher specific surface area and excellent photocatalytic stability. To meet this demand, a novel Ag3PO4/boron carbon nitrogen (Ag3PO4/BCN) composite photocatalyst was successfully prepared in the present study via electrostatically driven self-assembly and ion exchange processes. After characterization and assessment, it was shown that the as-prepared Ag3PO4/BCN nanocomposite photocatalyst not only contains smaller Ag3PO4 nanoparticles, but also exhibits an enhanced visible-light photocatalytic activity for Rhodamine B (RhB) Methyl Orange (MO) and Tetracycline (TC) and improved stability, without decrease after 5 cycles, compared with pure Ag3PO4 nanoparticles. Positive synergy between Ag3PO4 nanoparticles and BCN nanosheets, including the increase in the number of active adsorption sites, and the restriction of the formation of Ag due to the recombination of photogenerated electron-hole pairs in Ag3PO4 nanoparticles, are mainly responsible for the enhanced properties of the prepared catalyst. This study shows that Ag3PO4/BCN composite photocatalyst would be promising for wastewater treatment, which would be of clearly environmental and public health relevance.
Collapse
Affiliation(s)
- Shuo Wang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Fuchao Jia
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Hongling Fu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Tingting Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Xuan Zhang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Engineering Polytech. School, Campus Univ. Lugo, Univ. Santiago de Compostela, Spain
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium.
| |
Collapse
|
14
|
Xu H, Shen Z, Zhang S, Chen G, Pan H, Ge Z, Zheng Z, Wang Y, Wang Y, Li X. Arming wood carbon with carbon-coated mesoporous nickel-silica nanolayer as monolithic composite catalyst for steam reforming of toluene. J Colloid Interface Sci 2021; 599:650-660. [PMID: 33979747 DOI: 10.1016/j.jcis.2021.04.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Steam reforming is an effective measure for biomass tar elimination as well as H2-rich syngas (H2 + CO) production. However, the granular or powdery Ni-based catalysts are prone to deactivation, which is caused by inappropriate mass transfer and clogging of catalyst bed. Herein, monolithic wood carbon (WC) with low-tortuosity microchannels is armed with a carbon-coated mesoporous nickel-silica nanocomposite (Ni-SiO2@C) layer via an evaporation-induced self-assembly and calcination procedure for toluene (tar model compound) steam reforming. The quality of the Ni-SiO2@C layer growing on the surface of WC microchannel is affected by the molar ratios of Si/Ni feed. A uniform thin-layer coverage is obtained on the Ni-15SiO2@C/WC (Si/Ni = 15) catalyst, where highly dispersed Ni nanoparticles (average size of 6.6 nm) with appropriate metal-support interaction and remarkable mechanical strength are achieved. The mass transfer, coke resistance, and hydrothermal stability of the Ni-15SiO2@C/WC catalyst were significantly improved by the multilevel structure assembled from the WC microchannels and the secondary ordered SiO2 mesopores. A stable toluene conversion over 97% with an H2 yield of 135 μmol/min was obtained at 600 °C on the Ni-15SiO2@C/WC catalyst. This work opens a new window for facilely constructing high-performance wood carbon-based monolithic tar reforming catalyst.
Collapse
Affiliation(s)
- Haiyang Xu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhangfeng Shen
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Siqian Zhang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Gang Chen
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Hu Pan
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zhigang Ge
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yangang Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| |
Collapse
|
15
|
Construction of hierarchically porous biomass carbon using iodine as pore-making agent for energy storage. J Colloid Interface Sci 2021; 599:351-359. [PMID: 33962196 DOI: 10.1016/j.jcis.2021.04.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 11/20/2022]
Abstract
High specific surface area, hierarchical porosity, high conductivity and heteroatoms doping have been considered as the dominating factors of high-performance carbon-based supercapacitors. Inspired by the blue phenomenon of combination of starch and iodine, iodine is employed firstly as pore-making agent to create micropores for the starch-derived carbon in this study. Based on this mechanism, the hierarchically porous carbon is synthesized through simple solvent heating and high-temperature (1000 °C) carbonization, which achieves high specific surface area of 2989 m2 g-1 (an increase of 39.7% compared to that without iodine) and low electrical resistivity of 0.21 Ω·cm. The assembled symmetric supercapacitors, combined with dual redox-active electrolyte (Bi3+ and Br-), deliver the specific capacitance of 1216 F g-1, energy density of 65.4 Wh kg-1, as well as power density of 787.3 W kg-1 at 2 A g-1. In brief, the abundant biomass resource starch is exploited as carbon source, and the iodine sublimation reaction is conducted to provide more micropores to develop high-performance electrodes of supercapacitors.
Collapse
|
16
|
Liu Y, Zou X, Li L, Shen Z, Cao Y, Wang Y, Cui L, Cheng J, Wang Y, Li X. Engineering of anatase/rutile TiO 2 heterophase junction via in-situ phase transformation for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2021; 599:795-804. [PMID: 33989932 DOI: 10.1016/j.jcis.2021.04.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/15/2022]
Abstract
Constructing effective interphase boundary is one of the efficient approaches for improving photocatalytic performances of semiconductor materials. In this work, an anatase/rutile-TiO2 (AR-TiO2) heterophase junction with appropriate carbon content was successfully fabricated via an in-situ phase transformation process. The phase transformation started from the inner core of the nanoparticles and the area of phase interface between anatase and rutile was carefully controlled by regulating the activation temperature. The well-established type-II band alignment between two TiO2 phases with residual carbon as additional charge transfer intermediary which significantly improved the light-harvesting and photoinduced electron-hole pair separation. As a result, the optimal AR-TiO2-550 catalyst (without adding commonly used Pt as co-catalyst) remarkably enhanced photocatalytic H2 generation (201 μmol h-1 g-1), which was about 12-fold to that of P25. The AR-TiO2-550 heterophase junction also showed long-term stability under simulated solar light irradiation. This research provides a new phase engineering route for developing high-efficient photocatalysts.
Collapse
Affiliation(s)
- Yanan Liu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xuhui Zou
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lifen Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhangfeng Shen
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yongyong Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanqin Wang
- Lab for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| | - Lifeng Cui
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yangang Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|