1
|
Xiang S, Feng J, Yang H, Feng X. Synthesis and Applications of Supramolecular Flame Retardants: A Review. Molecules 2023; 28:5518. [PMID: 37513390 PMCID: PMC10383342 DOI: 10.3390/molecules28145518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The development of different efficient flame retardants (FRs) to improve the fire safety of polymers has been a hot research topic. As the concept of green sustainability has gradually been raised to the attention of the whole world, it has even dominated the research direction of all walks of life. Therefore, there is an urgent calling to explore the green and simple preparation methods of FRs. The development of supramolecular chemistry in the field of flame retardancy is expanding gradually. It is worth noting that the synthesis of supramolecular flame retardants (SFRs) based on non-covalent bonds is in line with the current concepts of environmental protection and multi-functionality. This paper introduces the types of SFRs with different dimensions. SFRs were applied to typical polymers to improve their flame retardancy. The influence on mechanical properties and other material properties under the premise of flame retardancy was also summarized.
Collapse
Affiliation(s)
- Simeng Xiang
- College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Jiao Feng
- College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Hongyu Yang
- College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Xiaming Feng
- College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| |
Collapse
|
2
|
Mutlu A, Erdem A, Dogan M. Potential Use of Melamine Phytate as a Flame-Retardant Additive in Chicken Feather-Containing Thermoplastic Polyurethane Biocomposites. ACS OMEGA 2023; 8:25081-25089. [PMID: 37483238 PMCID: PMC10357521 DOI: 10.1021/acsomega.3c01754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
Using waste materials such as chicken feathers (CF) and biobased flame-retardant additives including melamine phytate (MPht) has become an effective approach for environmentally friendly and sustainable production in recent years. This study explores the flame retardant effectiveness of MPht in thermoplastic polyurethane (TPU)-based biocomposites containing CF. The characterizations of the composites are performed through thermal gravimetric analysis (TGA), limiting oxygen index (LOI), vertical UL-94 (UL-94 V), and mass loss calorimetry (MLC) tests. According to the test results, the highest UL-94 V rating of V0, a LOI value of 29.4%, and the lowest peak heat release rate (pHRR) (110 Kw/m2) and total heat evolved (THE) (39 MJ/m2) values are obtained with the use of 20 wt % MPht. It is demonstrated that MPht acts as an effective flame-retardant filler through the formation of intumescent char in the condensed phase and flame dilution in the gas phase.
Collapse
Affiliation(s)
- Aysenur Mutlu
- Department
of Textile, Apparel and Leather Van Vocational School of Higher Education, Yuzuncu Yıl University, 65080 Van, Turkey
| | - Aysegul Erdem
- Department
of Textile Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Mehmet Dogan
- Department
of Textile Engineering, Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|
3
|
Chen G, Liu T, Luan P, Li N, Sun Y, Tao J, Yan B, Cheng Z. Distribution, migration, and removal of N-containing products during polyurethane pyrolysis: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131406. [PMID: 37084514 DOI: 10.1016/j.jhazmat.2023.131406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Due to the wide applications of polyurethane (PU), production is constantly increasing, accounting for 8% of produced plastics. PU has been regarded as the 6th most used polymer in the world. Improper disposal of waste PU will result in serious environmental consequences. The pyrolysis of polymers is one of the most commonly used disposal methods, but PU pyrolysis easily produces toxic and harmful nitrogen-containing substances due to its high nitrogen content. This paper reviews the decomposition pathways, kinetic characteristics, and migration of N-element by product distribution during PU pyrolysis. PU ester bonds break to produce isocyanates and alcohols or decarboxylate to produce primary amines, which are then further decomposed to MDI, MAI, and MDA. The nitrogenous products, including NH3, HCN, and benzene derivatives, are released by the breakage of C-C and C-N bonds. The N-element migration mechanism is concluded. Meanwhile, this paper reviews the removal of gaseous pollution from PU pyrolysis and discusses the removal mechanism in depth. Among the catalysts for pollutant removal, CaO has the most superior catalytic performance and can convert fuel-N to N2 by adsorption and dehydrogenation reactions. At the end of the review, new challenges for the utilization and high-quality recycling of PU are presented.
Collapse
Affiliation(s)
- Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Lab of Biomass/Waste Utilization, Key Laboratory of Efficient Utilization of Low and Medium Energy of Ministry of Education, Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin University, Tianjin 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Tiecheng Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Pengpeng Luan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Lab of Biomass/Waste Utilization, Key Laboratory of Efficient Utilization of Low and Medium Energy of Ministry of Education, Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin University, Tianjin 300072, China.
| | - Yunan Sun
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Lab of Biomass/Waste Utilization, Key Laboratory of Efficient Utilization of Low and Medium Energy of Ministry of Education, Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin University, Tianjin 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Lab of Biomass/Waste Utilization, Key Laboratory of Efficient Utilization of Low and Medium Energy of Ministry of Education, Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Hu WY, Yu KX, Zheng QN, Hu QL, Cao CF, Cao K, Sun W, Gao JF, Shi Y, Song P, Tang LC. Intelligent cyclic fire warning sensor based on hybrid PBO nanofiber and montmorillonite nanocomposite papers decorated with phenyltriethoxysilane. J Colloid Interface Sci 2023; 647:467-477. [PMID: 37271091 DOI: 10.1016/j.jcis.2023.05.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
An abundance of early warning graphene-based nano-materials and sensors have been developed to avoid and prevent the critical fire risk of combustible materials. However, there are still some limitations that should be addressed, such as the black color, high-cost and single fire warning response of graphene-based fire warning materials. Herein, we report an unexpected montmorillonite (MMT)-based intelligent fire warning materials that have excellent fire cyclic warning performance and reliable flame retardancy. Combining phenyltriethoxysilane (PTES) molecules, poly(p-phenylene benzobisoxazole) nanofiber (PBONF), and layers of MMT to form a silane crosslinked 3D nanonetwork system, the homologous PTES decorated MMT-PBONF nanocomposites are designed and fabricated via a sol-gel process and low temperature self-assembly method. The optimized nanocomposite paper shows good mechanical flexibility (good recovery after kneading or bending process), high tensile strength of ∼81 MPa and good water resistance. Furthermore, the nanocomposite paper exhibits high-temperature flame resistance (almost unchanged structure and size after 120 s combustion), sensitive flame alarm response (∼0.3 s response once exposure onto a flame), cyclic fire warning performance (>40 cycles), and adaptability to complex fire situations (several fire attack and evacuation scenarios), showing promising applications for monitoring the critical fire risk of combustible materials. Therefore, this work paves a rational way for design and fabrication of MMT-based smart fire warning materials that combine excellent flame shielding and sensitive fire alarm functions.
Collapse
Affiliation(s)
- Wen-Yu Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Ke-Xin Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi-Na Zheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi-Liang Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng-Fei Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Kun Cao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weifu Sun
- State Key Laboratory of Explosion Science and Technology, School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jie-Feng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD 4300, Australia
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
5
|
Lu H, Yi D, Feng H, Hou B, Hao J. Influence of the Crystal Structure of Melamine Trimetaphosphate 2D Supramolecules on the Properties of Polyamide 6. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12393-12402. [PMID: 36802357 DOI: 10.1021/acsami.2c22760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To explore the influence of the crystal structure difference of melamine trimetaphosphate (MAP) on the application performance of its polymer composites, an intumescent flame retardant with the optimal crystal type was designed and synthesized to improve the mechanical properties and flame retardancy of polyamide 6 (PA6). I-MAP and II-MAP were obtained using different concentrations of MA and sodium trimetaphosphate (STMP) in an acidic aqueous solution. The morphology, chemical composition, and thermal stability were comprehensively characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The dispersion, mechanical properties, and flame retardancy of PA6/I-MAP and PA6/II-MAP were evaluated by SEM, stress and strain, limiting oxygen index test (LOI), vertical burning test (UL-94), cone calorimetry (CONE) test, and char residue analysis. The conclusion is as follows: I-MAP and II-MAP have a greater influence on the physical properties of PA6 but less influence on the chemical properties. Compared with PA6/I-MAP, the tensile strength of PA6/II-MAP is 104.7% higher, the flame rating reaches V-0, and PHRR is reduced by 11.2%.
Collapse
Affiliation(s)
- Hongyu Lu
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Deqi Yi
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Haisheng Feng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Boyou Hou
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Jianwei Hao
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| |
Collapse
|
6
|
Wang J, Zheng Y, Qiu S, Song L. Ethanol inducing self-assembly of poly-(thioctic acid)/graphene supramolecular ionomers for healable, flame-retardant, shape-memory electronic devices. J Colloid Interface Sci 2023; 629:908-915. [DOI: 10.1016/j.jcis.2022.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
7
|
Synthesis of sugar gourd-like metal organic framework-derived hollow nanocages nickel molybdate@cobalt-nickel layered double hydroxide for flame retardant polyurea. J Colloid Interface Sci 2022; 616:234-245. [DOI: 10.1016/j.jcis.2022.01.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/10/2023]
|
8
|
Mokhena TC, Sadiku ER, Ray SS, Mochane MJ, Matabola KP, Motloung M. Flame retardancy efficacy of phytic acid: An overview. J Appl Polym Sci 2022. [DOI: 10.1002/app.52495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Emmanuel Rotimi Sadiku
- Institute of Nano Engineering Research (INER), Department of Chemical, Metallurgical and Materials Engineering (Polymer Technology Division) Tshwane University of Technology Pretoria South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| | | | | | - Mpho Motloung
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
9
|
Zhou Y, Qiu S, Chu F, Yang W, Qiu Y, Qian L, Hu W, Song L. High-performance flexible polyurethane foam based on hierarchical BN@MOF-LDH@APTES structure: Enhanced adsorption, mechanical and fire safety properties. J Colloid Interface Sci 2021; 609:794-806. [PMID: 34857378 DOI: 10.1016/j.jcis.2021.11.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023]
Abstract
Improving resilience, enhancing fire safety and adsorption properties were the key points for the preparation of high-performance flexible polyurethane foam (FPUF). Here, MOF-derived petal-like Co/Mg-double metal hydroxide (Co/Mg-LDH) and 3-aminopropyltriethoxysilane (APTES) were selected to modify the hydroxylated boron nitride (BNNS-OH) to obtain a hydrophobic BN@MOF-LDH@APTES. Compared with the previous work, BN@MOF-LDH@APTES demonstrated extremely high filler efficiency in reducing the heat release per unit mass (THR/TM) (18.2 % reduction) and smoke production per unit mass (TSP/TM) (19.1% reduction) of FUPF during combustion. In addition, the obtained FPUF nanocomposite exhibited high absorption capacity while achieving remarkable thermal stability and fire safety. Moreover, the FPUF nanocomposite containing 1 wt% BN@MOF-LDH@APTES achieved a 71% increase in compressive strength, indicating excellent resilience. Therefore, this work provided a new material for the preparation of high-resilience FPUF with both flame retardancy and adsorption capacity.
Collapse
Affiliation(s)
- Yifan Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China.
| | - Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Fukai Chu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Wenhao Yang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Yong Qiu
- Petroleum and Chemical Industry Engineering Laboratory of Non-halogen Flame Retardants for Polymers, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Haidian District, Beijing 100048, China
| | - Lijun Qian
- Petroleum and Chemical Industry Engineering Laboratory of Non-halogen Flame Retardants for Polymers, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Haidian District, Beijing 100048, China
| | - Weizhao Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China.
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China.
| |
Collapse
|