1
|
Guillot S, Delpeux S, Méducin F, Gagner A, Camara FA, Hayef A, Benoist O, Ramézani H, Hennet L. Innovative use of lipid mesophase dispersions for bisphenol A sequestration in water. J Colloid Interface Sci 2025; 679:849-859. [PMID: 39486224 DOI: 10.1016/j.jcis.2024.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
HYPOTHESIS Mesophase dispersions are promising colloids for removing micropollutants from water. We hypothesized that the complex internal nanostructure and tunable lipid/water interface amounts play a crucial role in absorbed quantities. Modifications in interfacial organization within the particles while trapping the micropollutant is assumed. EXPERIMENTS We formulated stable monolinolein-based dispersions with four types of mesophases (bicontinuous and micellar cubic, hexagonal, and fluid isotropic L2) by varying dodecane contents. The absorption of bisphenol A by these dispersions from water was monitored using molecular spectroscopy. At equilibrium, absorbed quantities by mesophase dispersions were compared to unstructured dodecane/water miniemulsions for two bisphenol concentrations. Structural changes during bisphenol incorporation were identified using small-angle X-ray scattering. FINDINGS Lipid mesophase particles of submicron size showed greater bisphenol incorporation than dodecane/water miniemulsions, with cubosomes being most effective ones, absorbing twice as much as unstructured emulsions. Higher absorption levels are observed for more complex nanostructures with increased lipid/dodecane ratios. The incorporation of bisphenol affected the curvature of internal interfaces, potentially causing phase transitions and indicating that bisphenol settles at interfaces. Similar absorption levels in identical mesophases suggest a strong correlation between nano-structure and absorbed quantities.
Collapse
Affiliation(s)
- Samuel Guillot
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France.
| | - Sandrine Delpeux
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Fabienne Méducin
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Aude Gagner
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Fatokhoma A Camara
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Abdelhamid Hayef
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Oriane Benoist
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Hamidréza Ramézani
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| | - Louis Hennet
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France
| |
Collapse
|
2
|
Santiago MG, de Moura LR, Sousa YV, da Silva CD, Goulart GAC. Lipid-based nanosystems: a pivotal solution in drug delivery. Nanomedicine (Lond) 2025; 20:121-123. [PMID: 39539220 PMCID: PMC11731294 DOI: 10.1080/17435889.2024.2426969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Marie Gabriele Santiago
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Letícia Rocha de Moura
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Yamara Viana Sousa
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caroline Dohanik da Silva
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Brouillard M, Mathieu T, Guillot S, Méducin F, Roy V, Marcheteau E, Gallardo F, Caire-Maurisier F, Favetta P, Agrofoglio LA. Lyotropic liquid crystal emulsions of LAVR-289: Influence of internal mesophase structure on cytotoxicity and in-vitro antiviral activity. Int J Pharm 2024; 665:124683. [PMID: 39265850 DOI: 10.1016/j.ijpharm.2024.124683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Emerging and reemerging viruses pose significant public health threats, underscoring the urgent need for new antiviral drugs. Recently, a novel family of antiviral acyclic nucleoside phosphonates (ANP) composed of a 4-(2,4-diaminopyrimidin-6-yl)oxy-but-2-enyl phosphonic acid skeleton (O-DAPy nucleobase) has shown promise. Among these, LAVR-289 stands out for its potent inhibitory effects against various DNA viruses. Despite its efficacy, LAVR-289s poor water solubility hampers effective drug delivery. To address this, innovative delivery systems utilizing lipidic derivatives have been explored for various administration routes. Submicron lyotropic liquid crystals (LLCs) are particularly promising drug carriers for the encapsulation, protection, and delivery of lipophilic drugs like LAVR-289. This study focuses on developing submicron-sized lipid mesophase dispersions, including emulsified L2 phase, cubosomes, and hexosomes, by adjusting lipidic compounds such as Dimodan® U/J, Lecithins E80, and Miglyol® 812 N. These formulations aim to enhance the solubility and bioavailability of LAVR-289. In vitro evaluations demonstrated that LAVR-289-loaded LLCs at a concentration of 1 µM efficiently inhibited vaccinia virus in infected human cells, with no observed cytotoxicity. Notably, hexosomes exhibited the most favorable antiviral outcomes, suggesting that the internal mesophase structure plays a critical role in optimizing the therapeutic efficacy of this drug class.
Collapse
Affiliation(s)
- Mathias Brouillard
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France
| | - Thomas Mathieu
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France
| | - Samuel Guillot
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN UMR 7374), Université d'Orléans, CNRS, F-45071 Orléans, France.
| | - Fabienne Méducin
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN UMR 7374), Université d'Orléans, CNRS, F-45071 Orléans, France
| | - Vincent Roy
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France
| | | | | | - François Caire-Maurisier
- Direction des Approvisionnements en produits de Santé des Armées, Pharmacie Centrale des Armées (PCA), F-45404 Fleury-les-Aubrais, France
| | - Patrick Favetta
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France.
| | - Luigi A Agrofoglio
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France.
| |
Collapse
|
4
|
Casula L, Elena Giacomazzo G, Conti L, Fornasier M, Manca B, Schlich M, Sinico C, Rheinberger T, Wurm FR, Giorgi C, Murgia S. Polyphosphoester-stabilized cubosomes encapsulating a Ru(II) complex for the photodynamic treatment of lung adenocarcinoma. J Colloid Interface Sci 2024; 670:234-245. [PMID: 38761576 DOI: 10.1016/j.jcis.2024.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The clinical translation of photosensitizers based on ruthenium(II) polypyridyl complexes (RPCs) in photodynamic therapy of cancer faces several challenges. To address these limitations, we conducted an investigation to assess the potential of a cubosome formulation stabilized in water against coalescence utilizing a polyphosphoester analog of Pluronic F127 as a stabilizer and loaded with newly synthesized RPC-based photosensitizer [Ru(dppn)2(bpy-morph)](PF6)2 (bpy-morph = 2,2'-bipyridine-4,4'-diylbis(morpholinomethanone)), PS-Ru. The photophysical characterization of PS-Ru revealed its robust capacity to induce the formation of singlet oxygen (1O2). Furthermore, the physicochemical analysis of the PS-Ru-loaded cubosomes dispersion demonstrated that the encapsulation of the photosensitizer within the nanoparticles did not disrupt the three-dimensional arrangement of the lipid bilayer. The biological tests showed that PS-Ru-loaded cubosomes exhibited significant phototoxic activity when exposed to the light source, in stark contrast to empty cubosomes and to the same formulation without irradiation. This promising outcome suggests the potential of the formulation in overcoming the drawbacks associated with the clinical use of RPCs in photodynamic therapy for anticancer treatments.
Collapse
Affiliation(s)
- Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Fornasier
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy
| | - Benedetto Manca
- Department of Mathematics and Computer Science, University of Cagliari, via Ospedale 72, 09124 Cagliari, CA, Italy
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Timo Rheinberger
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Sergio Murgia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
5
|
Cocoș FI, Anuța V, Popa L, Ghica MV, Nica MA, Mihăilă M, Fierăscu RC, Trică B, Nicolae CA, Dinu-Pîrvu CE. Development and Evaluation of Docetaxel-Loaded Nanostructured Lipid Carriers for Skin Cancer Therapy. Pharmaceutics 2024; 16:960. [PMID: 39065657 PMCID: PMC11279931 DOI: 10.3390/pharmaceutics16070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This study focuses on the design, characterization, and optimization of nanostructured lipid carriers (NLCs) loaded with docetaxel for the treatment of skin cancer. Employing a systematic formulation development process guided by Design of Experiments (DoE) principles, key parameters such as particle size, polydispersity index (PDI), zeta potential, and entrapment efficiency were optimized to ensure the stability and drug-loading efficacy of the NLCs. Combined XRD and cryo-TEM analysis were employed for NLC nanostructure evaluation, confirming the formation of well-defined nanostructures. In vitro kinetics studies demonstrated controlled and sustained docetaxel release over 48 h, emphasizing the potential for prolonged therapeutic effects. Cytotoxicity assays on human umbilical vein endothelial cells (HUVEC) and SK-MEL-24 melanoma cell line revealed enhanced efficacy against cancer cells, with significant selective cytotoxicity and minimal impact on normal cells. This multidimensional approach, encompassing formulation optimization and comprehensive characterization, positions the docetaxel-loaded NLCs as promising candidates for advanced skin cancer therapy. The findings underscore the potential translational impact of these nanocarriers, paving the way for future preclinical investigations and clinical applications in skin cancer treatment.
Collapse
Affiliation(s)
- Florentina-Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mirela Mihăilă
- Center of Immunology, Ștefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania;
- Faculty of Pharmacy, Titu Maiorescu University, 16 Gheorghe Sincai Blvd, 040314 Bucharest, Romania
| | - Radu Claudiu Fierăscu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (B.T.); (C.A.N.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (B.T.); (C.A.N.)
| | - Cristian Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (B.T.); (C.A.N.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (F.-I.C.); (L.P.); (M.V.G.); (M.-A.N.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
6
|
Susa F, Arpicco S, Pirri CF, Limongi T. An Overview on the Physiopathology of the Blood-Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery. Pharmaceutics 2024; 16:849. [PMID: 39065547 PMCID: PMC11279990 DOI: 10.3390/pharmaceutics16070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The state of well-being and health of our body is regulated by the fine osmotic and biochemical balance established between the cells of the different tissues, organs, and systems. Specific districts of the human body are defined, kept in the correct state of functioning, and, therefore, protected from exogenous or endogenous insults of both mechanical, physical, and biological nature by the presence of different barrier systems. In addition to the placental barrier, which even acts as a linker between two different organisms, the mother and the fetus, all human body barriers, including the blood-brain barrier (BBB), blood-retinal barrier, blood-nerve barrier, blood-lymph barrier, and blood-cerebrospinal fluid barrier, operate to maintain the physiological homeostasis within tissues and organs. From a pharmaceutical point of view, the most challenging is undoubtedly the BBB, since its presence notably complicates the treatment of brain disorders. BBB action can impair the delivery of chemical drugs and biopharmaceuticals into the brain, reducing their therapeutic efficacy and/or increasing their unwanted bioaccumulation in the surrounding healthy tissues. Recent nanotechnological innovation provides advanced biomaterials and ad hoc customized engineering and functionalization methods able to assist in brain-targeted drug delivery. In this context, lipid nanocarriers, including both synthetic (liposomes, solid lipid nanoparticles, nanoemulsions, nanostructured lipid carriers, niosomes, proniosomes, and cubosomes) and cell-derived ones (extracellular vesicles and cell membrane-derived nanocarriers), are considered one of the most successful brain delivery systems due to their reasonable biocompatibility and ability to cross the BBB. This review aims to provide a complete and up-to-date point of view on the efficacy of the most varied lipid carriers, whether FDA-approved, involved in clinical trials, or used in in vitro or in vivo studies, for the treatment of inflammatory, cancerous, or infectious brain diseases.
Collapse
Affiliation(s)
- Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Tania Limongi
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| |
Collapse
|
7
|
Wu Y, Wang J, Deng Y, Angelov B, Fujino T, Hossain MS, Angelova A. Lipid and Transcriptional Regulation in a Parkinson's Disease Mouse Model by Intranasal Vesicular and Hexosomal Plasmalogen-Based Nanomedicines. Adv Healthc Mater 2024; 13:e2304588. [PMID: 38386974 PMCID: PMC11468381 DOI: 10.1002/adhm.202304588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| | - Jieli Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Yuru Deng
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Borislav Angelov
- Department of Structural DynamicsExtreme Light Infrastructure ERICDolni BrezanyCZ‐25241Czech Republic
| | - Takehiko Fujino
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Md. Shamim Hossain
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Angelina Angelova
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| |
Collapse
|
8
|
A Vahab S, Nair A, Raj D, G P A, P P S, S Kumar V. Cubosomes as versatile lipid nanocarriers for neurological disorder therapeutics: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3729-3746. [PMID: 38095651 DOI: 10.1007/s00210-023-02879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/29/2023] [Indexed: 05/23/2024]
Abstract
Cubosomes are novel vesicular drug delivery systems with lipidic liquid crystal nanoparticles formed of predetermined proportions of amphiphilic lipids. They have a honeycomb-like structure and are thermodynamically stable. These bicontinuous lipid layers are separated into two water-based channels internally that can be used by various bioactive substances, including drugs, proteins, and peptides. This complex structure is responsible for its high drug-loading capacity. Cubosomes are thought to be promising vehicles for various routes of administration because of their extraordinary characteristics, including bioadhesion, the capacity to encapsulate hydrophilic, and hydrophobic, as well as amphiphilic substances, high resistance to environmental stress, and their ability to achieve controlled release through modification. One of the essential elements for improving patient compliance is the ability of these well-defined nano-drug delivery systems to boost the effectiveness of targeting while lowering the side effects/toxicities of payloads. The large internal surface area, a sufficiently uncomplicated fabrication procedure, and biodegradability make it an attractive nano lipid carrier for drug delivery. This review outlines the recent advancement of cubosomes for managing various neurological disorders, highlighting their potential in this field.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Ayushi Nair
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Devika Raj
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Akhil G P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Sreelakshmi P P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| |
Collapse
|
9
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
10
|
Yu H, Dyett B, Kirby N, Cai X, Mohamad ME, Bozinovski S, Drummond CJ, Zhai J. pH-Dependent Lyotropic Liquid Crystalline Mesophase and Ionization Behavior of Phytantriol-Based Ionizable Lipid Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309200. [PMID: 38295089 DOI: 10.1002/smll.202309200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Indexed: 02/02/2024]
Abstract
Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pKa of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT). Two partial mesophase diagrams are generated for both ALC-0315/PT LNPs and SM-102/PT LNPs as a function of two factors, ionizable lipid ratio (α, 0-100 mol%) and pH condition (pH 3-11). Furthermore, the impact of different LNP stabilizers (Pluronic F127, Pluronic F108, and Tween 80) on their pH-dependent phase behavior is evaluated. The findings offer insights into the self-assembled mesostructure and ionization state of the studied LNPs with potentially enhanced endosomal escape ability. This research is relevant to developing innovative next-generation LNP systems for delivering various therapeutics.
Collapse
Affiliation(s)
- Haitao Yu
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Nigel Kirby
- SAXS/WAXS beamline, Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria, 3168, Australia
| | - Xudong Cai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Mohamad El Mohamad
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
11
|
Kim LJ, Shin D, Leite WC, O’Neill H, Ruebel O, Tritt A, Hura GL. Simple Scattering: Lipid nanoparticle structural data repository. Front Mol Biosci 2024; 11:1321364. [PMID: 38584701 PMCID: PMC10998447 DOI: 10.3389/fmolb.2024.1321364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Lipid nanoparticles (LNPs) are being intensively researched and developed to leverage their ability to safely and effectively deliver therapeutics. To achieve optimal therapeutic delivery, a comprehensive understanding of the relationship between formulation, structure, and efficacy is critical. However, the vast chemical space involved in the production of LNPs and the resulting structural complexity make the structure to function relationship challenging to assess and predict. New components and formulation procedures, which provide new opportunities for the use of LNPs, would be best identified and optimized using high-throughput characterization methods. Recently, a high-throughput workflow, consisting of automated mixing, small-angle X-ray scattering (SAXS), and cellular assays, demonstrated a link between formulation, internal structure, and efficacy for a library of LNPs. As SAXS data can be rapidly collected, the stage is set for the collection of thousands of SAXS profiles from a myriad of LNP formulations. In addition, correlated LNP small-angle neutron scattering (SANS) datasets, where components are systematically deuterated for additional contrast inside, provide complementary structural information. The centralization of SAXS and SANS datasets from LNPs, with appropriate, standardized metadata describing formulation parameters, into a data repository will provide valuable guidance for the formulation of LNPs with desired properties. To this end, we introduce Simple Scattering, an easy-to-use, open data repository for storing and sharing groups of correlated scattering profiles obtained from LNP screening experiments. Here, we discuss the current state of the repository, including limitations and upcoming changes, and our vision towards future usage in developing our collective knowledge base of LNPs.
Collapse
Affiliation(s)
- Lee Joon Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - David Shin
- David Shin Consulting, Berkeley, CA, United States
| | - Wellington C. Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Hugh O’Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Oliver Ruebel
- Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Andrew Tritt
- Applied Mathematics and Computational Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
12
|
Cai X, Refaat A, Gan PY, Fan B, Yu H, Thang SH, Drummond CJ, Voelcker NH, Tran N, Zhai J. Angiopep-2-Functionalized Lipid Cubosomes for Blood-Brain Barrier Crossing and Glioblastoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12161-12174. [PMID: 38416873 DOI: 10.1021/acsami.3c14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer with high malignancy and resistance to conventional treatments, resulting in a bleak prognosis. Nanoparticles offer a way to cross the blood-brain barrier (BBB) and deliver precise therapies to tumor sites with reduced side effects. In this study, we developed angiopep-2 (Ang2)-functionalized lipid cubosomes loaded with cisplatin (CDDP) and temozolomide (TMZ) for crossing the BBB and providing targeted glioblastoma therapy. Developed lipid cubosomes showed a particle size of around 300 nm and possessed an internal ordered inverse primitive cubic phase, a high conjugation efficiency of Ang2 to the particle surface, and an encapsulation efficiency of more than 70% of CDDP and TMZ. In vitro models, including BBB hCMEC/D3 cell tight monolayer, 3D BBB cell spheroid, and microfluidic BBB/GBM-on-a-chip models with cocultured BBB and glioblastoma cells, were employed to study the efficiency of the developed cubosomes to cross the BBB and showed that Ang2-functionalized cubosomes can penetrate the BBB more effectively. Furthermore, Ang2-functionalized cubosomes showed significantly higher uptake by U87 glioblastoma cells, with a 3-fold increase observed in the BBB/GBM-on-a-chip model as compared to that of the bare cubosomes. Additionally, the in vivo biodistribution showed that Ang2 modification could significantly enhance the brain accumulation of cubosomes in comparison to that of non-functionalized particles. Moreover, CDDP-loaded Ang2-functionalized cubosomes presented an enhanced toxic effect on U87 spheroids. These findings suggest that the developed Ang2-cubosomes are prospective for improved BBB crossing and enhanced delivery of therapeutics to glioblastoma and are worth pursuing further as a potential application of nanomedicine for GBM treatment.
Collapse
Affiliation(s)
- Xudong Cai
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - Ahmed Refaat
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, VIC, Australia
| | - Poh-Yi Gan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, 246 Clayton Rd, Clayton 3168, VIC, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, VIC, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton 3168, Victoria, Australia
- Department of Materials Science & Engineering, Monash University, Clayton 3168, Victoria, Australia
| | - Nhiem Tran
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| |
Collapse
|
13
|
Yap SL, Yu H, Li S, Drummond CJ, Conn CE, Tran N. Cell interactions with lipid nanoparticles possessing different internal nanostructures: Liposomes, bicontinuous cubosomes, hexosomes, and discontinuous micellar cubosomes. J Colloid Interface Sci 2024; 656:409-423. [PMID: 38000253 DOI: 10.1016/j.jcis.2023.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
HYPOTHESIS Lyotropic liquid crystalline nanoparticles (LLCNPs) with complex internal nanostructures hold promise for drug delivery. Cubosomes, in particular, have garnered interest for their ability to fuse with cell membranes, potentially bypassing endosomal escape challenges and improving cellular uptake. The mesostructure of nanoparticles plays a crucial role in cellular interactions and uptake. Therefore, we hypothesise that the specific internal mesophase of the LLCNPs will affect their cellular interactions and uptake efficiencies, with cubosomes exhibiting superior cellular uptake compared to other LLCNPs. EXPERIMENTS LLCNPs with various mesophases, including liposomes, cubosomes, hexosomes, and micellar cubosomes, were formulated and characterised. Their physicochemical properties and cytotoxicity were assessed. Chinese Hamster Ovarian (CHO) cells were treated with fluorescently labelled LLCNPs, and their interactions were monitored and quantified through confocal microscopy and flow cytometry. FINDINGS The non-lamellar LLCNPs showed significantly higher cellular interactions compared to liposomes, with cubosomes exhibiting the highest level. However, there was no significant difference in relative cell uptake between cubosomes, hexosomes, and micellar cubosomes. Cell uptake experiments at 4 °C revealed the presence of an energy-independent uptake mechanism. This study provides the first comparative analysis of cellular interactions and uptake efficiencies among LLCNPs with varying mesophases, while maintaining similar size, composition, and surface charge.
Collapse
Affiliation(s)
- Sue Lyn Yap
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Shiyao Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Nhiem Tran
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
14
|
Ramezanzade L, Hosseini SF, Sajedi RH, Mirzai Nielsen A, Yaghmur A. Food-grade hexosomes as efficient vehicles for delivery of fish-purified antioxidant peptide. Food Chem 2024; 434:137446. [PMID: 37722336 DOI: 10.1016/j.foodchem.2023.137446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
Herein, we describe the potential use of food-grade hexosomes (HEXs) for delivering fish-purified antioxidant peptide (PF10). Using a binary lipid mixture of Dimodan U/citrem, the nanocarriers were produced with a size range of 202.7-569.8 nm and peptide encapsulation efficiency of 64.6-89.3%. These HEXs were also characterized by SAXS and cryo-TEM, and were able to sustain the release of PF10, where only 32.2% released in PBS after 24 h. SAXS findings verified that PF10 modulate the internal structure of HEXs in a pH-dependent manner. Antioxidant assays proved the efficacy of such nano-self-assemblies in maintaining the bioactivity of the loaded peptide. Moreover, the in vitro gastrointestinal stability test indicated that the antioxidant capacity of the free- and PF10-loaded HEXs decreased under SGF/SIF conditions with the reduction in activity being greater for the free PF10. The present findings may provide a useful basis for development of pH-responsive nano-self-assemblies for delivery of antioxidant peptides.
Collapse
Affiliation(s)
- Leila Ramezanzade
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran.
| | - Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Amy Mirzai Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark.
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark.
| |
Collapse
|
15
|
Sreelaya P, Bhattacharya S. A Synoptic Update on Smart Lipid Nanocarrier: Cubosomes, and their Design Development, and Recent Challenges. Curr Pharm Biotechnol 2024; 25:434-447. [PMID: 37211845 DOI: 10.2174/1389201024666230519103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 05/23/2023]
Abstract
Cubosomes are a kind of nanoparticle that is distinct from solid particles in that they are liquid crystalline particles formed by self-assembly of a certain surfactant with a current water ratio. Their unique properties as a result of their microstructure are useful in practical applications. Cubosomes, specifically lyotropic nonlamellar liquid crystalline nanoparticles (LCNs) have gained acceptance as a medication delivery strategy for cancer and other disorders. Cubosomes are produced by the fragmentation of a solid-like phase into smaller particles. Because of its particular microstructure, which is physiologically safe and capable of allowing for the controlled release of solubilized compounds, cubic phase particles are garnering considerable attention. These cubosomes are highly adaptable carriers with promising theranostic efficacy because they can be given orally, topically, or intravenously. Throughout its operation, the drug delivery system regulates the loaded anticancer bioactive's target selectivity and drug release characteristics. This compilation examines recent advances and obstacles in the development and application of cubosomes to treat various cancers, as well as the challenges of turning it into a potential nanotechnological invasion.
Collapse
Affiliation(s)
- Putrevu Sreelaya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
16
|
Dinh L, Yan B. Oral Drug Delivery via Intestinal Lymphatic Transport Utilizing Lipid-Based Lyotropic Liquid Crystals. LIQUIDS 2023; 3:456-468. [PMID: 38711572 PMCID: PMC11073766 DOI: 10.3390/liquids3040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Lyotropic liquid crystals (LLCs) are liquids that have crystalline structures. LLCs as drug delivery systems that can deliver hydrophobic, hydrophilic, and amphiphilic agents. Due to their unique phases and structures, LLCs can protect both small molecules and biologics from the gastrointestinal tract's harsh environment, thus making LLCs attractive as carriers for oral drug delivery. In this review, we discuss the advantages of LLCs and LLCs as oral formulations targeting intestinal lymphatic transport. In oral LLC formulations, the relationship between the micelle compositions and the resulting LLC structures as well as intestinal transport and absorption were determined. In addition, we further demonstrated approaches for the enhancement of intestinal lymphatic transport: (1) lipid-based LLCs promoting chylomicron secretion and (2) the design of LLC nanoparticles with M cell-triggered ligands for targeting the M cell pathway. In this review, we introduce LLC drug delivery systems and their characteristics. Our review focuses on recent approaches using oral LLC drug delivery strategies targeting the intestinal lymphatic system to enhance drug bioavailability.
Collapse
Affiliation(s)
- Linh Dinh
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
Wu Y, Angelov B, Deng Y, Fujino T, Hossain MS, Drechsler M, Angelova A. Sustained CREB phosphorylation by lipid-peptide liquid crystalline nanoassemblies. Commun Chem 2023; 6:241. [PMID: 37932487 PMCID: PMC10628290 DOI: 10.1038/s42004-023-01043-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Cyclic-AMP-response element-binding protein (CREB) is a leucine zipper class transcription factor that is activated through phosphorylation. Ample CREB phosphorylation is required for neurotrophin expression, which is of key importance for preventing and regenerating neurological disorders, including the sequelae of long COVID syndrome. Here we created lipid-peptide nanoassemblies with different liquid crystalline structural organizations (cubosomes, hexosomes, and vesicles) as innovative nanomedicine delivery systems of bioactive PUFA-plasmalogens (vinyl ether phospholipids with polyunsaturated fatty acid chains) and a neurotrophic pituitary adenylate cyclase-activating polypeptide (PACAP). Considering that plasmalogen deficiency is a potentially causative factor for neurodegeneration, we examined the impact of nanoassemblies type and incubation time in an in vitro Parkinson's disease (PD) model as critical parameters for the induction of CREB phosphorylation. The determined kinetic changes in CREB, AKT, and ERK-protein phosphorylation reveal that non-lamellar PUFA-plasmalogen-loaded liquid crystalline lipid nanoparticles significantly prolong CREB activation in the neurodegeneration model, an effect unattainable with free drugs, and this effect can be further enhanced by the cell-penetrating peptide PACAP. Understanding the sustained CREB activation response to neurotrophic nanoassemblies might lead to more efficient use of nanomedicines in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400, Orsay, France
| | - Borislav Angelov
- Extreme Light Infrastructure ERIC, CZ-25241, Dolni Brezany, Czech Republic.
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No.1, Jinlian Road, Longwan District, Wenzhou, Zhejiang, 325001, China
| | - Takehiko Fujino
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-cho, Kasuya-gun, Fukuoka, 811-2501, Japan
| | - Md Shamim Hossain
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-cho, Kasuya-gun, Fukuoka, 811-2501, Japan
| | - Markus Drechsler
- Keylab "Electron and Optical Microscopy", Bavarian Polymerinstitute (BPI), University of Bayreuth, Universitätsstrasse 30, D-95440, Bayreuth, Germany
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400, Orsay, France.
| |
Collapse
|
18
|
Yu H, Angelova A, Angelov B, Dyett B, Matthews L, Zhang Y, El Mohamad M, Cai X, Valimehr S, Drummond CJ, Zhai J. Real-Time pH-Dependent Self-Assembly of Ionisable Lipids from COVID-19 Vaccines and In Situ Nucleic Acid Complexation. Angew Chem Int Ed Engl 2023; 62:e202304977. [PMID: 37391876 DOI: 10.1002/anie.202304977] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/02/2023]
Abstract
Ionisable amino-lipid is a key component in lipid nanoparticles (LNPs), which plays a crucial role in the encapsulation of RNA molecules, allowing efficient cellular uptake and then releasing RNA from acidic endosomes. Herein, we present direct evidence for the remarkable structural transitions, with decreasing membrane curvature, including from inverse micellar, to inverse hexagonal, to two distinct inverse bicontinuous cubic, and finally to a lamellar phase for the two mainstream COVID-19 vaccine ionisable ALC-0315 and SM-102 lipids, occurring upon gradual acidification as encountered in endosomes. The millisecond kinetic growth of the inverse cubic and hexagonal structures and the evolution of the ordered structural formation upon ionisable lipid-RNA/DNA complexation are quantitatively revealed by in situ synchrotron radiation time-resolved small angle X-ray scattering coupled with rapid flow mixing. We found that the final self-assembled structural identity, and the formation kinetics, were controlled by the ionisable lipid molecular structure, acidic bulk environment, lipid compositions, and nucleic acid molecular structure/size. The implicated link between the inverse membrane curvature of LNP and LNP endosomal escape helps future optimisation of ionisable lipids and LNP engineering for RNA and gene delivery.
Collapse
Affiliation(s)
- Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Borislav Angelov
- Extreme Light Infrastructure ERIC, Za Radnici 835, 25241, Dolni Brezany, Czech Republic
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Lauren Matthews
- ESRF, The European Synchrotron, 71 avenue des Martyrs, 38043, Grenoble, France
| | - Yiran Zhang
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Mohamad El Mohamad
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xudong Cai
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sepideh Valimehr
- Ian Holmes Imaging Center, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
19
|
Leu JSL, Teoh JJX, Ling ALQ, Chong J, Loo YS, Mat Azmi ID, Zahid NI, Bose RJC, Madheswaran T. Recent Advances in the Development of Liquid Crystalline Nanoparticles as Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051421. [PMID: 37242663 DOI: 10.3390/pharmaceutics15051421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Due to their distinctive structural features, lyotropic nonlamellar liquid crystalline nanoparticles (LCNPs), such as cubosomes and hexosomes, are considered effective drug delivery systems. Cubosomes have a lipid bilayer that makes a membrane lattice with two water channels that are intertwined. Hexosomes are inverse hexagonal phases made of an infinite number of hexagonal lattices that are tightly connected with water channels. These nanostructures are often stabilized by surfactants. The structure's membrane has a much larger surface area than that of other lipid nanoparticles, which makes it possible to load therapeutic molecules. In addition, the composition of mesophases can be modified by pore diameters, thus influencing drug release. Much research has been conducted in recent years to improve their preparation and characterization, as well as to control drug release and improve the efficacy of loaded bioactive chemicals. This article reviews current advances in LCNP technology that permit their application, as well as design ideas for revolutionary biomedical applications. Furthermore, we have provided a summary of the application of LCNPs based on the administration routes, including the pharmacokinetic modulation property.
Collapse
Affiliation(s)
- Jassica S L Leu
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Jasy J X Teoh
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Angel L Q Ling
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Joey Chong
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noor Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia
| | - Rajendran J C Bose
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| |
Collapse
|
20
|
Subramaniam S, Joyce P, Prestidge CA. Liquid crystalline lipid nanoparticles improve the antibacterial activity of tobramycin and vancomycin against intracellular Pseudomonas aeruginosa and Staphylococcus aureus. Int J Pharm 2023; 639:122927. [PMID: 37059243 DOI: 10.1016/j.ijpharm.2023.122927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
The intracellular survival of bacteria is a significant challenge in the fight against antimicrobial resistance. Currently available antibiotics suffer from limited penetration across host cell membranes, resulting in suboptimal treatment against the internalised bacteria. Liquid crystalline nanoparticles (LCNP) are gaining significant research interest in promoting the cellular uptake of therapeutics due to their fusogenic properties; however, they have not been reported for targeting intracellular bacteria. Herein, the cellular internalisation of LCNPs in RAW 264.7 macrophages and A549 epithelial cells was investigated and optimized through the incorporation of a cationic lipid, dimethyldioctadecylammonium bromide (DDAB). LCNPs displayed a honeycomb-like structure, while the inclusion of DDAB resulted into an onion-like organisation with larger internal pores. Cationic LCNPs enhanced the cellular uptake in both cells, reaching up to ∼90% uptake in cells. Further, LCNPs were encapsulated with tobramycin or vancomycin to improve their activity against intracellular gram-negative, Pseudomonas aeruginosa (P. aeruginosa) and gram-positive, Staphylococcus aureus (S. aureus) bacteria. The enhanced cellular uptake of cationic LCNP resulted in significant reduction of intracellular bacterial load (up to 90% reduction), compared to antibiotic dosed in its free form; with reduced performance observed for epithelial cells infected with S. aureus. Specifically engineered LCNP can re-sensitise antibiotics against both intracellular Gram positive and negative bacteria in diverse cell lines.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA, 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA, 5000, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA, 5000, Australia.
| |
Collapse
|
21
|
Blanco-Fernández G, Blanco-Fernandez B, Fernández-Ferreiro A, Otero-Espinar FJ. Lipidic lyotropic liquid crystals: Insights on biomedical applications. Adv Colloid Interface Sci 2023; 313:102867. [PMID: 36889183 DOI: 10.1016/j.cis.2023.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engineering and molecular imaging) and route of administration is examined. Further discussion of the main limitations and perspectives of lipidic LLCs in biomedical applications are also provided. STATEMENT OF SIGNIFICANCE: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS.
Collapse
Affiliation(s)
- Guillermo Blanco-Fernández
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Bárbara Blanco-Fernandez
- CIBER in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.
| | - Anxo Fernández-Ferreiro
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
22
|
Priya S, Desai VM, Singhvi G. Surface Modification of Lipid-Based Nanocarriers: A Potential Approach to Enhance Targeted Drug Delivery. ACS OMEGA 2023; 8:74-86. [PMID: 36643539 PMCID: PMC9835629 DOI: 10.1021/acsomega.2c05976] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 05/27/2023]
Abstract
Nanocarriers have the utmost significance for advancements in drug delivery and nanomedicine technology. They are classified as polymer-based nanocarriers, lipid-based nanocarriers, viral nanoparticles, or inorganic nanoparticles, depending on their constituent parts. Lipid-based nanocarrier systems have gained tremendous attention over the years because of their noteworthy properties like high drug-loading capacity, lower toxicity, better bioavailability and biocompatibility, stability in the gastrointestinal tract, controlled release, simpler scale-up, and validation process. Nanocarriers still have some disadvantages like poor drug penetration, limited drug encapsulation, and poor targeting. These disadvantages can be overcome by their surface modification. Surface-modified nanocarriers result in controlled release, enhanced penetration efficiency, and targeted medication delivery. In this review, the authors summarize the numerous lipid-based nanocarriers and their functionalization through various surface modifiers such as polymers, ligands, surfactants, and fatty acids. Recent examples of newly developing surface-modified lipid-based nanocarrier systems from the available literature, along with their applications, have been compiled in this work.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vaibhavi Meghraj Desai
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
23
|
Sartori B, Marmiroli B. Tailoring Lipid-Based Drug Delivery Nanosystems by Synchrotron Small Angle X-ray Scattering. Pharmaceutics 2022; 14:pharmaceutics14122704. [PMID: 36559196 PMCID: PMC9781362 DOI: 10.3390/pharmaceutics14122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Thanks to specific physico-chemical properties, drug delivery systems based on nanoparticles have proven to effectively transport delicate molecules for therapeutic purposes, protecting them from degradation, increasing their stability in the blood circulation and allowing to convey and release the transported substances in specific areas of the body. Nanoparticles obtained from biopolymers for applications in medicine and pharmaceutics have become particularly popular in recent years due to the enormous research effort in the field of vaccines to respond to the pandemic emergency. Among the various types of biopolymers used to produce nanoparticles for therapeutics, lipids have characteristics that make them biocompatible, with low toxicity and ease of clearance. They can be synthesized by designing their characteristics according to the foreseen administration path, or to the target of the transported drug. The analytical methods mostly used to evaluate the characteristics of lipid nanosytems for drug delivery involve studying their effects on cells, in vitro and in vivo. Although it is often considered a "niche technique" for research in the bio-related sciences, Small Angle X-ray Scattering (SAXS) is a versatile tool to study the structure of nanosystems based on lipids, both ex situ and in situ. Therefore, it allows to evaluate both the effect of the different synthesis parameters and of the exposure of lipid nanoparticles to physiological conditions, which is of fundamental importance to design efficient drug delivery systems. In this mini-review, we will report some recent examples of characterization and design of nanoparticles based on lipids, where SAXS has been a fundamental step both to guide the synthesis of nanomaterials with tailored characteristics, and to understand the interaction between nanomaterials and cells.
Collapse
|
24
|
Progress and challenges of lyotropic liquid crystalline nanoparticles for innovative therapies. Int J Pharm 2022; 628:122299. [DOI: 10.1016/j.ijpharm.2022.122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
|
25
|
Akbari J, Saeedi M, Ahmadi F, Hashemi SMH, Babaei A, Yaddollahi S, Rostamkalaei SS, Asare-Addo K, Nokhodchi A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm Dev Technol 2022; 27:525-544. [DOI: 10.1080/10837450.2022.2084554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mohammad Hassan Hashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadra Yaddollahi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
- Medicinal Plant Research Center, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Iran, Amol.
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutical Research laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
26
|
Inverse ISAsomes in Bio-Compatible Oils—Exploring Formulations in Squalane, Triolein and Olive Oil. NANOMATERIALS 2022; 12:nano12071133. [PMID: 35407249 PMCID: PMC9000821 DOI: 10.3390/nano12071133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
In contrast to their more common counterparts in aqueous solutions, inverse ISAsomes (internally self-assembled somes/particles) are formulated as kinetically stabilised dispersions of hydrophilic, lyotropic liquid-crystalline (LC) phases in non-polar oils. This contribution reports on their formation in bio-compatible oils. We found that it is possible to create inverse hexosomes, inverse micellar cubosomes (Fd3m) and an inverse emulsified microemulsion (EME) in excess squalane with a polyethylene glycol alkyl ether as the primary surfactant forming the LC phase and to stabilise them with hydrophobised silica nanoparticles. Furthermore, an emulsified -phase and inverse hexosomes were formed in excess triolein with the triblock-copolymer Pluronic® P94 as the primary surfactant. Stabilisation was achieved with a molecular stabiliser of type polyethylene glycol (PEG)-dipolyhydroxystearate. For the inverse hexosomes in triolein, the possibility of a formulation without any additional stabiliser was explored. It was found that a sufficiently strong stabilisation effect was created by the primary surfactant alone. Finally, triolein was replaced with olive oil which also led to the successful formation of inverse hexosomes. As far as we know, there exists no previous contribution about inverse ISAsomes in complex oils such as triolein or plant oils, and the existence of stabiliser-free (i.e., self-stabilising) inverse hexosomes has also not been reported until now.
Collapse
|
27
|
Tan C, Hosseini SF, Jafari SM. Cubosomes and Hexosomes as Novel Nanocarriers for Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1423-1437. [PMID: 35089018 DOI: 10.1021/acs.jafc.1c06747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cubosomes and hexosomes are nanostructured liquid crystalline particles, known as biocompatible nanocarriers for drug delivery. In recent years, there has been good interest in using cubosomes and hexosomes for the delivery of bioactive compounds in functional foods. These systems feature thermodynamic stability, encapsulate both hydrophobic and hydrophilic substances, and have a high tolerance to environmental stresses and potential for controlled release. This review outlines the recent advances in cubosomes and hexosomes in the food industry, focusing on their structure, composition, formation mechanisms, and factors influencing phase transformation between cubosomes and hexosomes. The potential applications especially for the bioactive delivery are presented. The integration of cubosomes and hexosomes with other emerging encapsulation technologies such as surface coating, gelation, and incorporation of polymers are also discussed.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor 193954697, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| |
Collapse
|
28
|
Abourehab MA, Ansari MJ, Singh A, Hassan A, Abdelgawad MA, Shrivastav P, Abualsoud BM, Amaral LS, Pramanik S. Cubosomes as an emerging platform for drug delivery: a state-of-the-art review. J Mater Chem B 2022; 10:2781-2819. [DOI: 10.1039/d2tb00031h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid-based drug delivery nanoparticles, including non-lamellar type, mesophasic nanostructured materials of lyotropic liquid crystals (LLCs), have been a topic of interest for researchers for their applications in encapsulation of drugs...
Collapse
|