1
|
Liu S, Zhang J, Hou X, Bu W, Lu S, Song X, Zhou C, Wang Q, Xin S, Liu G, Xin Y, Yan Q. Insights into the efficient removal and mechanism of NiFeAl-LDH with abundant hydroxyl to activate peroxymonosulfate for sulfamethoxazole wastewater. J Colloid Interface Sci 2025; 678:920-936. [PMID: 39226833 DOI: 10.1016/j.jcis.2024.08.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Layered double hydroxide (LDH) material with abundant OH was successfully prepared by co-precipitation method, and a water purification system of Ni2Fe0.25Al0.75-LDH activated peroxymonosulfate (PMS) was constructed to rapidly degrade sulfamethoxazole (SMX) pollutants. The optimal conditions for the degradation of SMX in the system were as follows: 0.30 g/L Ni2Fe0.25Al0.75-LDH, 0.30 mM PMS, pH = 7 and 90 % SMX was removed in 10 min and almost completely in 40 min, which was consistent with the predicted results of response surface methodology (RSM) analysis. The abundant OH in Ni2Fe0.25Al0.75-LDH could form M(O)OSO3 complexes with PMS, accelerating the generation of reactive oxygen species (ROS) and promoting the removal of SMX. Quenching experiments and electron paramagnetic resonance (EPR) spectra showed that SO4-, OH, O2- and 1O2 also existed in the system. The surface-bound SO4- and O2- contributed greatly to the removal of SMX and the electron transfer between metals was also conducive to the production of active substances. The possible degradation pathways and intermediates of SMX were proposed. The toxicity assessment software tool (T.E.S.T) and total organic carbon (TOC) results indicated that the Ni2Fe0.25Al0.75-LDH/PMS system could reduce the overall environmental risk of SMX to some extent. This study provided a new strategy for the practical application of heterogeneous catalysts in sewage treatment.
Collapse
Affiliation(s)
- Siqi Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jiajia Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xiangting Hou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wenqi Bu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Shixu Lu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xiaozhe Song
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qianwen Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
2
|
He Z, Luo J, Zhu G, Tian Z, Sun S, Ma R. Enhanced activation of peroxymonosulfate with cobalt-doped manganese-iron oxides for contaminant degradation: Regulation of oxygen vacancy defects. J Colloid Interface Sci 2025; 678:186-200. [PMID: 39186898 DOI: 10.1016/j.jcis.2024.08.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Peroxymonosulfate (PMS) based on heterogeneous catalytic reaction was a promising advanced oxidation process (AOP) to remove refractory contaminants. However, the contaminant degradation efficiency was challenged by the limited number of catalytic active site and low capacity for durable electron transfer. In this study, cobalt-doped manganese-iron oxides (CoxMn1-xFe2O4) rich in oxygen vacancy (Ov) were synthesized using a microwaved hydrothermal method and applied to activate PMS for bisphenol A (BPA) degradation, which achieved the complete removal of BPA within 30 min. In all samples, Co0.5Mn0.5Fe2O4 exhibited good catalytic activity for PMS, which was approximately 21.10 times higher than that of MnFe2O4. The results of density functional theory calculations and in-situ characterization demonstrated that the enhanced performance was ascribed to the generation of Ov and the enrichment of active site, which significantly accelerated the cycling of redox pairs and improved the PMS adsorption, which was more favorable to the formation of active specie in the electron transport process. The oxidation process involved both free radical and non-radical mechanisms, with main reactive species of O2-, and 1O2 being responsible for BPA degradation. In addition, the effects of different aqueous matrices, the results of reusability experiments, and ecotoxicity assessment experiments demonstrated the viability of the Co0.5Mn0.5Fe2O4/PMS system for real sewage purification. This research revealed a structural regulation method to enhance the catalytic activity of the material and offered new perspectives on the engineering of rich Ov.
Collapse
Affiliation(s)
- Zixia He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guopeng Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhen Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Liao Q, Dai N, Zhang C, Zhou Q, Zhang Y, Li H. S-Cu Doubly Doped NiFe LDH@Diatomite with Adjustable Surface Characteristics for the Efficient Removal of Tetracycline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21499-21513. [PMID: 39373461 DOI: 10.1021/acs.langmuir.4c02376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Overuse of antibiotics can lead to increased bacterial resistance; therefore, there is a need to develop efficient nanomaterials for removing antibiotics from water. NiFe bimetallic hydroxide nanosheets doped with S-Cu were prepared on diatomite (S-CuNiFe LDH@diatomite) by using a two-step hydrothermal method. The surface of CuNiFe LDH@DE has a layered structure with an increased specific surface area and pore volume. The average pore size of S-CuNiFe LDH@De increases from 13.3 to 24.7 nm, and a more stereoscopic channel structure is obtained. Tetracycline removal experiments were performed on CuNiFe LDH@De and S-CuNiFe LDH@De. It was found that CuNiFe LDH@De had excellent photocatalytic performance and S-CuNiFe LDH@De had excellent adsorption performance. After CuNiFe LDH@De had been in contact with tetracycline (TC) for 2 h, the TC removal rate reached 95.6%. After S-CuNiFe LDH@De had been in contact with TC for 1 h, the adsorption capacity of TC was 145.5 mg/g. The pseudo-first-order kinetics and Sips isotherm model can be used to describe the adsorption process more accurately. The response surface method was used to optimize the adsorption conditions. According to the optimized conditions, a better adsorption performance of 166.9 mg/g was obtained. The two prepared materials showed good performance in the removal of tetracycline. This study provides a way to synthesize low-cost adsorbents and photocatalysts, which has value in the treatment of TC wastewater.
Collapse
Affiliation(s)
- Qiyu Liao
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Nan Dai
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Chenzhi Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Quan Zhou
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Hong Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
4
|
Xu D, Xu W, Zheng D, Xu C, Lu X. Regulating the 3d-orbital occupancy on Ni sites enables high-rate and durable Ni(OH) 2 cathode for alkaline Zn batteries. J Colloid Interface Sci 2024; 679:686-693. [PMID: 39388954 DOI: 10.1016/j.jcis.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
The capacity and cycling stability of β-Ni(OH)2-based cathodes in aqueous alkaline Ni-Zn batteries are still unsatisfactory due to their undesirable OH- adsorption/desorption dynamics during the electrochemical redox process. To settle this issue, we introduce a new atomic-level strategy to finely modulate the OH- adsorption/desorption of β-Ni(OH)2 through tailoring the 3d-orbital occupancy of Ni center by Co/Cu co-doping (denoted as Co-Cu-Ni(OH)2). Both experimental outcomes and density functional theory calculations validate that the co-doping of Co and Cu endows the Ni species in Co-Cu-Ni(OH)2 with appropriate proportion of the unoccupied 3d-orbital, leading to optimized adsorption/desorption strength of OH-. As anticipated, the Co-Cu-Ni(OH)2 electrode demonstrates superior performance, achieving an areal capacity of 0.83 mAh cm-2 and a gravimetric capacity of 164.3 mAh g-1 at ∼50 mA cm-2 (10 A g-1). Furthermore, it sustains an impressive capacity of 170.8 mAh g-1 (2.3 mAh cm-2) at a high mass loading of 13.5 mg cm-2, alongside a long-term cycling performance over 1000 cycles. The assembled Co-Cu-Ni(OH)2//Zn cell is able to provide a peak energy density of 0.98 mWh cm-2 and excellent durability. This work highlights the potential of an orbital engineering strategy in the development of next-generation high-capacity and durable energy storage materials.
Collapse
Affiliation(s)
- Diyu Xu
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, PR China; MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wei Xu
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China
| | - Dezhou Zheng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China
| | - Cuixia Xu
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, PR China.
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
5
|
Wang K, Wang R, Zhang S, Wang M, He Z, Chen H, Ho SH. Hollow Nanoreactors Unlock New Possibilities for Persulfate-Based Advanced Oxidation Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401796. [PMID: 38966879 DOI: 10.1002/smll.202401796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Indexed: 07/06/2024]
Abstract
As a novel type of catalytic material, hollow nanoreactors are expected to bring new development opportunities in the field of persulfate-based advanced oxidation processes due to their peculiar void-confinement, spatial compartmentation, and size-sieving effects. For such materials, however, further clarification on basic concepts and construction strategies, as well as a discussion of the inherent correlation between structure and catalytic activity are still required. In this context, this review aims to provide a state-of-the-art overview of hollow nanoreactors for activating persulfate. Initially, hollow nanoreactors are classified according to the constituent components of the shell structure and their dimensionality. Subsequently, the different construction strategies of hollow nanoreactors are described in detail, while common synthesis methods for these construction strategies are outlined. Furthermore, the most representative advantages of hollow nanoreactors are summarized, and their intrinsic connections to the nanoreactor structure are elucidated. Finally, the challenges and future prospects of hollow nanoreactors are presented.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| | - Shiyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| | - Meng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| | - Zixiang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| | - Honglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| |
Collapse
|
6
|
Yu Y, Liu M, Wang S, Zhang C, Zhang X, Liu L, Xue S. Unveiling the Photodegradation Mechanism of Monochlorinated Naphthalenes under UV-C Irradiation: Affecting Factors Analysis, the Roles of Hydroxyl Radicals, and DFT Calculation. Molecules 2024; 29:4535. [PMID: 39407464 PMCID: PMC11477601 DOI: 10.3390/molecules29194535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Polychlorinated naphthalenes (PCNs) are a new type of persistent organic pollutant (POP) characterized by persistence, bioaccumulation, dioxin-like toxicity, and long-range atmospheric transport. Focusing on one type of PCN, monochlorinated naphthalenes (CN-1, CN-2), this study aimed to examine their photodegradation in the environment. In this work, CN-1 and CN-2 were employed as the model pollutants to investigate their photodegradation process under UV-C irradiation. Factors like the pH, initial concentrations of CN-1, and inorganic anions were investigated. Next, the roles of hydroxyl radicals (•OH), superoxide anion radicals (O2•-), and singlet oxygen (1O2) in the photodegradation process were discussed and proposed via theory computation. The results show that the photodegradation of CN-1 and CN-2 follows pseudo-first-order kinetics. Acidic conditions promote the photodegradation of CN-1, while the effects of pH on the photodegradation of CN-2 are not remarkable. Cl-, NO3-, and SO32- accelerate the photodegradation of CN-1, whereas the effect of SO42- and CO32- is not significant. Additionally, the contributions of •OH and O2•- to the photodegradation of CN-1 are 20.47% and 38.80%, while, for CN-2, the contribution is 16.40% and 16.80%, respectively. Moreover, the contribution of 1O2 is 15.7%. Based on DFT calculations, C4 and C6 of the CN-1 benzene ring are prioritized attack sites for •OH, while C2 and C9 of CN-2 are prioritized attack sites.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Liu
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.Y.); (M.L.); (S.W.); (C.Z.); (X.Z.)
| | - Shuang Xue
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.Y.); (M.L.); (S.W.); (C.Z.); (X.Z.)
| |
Collapse
|
7
|
Wang J, He F, Fang J, Yu R, Jia Z, Zhou H. Activation of peroxymonosulfate by β-FeOOH@C ia-MoS 2 for enhancing degradation of tetracycline: Significant roles of surface functional groups and Fe/Mo redox reactions. CHEMOSPHERE 2024; 364:143152. [PMID: 39173836 DOI: 10.1016/j.chemosphere.2024.143152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Vertically oriented interstitial atom carbon-anchored molybdenum disulfide (Cia-MoS2) nanospheres loaded with iron oxyhydroxide (β-FeOOH) were proposed for modulating the surface catalytic activity and stability of the unsaturated catalytic system. The β-FeOOH@Cia-MoS2 efficiently activated peroxymonosulfate (PMS) to degrade 95.4% of tetracycline (TC) within 30 min, owing to the more sulfur vacancies, higher surface hydroxyl density, redox ability and electronic transmission rate of β-FeOOH@Cia-MoS2. According to the characterization and analysis data, the multiple active sites (Fe, Mo and S sites) and oxygen-containing functional groups (CO, -OH) of β-FeOOH@Cia-MoS2 could promote the activation of PMS to form reactive oxygen species (ROS). The oxidation cycle of Fe(II)/Fe(III) and Mo(IV)/Mo(VI), the electron transfer mediator of rich sulfur vacancies, as well as oxygen-containing functional groups on the surface of β-FeOOH@Cia-MoS2 synergistically promoted the formation of ROS (1O2, FeIVO, SO4•- and •OH), among which 1O2 was the main active oxidant. In particular, the β-FeOOH@Cia-MoS2/PMS system could still degrade pollutants efficiently and stably after five recycling cycles. Furthermore, this system had a strong anti-interference ability in the actual water body. This study provided a promising strategy for the removal of difficult-to-degrade organic pollutants.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Fang He
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Jieru Fang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Rui Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Zaiwen Jia
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Haihong Zhou
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
8
|
Wei X, Chen Z, He M, Xu L, Li Y, Yang J, Zhang X, Zhang X, Wang Z, Cao S, Zhou Q, Pan B. Fabrication of a novel nanofiltration membrane using an Mg-Fe layered double hydroxide for dye/salt separation. RSC Adv 2024; 14:24055-24065. [PMID: 39086525 PMCID: PMC11290579 DOI: 10.1039/d4ra03366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024] Open
Abstract
Mg-Fe layered hydroxide (LDH) was synthesized by the double titration method and added to trimesoyl chloride (TMC) to prepare an Mg-Fe LDH-modified polyamide nanofiltration (NF) membrane by interfacial polymerization (IP). Compared to the pure polyamide NF membrane, the Mg-Fe LDH-modified membrane presented a wrinkled structure and a comparatively smooth surface. Additionally, the permeation flux and rejection rate of the modified NF membrane for 1000 mg L-1 Na2SO4 solution were 61.7 L m-2 h-1 and 95.9%, respectively. When the Mg-Fe LDH modified NF membrane was used to separate dye/NaCl mixed solutions, the rejection of NaCl was less than 17% and the rejection rate of Coomassie Brilliant Blue (CBB) molecules was close to 100%. At the same time, the concentration of CBB increased from 500 mg L-1 to 1151 mg L-1 which means that the LDH modified NF membrane could separate CBB/NaCl effectively and could concentrate CBB at the same time.
Collapse
Affiliation(s)
- Xiuzhen Wei
- College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| | - Zelong Chen
- College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| | - Mengjia He
- College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| | - Liangliang Xu
- College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| | - Yue Li
- Abbey College Cambridge Cambridge Cambridgeshire UK
| | - Jia Yang
- Ninghai Society of Environmental Science and Technology Ningbo Zhejiang 315600 China
| | - Xuekang Zhang
- College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| | - Xianghao Zhang
- College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| | - Ze Wang
- College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| | - Shiyu Cao
- College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
9
|
Lin L, Xiao S, Wang C, Huang M, Xu L, Huang Y. Nanosheet BiOBr Modified Rock Wool Composites for High Efficient Oil/Water Separation and Simultaneous Dye Degradation by Activating Peroxymonosulfate. Molecules 2024; 29:3185. [PMID: 38999137 PMCID: PMC11243219 DOI: 10.3390/molecules29133185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The development of superlyophobic materials in liquid systems, enabling synchronous oil/water separation and dye removal from water, is highly desirable. In this study, we employed a novel superwetting array-like BiOBr nanosheets anchored on waste rock wool (RW) fibers through a simple neutralization alcoholysis method. The resulting BiOBr/RW fibers exhibited superoleophilic and superhydrophilic properties in air but demonstrated underwater superoleophobic and underoil superhydrophobic characteristics. Utilizing its dual superlyophobicity, the fiber layer demonstrated high separation efficiencies and flux velocity for oil/water mixtures by prewetting under a gravity-driven mechanism. Additionally, the novel BiOBr/RW fibers also exhibited excellent dual superlyophobicity and effective separation for immiscible oil/oil systems. Furthermore, the BiOBr/RW fibers could serve as a filter to continuously separate oil/water mixtures with high flux velocity and removal rates (>93.9%) for water-soluble dye rhodamine B (RhB) simultaneously by directly activating peroxymonosulfate (PMS) in cyclic experiments. More importantly, the mechanism of simultaneous oil/water separation and RhB degradation was proposed based on the reactive oxygen species (ROS) quenching experiments and electron paramagnetic resonance (EPR) analysis. Considering the simple modified process and the waste RW as raw material, this work may open up innovative, economical, and environmentally friendly avenues for the effective treatment of wastewater contaminated with oil and water-soluble pollutants.
Collapse
Affiliation(s)
- Li Lin
- School of Material and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Yiyang 413000, China
| | - Si Xiao
- School of Material and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Chuxuan Wang
- School of Material and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Manhong Huang
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ling Xu
- School of Material and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Yiyang 413000, China
| | - Yi Huang
- School of Material and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Yiyang 413000, China
| |
Collapse
|
10
|
Xie M, Liang M, Liu C, Xu Z, Yu Y, Xu J, You S, Wang D, Rad S. Peroxymonosulfate activation by CuMn-LDH for the degradation of bisphenol A: Effect, mechanism, and pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115929. [PMID: 38194810 DOI: 10.1016/j.ecoenv.2024.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
The remediation of water contaminated with bisphenol A (BPA) has gained significant attention. In this study, a hydrothermal composite activator of Cu3Mn-LDH containing coexisting phases of cupric nitrate (Cu(NO3)2) and manganous nitrate (Mn(NO3)2) was synthesized. Advanced oxidation processes were employed as an effective approach for BPA degradation, utilizing Cu3Mn-LDH as the catalyst to activate peroxymonosulfate (PMS). The synthesis of the Cu3Mn-LDH material was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). According to the characterization data and screening experiments, Cu3Mn-LDH was selected as the best experimental material. Cu3Mn-LDH exhibits remarkable catalytic ability with PMS, demonstrating good degradation efficiency of BPA under neutral and alkaline conditions. With a PMS dosage of 0.25 g·L-1 and Cu3Mn-LDH dosage of 0.10 g·L-1, 10 mg·L-1 BPA (approximately 17.5 μM) can be completely degraded within 40 min, of which the TOC removal reached 95%. The reactive oxygen species present in the reaction system were analyzed by quenching experiments and EPR. Results showed that sulfate free radicals (SO4•-), hydroxyl free radicals (•OH), superoxide free radicals (•O2-), and nonfree radical mono-oxygen were generated, while mono-oxygen played a key role in degrading BPA. Cu3Mn-LDH exhibits excellent reproducibility, as it can still completely degrade BPA even after four consecutive cycles. The degradation intermediates of BPA were detected by GCMS, and the possible degradation pathways were reasonably predicted. This experiment proposes a nonradical degradation mechanism for BPA and analyzes the degradation pathways. It provides a new perspective for the treatment of organic pollutants in water.
Collapse
Affiliation(s)
- Mingqi Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Meina Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Chongmin Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| | - Zejing Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Youkuan Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Jie Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Saeed Rad
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
11
|
Guo C, Tao C, Yu F, Zhao Z, Wang Z, Deng N, Huang X. Ball-milled layer double hydroxide as persulfate activator for efficient degradation of organic: Alkaline sites-triggered non-radical mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132219. [PMID: 37722323 DOI: 10.1016/j.jhazmat.2023.132219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/20/2023]
Abstract
Considerable efforts have been put into enhancing the activation performance of peroxydisulfate (PDS) by catalysts toward oxidative degradation of organic pollutants, while the oxidative selectivity is somehow overlooked. Here, we reported an enhanced non-radical oxidation pathway of PDS, activated by ball-milled Mg/Al-layered double hydroxide (BM-LDH), to reconcile the selectivity and reactivity. EPR and quenching experiments suggested that 1O2 dominated the oxidative pathway for phenol degradation without generating carcinogenic halide by-products. Multiple interfacial characterizations and density functional theory (DFT) calculations revealed that BM-LDH played dual roles in PDS activation: (1) the interlaminar BM-LDH allowed PDS intercalation to form complexed PDS, resulting in decreases in the activation barrier of PDS; (2) abundant terminal hydroxyls in the layers of BM-LDH acted as alkaline-activation sites that can efficiently activate PDS to generate 1O2 toward phenol degradation. Ball-milling treatment of LDH refined the structural hierarchy of LDH to create pore volumes, which greatly enhanced the diffusion of phenol to the intercalated PDS, resulting in more than twice the reaction rate for phenol degradation. This study provided a promising approach to simultaneously control over the reactivity and selectivity toward PDS activation that are critical for the degradation of organic pollutants particularly in drinking water treatment.
Collapse
Affiliation(s)
- Changjin Guo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Tao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Fang Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhenzhen Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhiquan Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Ning Deng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Xin Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
12
|
Liu X, Qiao X, Yang R, Wei D, Qu X, Cao H, Li Y, Zhong Z, Lü J. Mechanism insights into photo-assisted peroxymonosulfate activation on oxygen vacancy-enriched nolanites via an electron transfer regime. J Colloid Interface Sci 2023; 652:912-922. [PMID: 37634364 DOI: 10.1016/j.jcis.2023.08.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
The utilization of photo-assisted persulfate activation for the removal of organic contaminants in water has garnered significant research interest in recent times. However, there remains a lack of clarity regarding specific contributions of light irradiation and catalyst structure in this process. Herein, a photo-assisted peroxymonosulfate (PMS) activation system is designed for the highly efficient degradation of organic contaminants on oxygen vacancy-enriched nolanites (Vo-FVO). Results suggest that the degradation of bisphenol A (BPA) in this system is a nonradical-dominated process via an electron transfer regime, in which VO improves the local electron density and thus facilitates the electron shuttling between BPA and PMS. During BPA degradation, PMS adsorbed at the surface of FVO-180 withdraws electrons near VO and forms FVO-PMS* complexes. Upon light irradiation, photoelectrons effectively restore the electron density around VO, thereby enabling a sustainable electron transfer for the highly efficient degradation of BPA. Overall, this work provides new insights into the mechanism of persulfate activation based on defects engineering in nolanite minerals.
Collapse
Affiliation(s)
- Xiangji Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingxing Qiao
- College of Resources and Environment (Agricultural Environment and Resources Institute), Shanxi Agricultural University, No.1 Ming Xian Road, Jinzhong 030801, China
| | - Ruqian Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong Wei
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinghua Qu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hailei Cao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yafeng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, No. 2 Xue Yuan Road, Fuzhou 350116, China
| | - Zhou Zhong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, No. 2 Xue Yuan Road, Fuzhou 350116, China.
| |
Collapse
|
13
|
Lu X, Wang K, Wu D, Xiao P. Rapid degradation and detoxification of metronidazole using calcium sulfite activated by CoCu two-dimensional layered bimetallic hydroxides: Performance, mechanism, and degradation pathway. CHEMOSPHERE 2023; 341:140150. [PMID: 37709064 DOI: 10.1016/j.chemosphere.2023.140150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
In this study, cobalt copper-layered double hydroxides (CoCu-LDHs) were prepared by coprecipitation as catalysts to activate CaSO3 for metronidazole (MNZ) degradation. This is the first report on layered double hydroxides activating sulfite for the degradation of organic pollutants. Meanwhile, to address the issue of self-quenching reactions readily occurring in conventional sulfite advanced oxidation systems and resulting in low oxidant efficiency, CaSO3 with slightly soluble in water was used instead of commonly used Na2SO3, to improve the limitations of traditional systems. The results showed that in the CoCu-LDHs/CaSO3 system, the degradation rate of MNZ reached 98.7% within 5 min, representing a 23.0% increase compared to the CoCu-LDHs/Na2SO3 system. Owing to the excellent catalytic performance exhibited by CoCu-LDHs, characterizations including XRD, FTIR, SEM, TEM, BET and XPS were carried out to investigate this further. The results confirmed the successful synthesis of CoCu-LDH, and the activation mechanism study revealed that Co and Cu were considered to the main elements in activating CaSO3, demonstrating good synergistic effects. In addition, the oxygen vacancies on the catalyst surface also played a positive role in generating radicals and promoting electron transfer. Subsequently, the effects of Co/Cu ratio, catalyst dosage, oxidant concentration, pollutant concentration, pH and coexisting substances on MNZ degradation were investigated. Additionally, based on the LC-MS analysis of degradation products and toxicity tests, MNZ was transformed into different intermediates with low toxicity through four pathways, eventually mineralizing into inorganic small molecules. After six cycles, the MNZ degradation rate still reached 82.1%, exhibiting excellent stability and recyclability. In general, this study provides new ideas for activating sulfite, while providing theoretical support for subsequent research on sulfite advanced oxidation system.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Kai Wang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Dedong Wu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
14
|
Hao C, Rao F, Zhang Y, Wang H, Chen J, Wågberg T, Hu G. Low-temperature molten-salt synthesis of Co 3O 4 nanoparticles grown on MXene can rapidly remove ornidazole via peroxymonosulfate activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:121811. [PMID: 37209900 DOI: 10.1016/j.envpol.2023.121811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
We further developed previous work on MXene materials prepared using molten salt methodology. We substituted single, with mixed salts, and reduced the melting point from >724 °C to <360 °C. Cobalt (Co) compounds were simultaneously etched and doped while the MXene material was created using various techniques in which Co compounds occur as Co3O4. The synthesized Co3O4/MXene compound was used as a peroxymonosulfate (PMS) activator that would generate free radicals to degrade antibiotic ornidazole (ONZ). Under optimal conditions, almost 100% of ONZ (30 mg/L) was degraded within 10 min. The Co3O4/MXene + PMS system efficiently degraded ONZ in natural water bodies, and had a broad pH adaptation range (4-11), and strong anion anti-interference. We investigated how the four active substances were generated using radical quenching and electron paramagnetic resonance (EPR) spectroscopy. We identified 12 ONZ intermediates by liquid chromatography-mass spectrometry and propose a plausible degradative mechanism.
Collapse
Affiliation(s)
- Chenglin Hao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Fengling Rao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Yunqiu Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Jianbin Chen
- Research Academy of Non-metallic Mining Industry Development, Materials and Environmental Engineering College, Chizhou University, Chizhou, 247000, China
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå, 901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
15
|
Liu G, Zhang X, Liu H, He Z, Show PL, Vasseghian Y, Wang C. Biochar/layered double hydroxides composites as catalysts for treatment of organic wastewater by advanced oxidation processes: A review. ENVIRONMENTAL RESEARCH 2023; 234:116534. [PMID: 37399983 DOI: 10.1016/j.envres.2023.116534] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Heterogeneous advanced oxidation process has been widely studied as an effective method for removing organic pollutants in wastewater, but the development of efficient catalysts is still challenging. This review summaries the present status of researches on biochar/layered double hydroxides composites (BLDHCs) as catalysts for treatment of organic wastewater. The synthesis methods of layered double hydroxides, the characterizations of BLDHCs, the impacts of process factors influencing catalytic performance, and research advances in various advanced oxidation processes are discussed in this work. The integration of layered double hydroxides and biochar provides synthetic effects for improving pollutant removal. The enhanced pollutant degradation in heterogeneous Fenton, sulfate radical-based, sono-assisted, and photo-assisted processes using BLDHCs have been verified. Pollutant degradation in heterogeneous advanced oxidation processes using BLDHCs is influenced by process factors such as catalyst dosage, oxidant addition, solution pH, reaction time, temperature, and co-existing substances. BLDHCs are promising catalysts due to the unique features including easy preparation, distinct structure, adjustable metal ions, and high stability. Currently, catalytic degradation of organic pollutants using BLDHCs is still in its infancy. More researches should be conducted on the controllable synthesis of BLDHCs, the in-depth understanding of catalytic mechanism, the improvement of catalytic performance, and large-scale application of treating real wastewater.
Collapse
Affiliation(s)
- Gonggang Liu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongwen Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhangxing He
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
16
|
Wang Q, Lu J, Yu M, Li H, Lin X, Nie J, Lan N, Wang Z. Sulfur vacancy rich MoS 2/FeMoO 4 composites derived from MIL-53(Fe) as PMS activator for efficient elimination of dye: Nonradical 1O 2 dominated mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121990. [PMID: 37301457 DOI: 10.1016/j.envpol.2023.121990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
A novel MoS2/FeMoO4 composite was synthesized for the first time by introducing an inorganic promoter MoS2 into the MIL-53(Fe)-derived PMS-activator. The prepared MoS2/FeMoO4 could effectively activate peroxymonosulfate (PMS) toward 99.7% of rhodamine B (RhB) degradation in 20 min, and achieve a kinetic constant of 0.172 min-1, which is 10.8, 43.0 and 3.9 folds higher than MIL-53, MoS2 and FeMoO4 components, respectively. Both Fe(II) and sulfur vacancies are identified as the main active sites on catalyst surface, where sulfur vacancies can promote adsorption and electron migration between peroxymonosulfate and MoS2/FeMoO4 to accelerate peroxide bond activation. Besides, the Fe(III)/Fe(II) redox cycle was improved by reductive Fe0, S2- and Mo(IV) species to further boost PMS activation and RhB degradation. Comparative quenching experiment and in-situ electron paramagnetic resonance (EPR) spectra verified that SO4•-, •OH, 1O2 and O2•- were produced in the MoS2/FeMoO4/PMS system, while 1O2 dominates RhB elimination. In addition, the influences of various reaction parameters on RhB removal were examined and the MoS2/FeMoO4/PMS system exhibits good performance over a wide pH and temperature range, as well as coexistence with common inorganic ions and humic acid (HA). This study provides a new strategy for preparing MOF-derived composite with simultaneous introduction of MoS2 promotor and rich sulfur vacancies, and enables new insight into radical/nonradical pathway in PMS activation process.
Collapse
Affiliation(s)
- Qiao Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jiahong Lu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Meirui Yu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Huarui Li
- School of Civil Engineering, Yantai University, Yantai, 264005, PR China.
| | - Xinhong Lin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jinxu Nie
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Nan Lan
- Guangdong Jiuyu Engineering and Technology Consulting Co., Ltd, Guangzhou, 510635, PR China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Eltaweil AS, Bakr SS, Abd El-Monaem EM, El-Subruiti GM. Magnetic hierarchical flower-like Fe 3O 4@ZIF-67/CuNiMn-LDH catalyst with enhanced redox cycle for Fenton-like degradation of Congo red: optimization and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:75332-75348. [PMID: 37219772 PMCID: PMC10293427 DOI: 10.1007/s11356-023-27430-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
A novel flower-like CuNiMn-LDH was synthesized and modified, to obtain a promising Fenton-like catalyst, Fe3O4@ZIF-67/CuNiMn-LDH, with a remarkable degradation of Congo red (CR) utilizing H2O2 oxidant. The structural and morphological characteristics of Fe3O4@ZIF-67/CuNiMn-LDH were analyzed via FTIR, XRD, XPS, SEM-EDX, and SEM spectroscopy. In addition, the magnetic property and the surface's charge were defined via VSM and ZP analysis, respectively. Fenton-like experiments were implemented to investigate the aptness conditions for the Fenton-like degradation of CR; pH medium, catalyst dosage, H2O2 concentration, temperature, and the initial concentration of CR. The catalyst exhibited supreme degradation performance for CR to reach 90.9% within 30 min at pH 5 and 25 °C. Moreover, the Fe3O4@ZIF-67/CuNiMn-LDH/H2O2 system revealed considerable activity when tested for different dyes since the degradation efficiencies of CV, MG, MB, MR, MO, and CR were 65.86, 70.76, 72.56, 75.54, 85.99, and 90.9%, respectively. Furthermore, the kinetic study elucidated that the CR degradation by the Fe3O4@ZIF-67/CuNiMn-LDH/H2O2 system obeyed pseudo-first-order kinetic model. More importantly, the concrete results deduced the synergistic effect between the catalyst components, producing a continuous redox cycle consisting of five active metal species. Eventually, the quenching test and the mechanism study proposed the predominance of the radical mechanism pathway on the Fenton-like degradation of CR by the Fe3O4@ZIF-67/CuNiMn-LDH/H2O2 system.
Collapse
Affiliation(s)
| | - Sara S Bakr
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Xu P, Wei R, Wang P, Li X, Yang C, Shen T, Zheng T, Zhang G. CuFe 2O 4/diatomite actuates peroxymonosulfate activation process: Mechanism for active species transformation and pesticide degradation. WATER RESEARCH 2023; 235:119843. [PMID: 36934540 DOI: 10.1016/j.watres.2023.119843] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Peroxymonosulfate (PMS) activation is a promising technology for water purification, but the removal performance of multiple pollutant matrices and the mechanism for reactive species transformation in the heterogeneous catalytic system remain ambiguous. Herein, a novel CuFe2O4/diatomite was fabricated for PMS activation to achieve efficient removal of typical pesticides. Uniform distribution of CuFe2O4 on diatomite efficiently alleviated the agglomeration of CuFe2O4 and increased specific surface area (57.20 m2 g-1, 3.8-fold larger than CuFe2O4). CuFe2O4/5% diatomite (5-CFD)/PMS system showed nearly 100% removal efficiency for mixed pesticide solution within 10 min (0.10 g L-1 5-CFD and 0.40 g L-1 PMS) and excellent anti-interference performance towards various coexisting substances (≥90% removal efficiency). The electrochemical measurements confirmed that the lower charge transfer resistance of 5-CFD significantly enhanced the electron-transfer capacity between 5-CFD and PMS, accelerating the reactions among Fe(III)/Fe(II), Cu(II)/Cu(I), and PMS, further generating •OH (261.3 μM), 1O2 (138.8 μM), SO4•- (11.8 μM), and O2•-. The O in reactive oxygen species didn't originate from dissolved oxygen (DO) but PMS, independent of the low solubility of DO and slow diffusion rate of O2 in water. Furthermore, the production of 1O2 went through the process: PMS → O2•- → 1O2, and SO4•- could rapidly convert into •OH. The degradation pathways and the evolution of intermediates were proposed by HPLC-QTOF-MS/MS and DFT calculations. QSAR analysis illustrated that the toxicity became lower with the reaction process. This study provides novel insights into the mechanism for pesticide degradation and active species transformation and the anti-interference capability of systems.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chunyan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyao Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
19
|
Zhang T, Wu S, Li N, Chen G, Hou L. Applications of vacancy defect engineering in persulfate activation: Performance and internal mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130971. [PMID: 36805443 DOI: 10.1016/j.jhazmat.2023.130971] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The vacancy defects in heterogeneous catalysts have received extensive attention for persulfate (PS) activation. Vacancy defects can tune the electronic structure of metal oxides and generate unsaturated coordination sites. Meanwhile, the adsorption energy of reactants on catalyst surface is optimized. Thereby, the reaction energy barrier between catalysts and PS decreases, which could promote catalytic activation and accelerate pollutants degradation. Nowadays, oxygen vacancy (OV), nitrogen vacancy (NV), sulfur vacancy (SV), selenium vacancy (SeV) and titanium vacancy (TiV) have been widely studied with great potential for water remediation. So far, no review was reported regarding the vacancy activated persulfate systems. This paper summarized the types, preparation, mechanism and applications of vacancy in PS systems systematically. In addition, we put forward possible development of vacancy engineering in PS activation systems. It is expected that this review will contribute to the controllable synthesis and applications of vacancies in catalysts for PS activation and contaminants removal.
Collapse
Affiliation(s)
- Ting Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shuang Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Li'an Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; 96911 Unit, Beijing 100011, China.
| |
Collapse
|
20
|
You J, Li J, Zhang H, Luo M, Xing B, Ren Y, Liu Y, Xiong Z, He C, Lai B. Removal of Bisphenol A via peroxymonosulfate activation over graphite carbon nitride supported NiCx nanoclusters catalyst: Synergistic oxidation of high-valent nickel-oxo species and singlet oxygen. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130440. [PMID: 36446311 DOI: 10.1016/j.jhazmat.2022.130440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this work, a g-C3N4 supported NiCx nanoclusters catalyst (NiCx-CN) was developed, and its performance in activating peroxymonosulfate (PMS) was evaluated. Mechanism investigation stated that although singlet oxygen (1O2) was formed in the catalytic process, its contribution to BPA elimination was weeny. Interestingly, through the experiment with dimethyl sulfoxide as the probe, it was considered that the high-valent nickel-oxo species (Ni&+=O), generated after the interaction of NiCx-CN and PMS, was the dominating reactive oxygen species (ROS). Theoretical calculations (DFT) implied that NiCx-CN might lose electrons to generate high-valent Ni, which was consistent with the detection of Ni3+ on the surface of the used NiCx-CN. Besides, the prepared NiCx-CN showed advantages in resisting the interference of inorganic anions. Meanwhile, three BPA degradation routes had been proposed based on the transformation intermediates. This study will establish a new protocol for PMS activation using heterogeneous Ni-based catalysts to efficiently degrade organic pollutants via a nonradical mechanism.
Collapse
Affiliation(s)
- Junjie You
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Junyi Li
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Xing
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Koo PL, Choong ZY, He C, Bao Y, Jaafar NF, Oh WD. Effect of metal doping (Me = Zn, Cu, Co, Mn) on the performance of bismuth ferrite as peroxymonosulfate activator for ciprofloxacin removal. CHEMOSPHERE 2023; 318:137915. [PMID: 36702411 DOI: 10.1016/j.chemosphere.2023.137915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In this study, a facile hydrothermal method was employed to prepare Me-doped Bi2Fe4O9 (Me = Zn, Cu, Co, and Mn) as peroxymonosulfate (PMS) activator for ciprofloxacin (CIP) degradation. The characteristics of the Me-doped bismuth ferrites were investigated using various characterization instruments including SEM, TEM, FTIR and porosimeter indicating that the Me-doped Bi2Fe4O9 with nanosheet-like square orthorhombic structure was successfully obtained. The catalytic activity of various Me-doped Bi2Fe4O9 was compared and the results indicated that the Cu-doped Bi2Fe4O9 at 0.08 wt.% (denoted as BFCuO-0.08) possessed the greatest catalytic activity (kapp = 0.085 min-1) over other Me-doped Bi2Fe4O9 under the same condition. The synergistic interaction between Cu, Fe and oxygen vacancies are the key factors which enhanced the performance of Me-doped Bi2Fe4O9. The effects of catalyst loading, PMS dosage, and pH on CIP degradation were also investigated indicating that the performance increased with increasing catalyst loading, PMS dosage, and pH. Meanwhile, the dominant reactive oxygen species was identified using the chemical scavengers with SO4•-, •OH, and 1O2 playing a major role in CIP degradation. The performance of BFCuO-0.08 deteriorated in real water matrix (tap water, river water and secondary effluent) due to the presence of various water matrix species. Nevertheless, the BFCuO-0.08 catalyst possessed remarkable stability and can be reused for at least four successive cycles with >70% of CIP degradation efficiency indicating that it is a promising catalyst for antibiotics removal.
Collapse
Affiliation(s)
- Pooi-Ling Koo
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Zheng-Yi Choong
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Yueping Bao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Nur Farhana Jaafar
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
22
|
Peroxymonosulfate Activation by CuO-Fe2O3-Modified Ni Foam: A 1O2 Dominated Process for Efficient and Stable Degradation of Tetracycline. Catalysts 2023. [DOI: 10.3390/catal13020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The post-separation of powder catalysts restricts the practical application of peroxymonosulfate (PMS)-based advanced oxidation technology. Hence, we fabricated CuO-Fe2O3-modified Ni foam (CFO-NF) using a facile hydrothermal method for an efficient PMS activation. The CFO-NF/PMS system could achieve a 97.9% tetracycline hydrochloride (TC) removal efficiency in 60 min with four pieces of CFO-NF and 0.4 mmol L−1 of PMS. The removal efficiency was maintained at ˃85% even after five cycles, indicating the excellent stability of CFO-NF composites. The conversion among Fe(III)/Fe(II), Cu(II)/Cu(I), and Ni(III)/Ni(II) accelerated the PMS decomposition, verifying the synergy between CuO-Fe2O3 and Ni foam. The trapping experiments and EPR detection confirmed that abundant active species (•OH, SO4•−, O2•−, and 1O2) were produced in the CFO-NF/PMS system, accounting for the existence of radical pathways and a non-radical pathway, in which 1O2 (non-radical pathway) was dominated. This study developed a novel CuO-Fe2O3-modified Ni foam with a superior PMS activation performance, a high stability, and a recoverability for eliminating refractory organic pollutants.
Collapse
|
23
|
Promoted generation of singlet oxygen by oxygen vacancies-enriched Co3O4/g-C3N4 catalyst for efficient degradation of phenanthrene. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Li Z, Ning S, Hu F, Zhu H, Zeng L, Chen L, Wang X, Fujita T, Wei Y. Preparation of VCo-MOF@MXene composite catalyst and study on its removal of ciprofloxacin by catalytically activating peroxymonosulfate: Construction of ternary system and superoxide radical pathway. J Colloid Interface Sci 2023; 629:97-110. [PMID: 36152584 DOI: 10.1016/j.jcis.2022.08.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
The synergistic effect between transition metal active centers and the generation of multiple removal pathways has a significant impact on the catalytic activation efficiency of peroxymonosulfate. In this work, a kind of composite catalyst was prepared by growing VCo-metal-organic frameworks (VCo-MOF) in-situ on the surface of Ti3C2Tx by a solvothermal method. The morphology and structure are characterized by Transmission Electron Microscope (TEM), Energy Dispersion Spectrum (EDS), Atomic Force Microscope (AFM), etc. Response surface methodology was used to optimize the experimental conditions. Only 5 mg catalyst can be used to effectively activate PMS and remove 96.14 % ciprofloxacin (CIP, 20 mg/L) within 30 min. The removal effect of catalyst on CIP in different actual water environment was explored. In addition, the fluorescence spectrum test also verified the effective removal of ciprofloxacin. V-Co-Ti ternary system provides a wealth of active sites for CIP removal. Cyclic voltammetry (CV) and lear sweep voltammetry (LSV) tests showed the existence of the electron transfer pathway. The results of density functional theory (DFT) calculation show that VCo-MOF@Ti3C2Tx has excellent adsorption and activation ability for PMS. At the same time, the hydrophilicity of the catalyst makes PMS more inclined to react with water molecules, which promotes the formation of a unique superoxide radical path.
Collapse
Affiliation(s)
- Zengzhiqiang Li
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Shunyan Ning
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, PR China.
| | - Fengtao Hu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Hao Zhu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Lingdong Zeng
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Lifeng Chen
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, PR China
| | - Xinpeng Wang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Toyohisa Fujita
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, PR China; School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| |
Collapse
|
25
|
An Q, Liu C, Deng S, Tang M, Zhou C, Huang Z, Yang M, Zhao B. Application of biochar activated persulfate in the treatment of typical azo pigment wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116323. [PMID: 36166869 DOI: 10.1016/j.jenvman.2022.116323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
With the increase of the azo pigment wastewater, it is necessary to seek an efficient and sustainable treatment method to address issues of damaging water ecosystems and human health. In this work, organic representing azo dye Acid Orange 7 (AO7), heavy metal representing hexavalent chromium (Cr(VI)), and inorganic representing ammonia nitrogen (NH4+-N) were selected to roughly simulate the azo pigment wastewater. The simultaneous decontamination of multi-target pollutants by 700 °C pyrolyzed peanut shell biochar (BC) with persulfate (PDS) was evaluated. The results showed that AO7, Cr(VI) and NH4+-N could finally reach 100%, 85% and 30% removal ratios separately in the BC/PDS/mixed pollutants system under certain basic conditions. Functional groups (hydroxyl groups (C-OH) and carboxylic ester/lactone groups (O-C=O)) were found by XPS as competing sites for adsorption and activation and were gradually consumed as the reaction proceeded. Combining a series of experiments results and EPR analysis, it was found that AO7 removal worked best and it relied on both the radical pathway (including SO4•-, •OH, O2-•, but not 1O2) and adsorption. Cr(VI) was mainly adsorbed and reduced by BC surface to form Cr(OH)3 and Cr2O3, and the remaining part could be reduced by O2-•, followed by •OH. NH4+-N was removed primarily by the radical same as AO7. Meanwhile, the three target pollutants have a co-competitive mechanism. Specifically, they competed for radicals and adsorption sites simultaneously, while the presence of AO7 and NH4+-N would consume the generated oxidizing radicals and further promote the removal of Cr(VI). The fixed-bed reactor simulated the continuous treatment of wastewater. Various anions (chloride (Cl-), nitrate (NO3-), carbonate (CO32-), and hydrogen phosphate (HPO42-)) interfered differently with the pollutant removal. These findings demonstrate a new dimension of BC potential for decontamination of azo pigment wastewater.
Collapse
Affiliation(s)
- Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, PR China.
| | - Chenlu Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Meng Tang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Chunyu Zhou
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Zhiqiang Huang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Maolin Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
26
|
Deng S, Tu Y, Fu L, Liu J, Jia L. A label-free biosensor for selective detection of Gram-negative bacteria based on the oxidase-like activity of cupric oxide nanoparticles. Mikrochim Acta 2022; 189:471. [DOI: 10.1007/s00604-022-05571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022]
|
27
|
Meng S, Nan Z. Selective Degradation in Fenton-like Reaction Catalyzed by Na and Fe Co-doped g-C3N4 Catalyst. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Preparation of Fe/C-Mt composite catalyst and ofloxacin removal by peroxymonosulfate activation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Wang H, Xue Y, Yang S, Li Y, Li Q. Toward rapid reduction of carbon tetrachloride in water by zero-valent aluminum/persulfate system. CHEMOSPHERE 2022; 303:135132. [PMID: 35642857 DOI: 10.1016/j.chemosphere.2022.135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The oxidation performance of the zero-valent aluminum (ZVAl)/persulfate (PS) combined system had been studied by researchers in the past, which relied on the activation of PS by ZVAl to generate potent oxidizing radicals (•OH and SO4•-) to degrade pollutants. However, ZVAl is a strong reductant and its reduction effect cannot be ignored. The reductive performance of the ZVAl/PS combined system is still unknown. Therefore, carbon tetrachloride (CT), an antioxidant organic pollutant, was selected as the target pollutant to test the reductive performance of the ZVAl/PS system in this study. We found a significant synergistic effect between ZVAl and PS, and the ZVAl/PS combined system could rapidly degrade CT in a wide pH range of 3-11 after an induction period. By SEM-EDS, TEM, XPS, and XRD analysis, it was found that PS could promote the corrosion of the oxide film on the ZVAl surface. The quenching experiment proved that PS could accept the electrons released from ZVAl to produce superoxide radical anion (O2•-), which led to the degradation of CT rather than the oxidative process by •OH and SO4•-. The hydrogen evolution experiment indicated that electronic reduction might play a secondary role in CT degradation. In conclusion, our study further explored the reductive performance of the ZVAl/PS combined system and expanded the pathway of CT degradation without any organic solvent addition, which provides a new strategy for the efficient degradation of refractory halogenated organic pollutants.
Collapse
Affiliation(s)
- Hanchen Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 66100, China
| | - Yichao Xue
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 66100, China
| | - Shiying Yang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 66100, China.
| | - Yang Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 66100, China
| | - Qianfeng Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 66100, China
| |
Collapse
|
30
|
Hong P, Zhang K, He J, Li Y, Wu Z, Xie C, Liu J, Kong L. Selenization governs the intrinsic activity of copper-cobalt complexes for enhanced non-radical Fenton-like oxidation toward organic contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128958. [PMID: 35472553 DOI: 10.1016/j.jhazmat.2022.128958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Non-radical oxidation pathways in the Fenton-like process have a superior catalytic activity for the selective degradation of organic contaminants under complicated water matrices. Whereas the synthesis of high-performance catalysts and research on reaction mechanisms are unsatisfactory. Herein, it was the first report on copper-cobalt selenide (CuCoSe) that was well-prepared to activate hydrogen peroxide (H2O2) for non-radical species generation. The optimized CuCoSe+H2O2 system achieved excellent removal of chlortetracycline (CTC) in 10 min at neutral pH along with pleasing reusability and stability. Moreover, it exhibited great anti-interference capacity to inorganic anions and natural organic matters even in actual applications. Multi-surveys verified that singlet oxygen (1O2) was the dominant active species in this reaction and electron transfer on the surface-bound of CuCoSe and H2O2 likewise played an important role in direct CTC oxidation. Where the synergetic metals of Cu and Co accounted for the active sites, and the introduced Se atoms accelerated the circulation efficiency of Co3+/Co2+, Cu2+/Cu+ and Cu2+/Co2+. Simultaneously, the produced Se/O vacancies further facilitated electron mediation to enhance non-radical behaviors. With the aid of intermediate identification and theoretical calculation, the degradation pathways of CTC were proposed. And the predicted ecotoxicity indicated a decrease in underlying environmental risk.
Collapse
Affiliation(s)
- Peidong Hong
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Kaisheng Zhang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Junyong He
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Yulian Li
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Zijian Wu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Chao Xie
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Jinhuai Liu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Lingtao Kong
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China.
| |
Collapse
|
31
|
Zhang J, Ma Y, Sun Y, Zhu Y, Wang L, Lin F, Ma Y, Ji W, Li Y, Wang L. Enhancing deep mineralization of refractory benzotriazole via carbon nanotubes-intercalated cobalt copper bimetallic oxide nanosheets activated peroxymonosulfate process: Mechanism, degradation pathway and toxicity. J Colloid Interface Sci 2022; 628:448-462. [DOI: 10.1016/j.jcis.2022.07.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
32
|
Heterostructured Nanoscale Photocatalysts via Colloidal Chemistry for Pollutant Degradation. CRYSTALS 2022. [DOI: 10.3390/cryst12060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
With the further acceleration in the industrialization process, organic pollutants and gas pollution in the environment have posed severe threats to human health. It has been a global challenge regarding achieving an efficient solution to pollutant degradation. In such a context, photocatalysts have attracted researchers’ attention for their simplicity, efficiency, cleanliness and low cost. However, the single photocatalyst is facing a research bottleneck owing to its narrow light absorption spectrum and high photocarrier recombination rate. Given that heterojunctions can achieve efficient separation of photogenerated carriers in space, constructing heterostructured photocatalysts has become the most perspective method to improve the performance of photocatalysts. Furthermore, nanoparticles prepared through colloidal chemistry have the characteristics of high dispersion, stability and adsorption, further enhancing the degradation efficiency of heterostructured photocatalysts. This article reviews the primary methods for preparing heterostructured photocatalysts through colloidal chemistry, classifies the heterojunction types by transport routes of photogenerated carriers and summarizes the recent progress of heterostructured photocatalysts in pollutant degradation. To implement environmental remediation, it is crucial to explore economical and efficient photocatalysts for practical applications. It is hoped that this review will stimulate further exploration of colloidal heterostructured photocatalysts for pollutant degradation.
Collapse
|
33
|
Wu X, Liu T, Ni W, Yang H, Huang H, He S, Li C, Ning H, Wu W, Zhao Q, Wu M. Engineering controllable oxygen vacancy defects in iron hydroxide oxide immobilized on reduced graphene oxide for boosting visible light-driven photo-Fenton-like oxidation. J Colloid Interface Sci 2022; 623:9-20. [PMID: 35561576 DOI: 10.1016/j.jcis.2022.04.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
Abstract
Visible light-driven photo-Fenton-like technology is a promising advanced oxidation process for water remediation, while the construction of effective synergetic system remains a great challenge. Herein, iron hydroxide oxide (α-FeOOH) with controllable oxygen vacancy defects were engineered on reduced graphene oxide (rGO) nanosheets (named as OVs-FeOOH/rGO) through an in-situ redox method for boosting visible light-driven photo-Fenton-like oxidation. By adjusting the pH environment to modulate the redox reaction kinetics between graphene oxide (GO) and ferrous salt precursors, the oxygen vacancy concentration in α-FeOOH could be precisely controlled. With optimized oxygen vacancy defects obtained at pH 5, the OVs-FeOOH/rGO displayed superior photo-Fenton-like performance for Rhodamine B degradation (99% within 40 mins, rate constant of 0.2278 mg-1 L min-1) with low H2O2 dosage (5 mM), standing out among the reported photo-Fenton-like catalysts. The catalyst also showed excellent reusability, general applicability, and tolerance ability of realistic environmental conditions, which demonstrates great potential for practical applications. The results reveal that moderate oxygen vacancy defects can not only strengthen absorption of visible light and organic pollutants, but also promote the charge transfer to simultaneously accelerate the photogenerated electron-hole separation and Fe(III)/Fe(II) Fenton cycle, leading to the remarkable photo-Fenton-like oxidation performance. This work sheds light on the controllable synthesis and mechanism of oxygen vacancy defects to develop efficient photo-Fenton-like catalysts for wastewater treatment.
Collapse
Affiliation(s)
- Xiaocui Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Tengfei Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Wanxin Ni
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Shuwei He
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Cuiyu Li
- Advanced Computing East China Sub-Center, Suma Technology Co., Ltd., Kunshan 215330, China
| | - Hui Ning
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Qingshan Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|