1
|
Liu S, Wu Z, Min X, Liu H, Nian N, Zhang P, Li X. Synergism Variation between intracellular Glutathione, phycocyanin and SOD in microalgae by carbon quantum dot fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123833. [PMID: 38237498 DOI: 10.1016/j.saa.2023.123833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 02/15/2024]
Abstract
Based on the use of CQDs as fluorescent probe and covalent coupling method to detect biological molecules with amino groups, to deeply analysis and detect the metabolism of Microcystis aeruginosa. The metabolic changes of carboxyl biomolecules in Microcystis aeruginosa were analyzed by covalent coupling method, including GSH, phycocyanin and SOD enzyme. The changes of GSH content and its correlation between phycocyanin, SOD were analyzed. The content of phycocyanin and SOD reached the maximum on the 65th day, and GSH was more sensitive to the growth and metabolism of microalgae. GSH plays an important role in reducing the external oxidative damage of microalgae cells. The synthesis of glutathione (GSH), GSH/GSSG mutual transformation, the production of phytochelating peptide (PC), the ASA-GSH cycle, and other physiological processes are interconnected. These interactions are crucial for preserving the antioxidant properties of microalgae and regulating redox-sensitive signal transduction.
Collapse
Affiliation(s)
- Shuyu Liu
- School of Environment and Chemical Engineering, Shanghai University, Shanghai 201800, PR China; Shanghai Zhixi Technology Co., Ltd, Shanghai 201815, PR China; Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, ShaanXi Xi'an 710054, PR China.
| | - Zitong Wu
- School of Environment and Chemical Engineering, Shanghai University, Shanghai 201800, PR China
| | - Xin Min
- School of Environment and Chemical Engineering, Shanghai University, Shanghai 201800, PR China
| | - Hong Liu
- School of Environment and Chemical Engineering, Shanghai University, Shanghai 201800, PR China.
| | - Nijuan Nian
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, ShaanXi Xi'an 710054, PR China.
| | - Pei Zhang
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, ShaanXi Xi'an 710054, PR China
| | - Xiaoyu Li
- School of Environment and Chemical Engineering, Shanghai University, Shanghai 201800, PR China
| |
Collapse
|
2
|
Mao Y, Fan H, Yao H, Wang C. Recent progress and prospect of graphitic carbon nitride-based photocatalytic materials for inactivation of Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170357. [PMID: 38286286 DOI: 10.1016/j.scitotenv.2024.170357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
The proliferation of harmful algal blooms is a global concern due to the risk they pose to the environment and human health. Algal toxins which are hazardous compounds produced by dangerous algae, can potentially kill humans. Researchers have been drawn to photocatalysis because of its clean and energy-saving properties. Graphite carbon nitride (g-C3N4) photocatalysts have been extensively studied for their ability to eliminate algae. These photocatalysts have attracted notice because of their cost-effectiveness, appropriate electronic structure, and exceptional chemical stability. This paper reviews the progress of photocatalytic inactivation of harmful algae by g-C3N4-based materials in recent years. A brief overview is given of a number of the modification techniques on g-C3N4-based photocatalytic materials, as well as the process of inactivating algal cells and destroying their toxins. Additionally, it provides a theoretical framework for future research on the eradication of algae using g-C3N4-based photocatalytic materials.
Collapse
Affiliation(s)
- Yayu Mao
- The College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Hongying Fan
- Testing Centre, Yangzhou University, Yangzhou 225002, PR China.
| | - Hang Yao
- The College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Chengyin Wang
- The College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
3
|
Ding N, Fei Q, Xiao D, Zhang H, Yin H, Yuan C, Lv H, Gao P, Zhang Y, Wang R. Highly efficient and recyclable Z-scheme heterojunction of Ag 3PO 4/g-C 3N 4 floating foam for photocatalytic inactivation of harmful algae under visible light. CHEMOSPHERE 2023; 317:137773. [PMID: 36621690 DOI: 10.1016/j.chemosphere.2023.137773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Harmful algal blooms (HABs) have frequently occurred worldwide, causing marine ecosystems and human health risks. As an advanced and green oxidation technology, photocatalysis has potential to remove red tide algae using solar energy. Herein, in this work, Z-scheme photocatalysts of Ag3PO4/g-C3N4 (APCN) floating foam with different mass ratios were fabricated for the algae inactivation. Under visible light irradiation, the 0.10APCN (0.10 mM AgNO3) composite photocatalyst could cause 91.8% of the loss in Karenia mikimotoi (K. mikimotoi) cell viability following 24 h and the removal rate of algae could reach to 86% after five successive cycles. The underlying mechanism of photocatalytic inactivation of harmful algae is proposed in this system. The photosynthetic efficiency of harmful algae is inhibited with the decrease of photosynthetic pigments, which are inactivated by the high levels of reactive oxygen species (ROS) (superoxide radical •O2- and hydroxyl radical •OH) produced in Z-scheme photocatalytic system of the Ag3PO4/g-C3N4 heterojunction under visible light. Meanwhile, the activities of antioxidant enzymes (i.e. POD, APX and SOD) are up-regulating with the overproduction of ROS going into the algae, causing the cytotoxicity and apoptosis of algae. This work not only reveals the mechanisms of photocatalytic inactivation of harmful algae, but also guides the design the construction of high active composite photocatalysts, and thus provides theoretical and practical significance for highly efficient and recyclable prospect of controlling of harmful algae.
Collapse
Affiliation(s)
- Ning Ding
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Qian Fei
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Dongdong Xiao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Zhang
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Hongfei Yin
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Chunyu Yuan
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Huijun Lv
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Peike Gao
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Yongzheng Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Renjun Wang
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China
| |
Collapse
|
4
|
Zhou X, Yang Z, Chen Y, Feng H, Yu J, Tang J, Ren X, Tang J, Wang J, Tang L. Single-atom Ru loaded on layered double hydroxide catalyzes peroxymonosulfate for effective E. coli inactivation via a non-radical pathway: Efficiency and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129720. [PMID: 35952429 DOI: 10.1016/j.jhazmat.2022.129720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The Fenton-like processes are considered to be one of the most promising strategies for inactivating bacteria due to their capacity to produce reactive oxygen species (ROS). Herein, a catalytic system for efficient inactivation of Escherichia coli (E. coli) was developed by anchoring single-atom Ru on layered double hydroxides (LDH). The Ru/NiFe-LDH catalyst showed excellent performance in activating peroxymonosulfate (PMS) to inactivate E. coli. Under the combined action of the ultra-low concentrations of Ru/NiFe-LDH (40 mg/L) and PMS (5 mg/L), 7 log E. coli can be totally inactivated within 90 s. This was attributed to the combined effect of single-atom Ru adsorption to E. coli and the ROS produced in situ. Mechanism studies indicated that the 1O2 with electrophilic properties was the key active species responsible for the rapid inactivation of E. coli. The E. coli inactivation process suggested that the ROS produced first attacked the outer membrane of the cell, then the antioxidant enzymes in the cell were induced, the macromolecule substances were released and mineralized, eventually leading to irreversible cell death. This work firstly loads monoatomic Ru on LDH for bacterial inactivation, providing a feasible method for rapid inactivation of E. coli.
Collapse
Affiliation(s)
- Xin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jialin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoyi Ren
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
5
|
Fan G, Li X, Lin J, Wu X, Zhang L, Wu J, Wang Y. Efficient photocatalytic inactivation of Microcystis aeruginosa via self-floating Ag3VO4/BiVO4 hydrogel under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|