1
|
Xu H, Yang L, Jin L, Liu Y, Wang K, Chen J, He G, Chen H. Enhancing interfacial electron transfer through PANI electron bridge for tailoring dynamic reconstruction and achieving high-performance water oxidation. J Colloid Interface Sci 2025; 677:158-166. [PMID: 39089124 DOI: 10.1016/j.jcis.2024.07.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Tailoring the dynamic reconstruction of transition metal compounds into highly active oxyhydroxides through surface electron state modification is crucial for advancing water oxidation, yet remains a formidable challenge. In this study, a unique polyaniline (PANI) electron bridge was integrated into the metal-organic frameworks (MOFs)/layer double hydroxides (LDHs) heterojunction to expedite electron transfer from MOFs to LDHs, facilitating electron accumulation at the metal sites within MOF and electron-deficient LDHs. This configuration promotes the surface dynamic reconstruction of LDHs into highly active oxyhydroxides while safeguarding the MOF from corrosion in harsh environments over extended periods. The optimized electronic structure modification of both MOFs and LDHs enhances reaction kinetics. The superior MIL-88B(Fe)@PANI@NiCo LDH catalyst achieved 10 mA∙cm-2 at an overpotential of 202 mV and demonstrated stable operation for 120 h at this current density. This research introduces an innovative approach for guiding electron transfer and dynamic catalyst reconstruction by constructing a PANI electron bridge, potentially paving the way for more efficient catalytic systems.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Lida Yang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Yang Liu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Jie Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
2
|
Shen J, Wang T, Xie T, Wang R, Zhu D, Li Y, Xue S, Liu Y, Zeng H, Zhao W, Wang S. The excellent performance of oxygen evolution reaction on stainless steel electrodes by halogen oxyacid salts etching. J Colloid Interface Sci 2024; 675:1011-1020. [PMID: 39003814 DOI: 10.1016/j.jcis.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Development of low-cost, efficient, and stable electrocatalysts for oxygen evolution reaction (OER) is the key issue for a large-scale hydrogen production. Recently, in-situ corrosion of stainless steel seems to be a feasible technique to obtain an efficient OER electrode, while a wide variety of corrosive agents often lead to significant difference in catalytic performance. Herein, we synthesized Ni-Fe based nanomaterials with OER activity through a facile one-step hydrothermal etching method of stainless steel mesh, and investigated the influence of three halogen oxyacid salts (KClO3, KBrO3, KIO3) on water oxidation performance. It was found that the reduction product of oxyacid salts has the pitting effect on the stainless steel, which plays an important role in regulating the morphology and composition of the nanomaterials. The KBrO3-derived electrode shows optimal OER performance, giving the small overpotential of 228 and 270 mV at 10 and 100 mA cm-2 respectively, a low Tafel slope of 36.2 mV dec-1, as well as durable stability in the long-time electrolysis. This work builds an internal relationship between the corrosive agents and the OER performance of the as-prepared electrodes, providing promising strategies and research foundations for further improving the OER performance and optimizing the structure of stainless steel electrodes.
Collapse
Affiliation(s)
- Junyu Shen
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Tao Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Tailai Xie
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Ruihan Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Dingwei Zhu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Yuxi Li
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Siyi Xue
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Yazi Liu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China.
| | - Hehua Zeng
- School of Chemistry and Chemical Engineering, Changji University, Changji, PR China.
| | - Wei Zhao
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Yu Y, Qiao Z, Ding C. Built-In Electric Field Boost Photocatalytic Degradation of Pollutants in Wastewater. CHEM REC 2024; 24:e202400106. [PMID: 39321420 DOI: 10.1002/tcr.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Indexed: 09/27/2024]
Abstract
The photocatalysis technique shows significant potential for wastewater degradation; however, the rapid recombination of photogenerated holes and electrons severely limits its photocatalytic efficiency. This situation necessitates the development of effective strategies to tackle these challenges. One well-documented approach is built-in electric field engineering in heterojunctions or composites, which has been shown to enhance electron transfer and thereby reduce the recombination of electrons and holes. This strategy has proven highly effective in significantly improving photocatalytic activity for the degradation of pollutants in wastewater. In this context, we summarize recent advancements in built-in electric field engineering in photocatalysts, highlighting the fundamentals and modifications of this approach, as well as its positive impact on photocatalytic performance in the degradation of wastewater pollutants.
Collapse
Affiliation(s)
- Yang Yu
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Zhiyong Qiao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
- Jiangsu Ruilante New Materials Co., Ltd., Yangzhou, 211400, China
- Institute of Mechanics and Advanced Materials, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Changming Ding
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
- Jiangsu Ruilante New Materials Co., Ltd., Yangzhou, 211400, China
| |
Collapse
|
4
|
Liu Y, Wang K, Jin L, Li Y, Chen G, Xu H, Chen J, He G. Organic-inorganic hybrid interfaces with π-d electron coupling for preventing metal and sulfur leaching toward enhanced oxygen evolution reaction. J Colloid Interface Sci 2024; 670:288-296. [PMID: 38763025 DOI: 10.1016/j.jcis.2024.05.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Transition metal sulfides (TMSs) catalysts with high catalytic oxygen evolution reaction (OER) activity have been extensively studied, especially Fe and Co-based sulfides. Fe and Co active sites with a strong synergistic effect, which can adjust the electron density distribution and effectively improve the electrocatalytic OER activity. However, TMSs have poor stability in alkaline environment caused by metal ions and sulfur elements are facilitated to dissolve. In this work, TMSs was modified by polyaniline (PANI) to inhibit the precipitation of iron, cobalt, and sulfur elements and enhance its stability under alkaline conditions. Moreover, π-d structure can also be formed by the coating of PANI, which can further adjust its own electronic structure on the basis of stabilizing the TMSs structure, so as to improve the electrochemical performance, rendering them to stably operate at harsh environment for more than 90 h. These findings offer new guidance for improving the electrocatalytic stability of TMSs.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Yahan Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Guanyu Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Jie Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
5
|
Li L, Han M, Zhang P, Yang D, Zhang M. Recent Advances in Engineering Fe-N-C Catalysts for Oxygen Electrocatalysis in Zn-Air Batteries. CHEMSUSCHEM 2024:e202401186. [PMID: 39215381 DOI: 10.1002/cssc.202401186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Fe-N-C single-atom catalysts (SACs) have emerged as one of the most promising candidates for oxygen electrocatalysis due to their maximized atom utilization efficiency, high intrinsic activity, and strong metal-support interaction. Significant progress has been made in engineering Fe-N-C SACs for oxygen electrocatalysis in Zn-air batteries (ZABs). This review provides a comprehensive overview of the recent advancements in Fe-N-C SACs, with a special focus on effective engineering strategies, their performance in oxygen electrocatalysis, and their potential applications in ZABs. The review also discusses the key challenges and future directions in the development of Fe-N-C SACs for efficient and durable oxygen electrocatalysis in ZABs. This review aims to offer valuable insights into the current state of research in this field and to guide future efforts in the development of advanced oxygen electrocatalysts for ZABs.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Jiangsu Province, Changzhou, 213164, China
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
| | | | - Donglei Yang
- PetroChina Tarim Oilfield Company, Korla, 841000, China
| | - Meng Zhang
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
| |
Collapse
|
6
|
Xu H, Liu Y, Wang K, Jin L, Chen J, He G, Chen H. Multicomponent Interface and Electronic Structure Engineering in Ir-Doped CoMO 4-Co(OH) 2 (M = W and Mo) Enable Promoted Oxygen Evolution Reaction. Inorg Chem 2024; 63:16037-16046. [PMID: 39121355 DOI: 10.1021/acs.inorgchem.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The core principles of multicomponent interface and electronic structure engineering are essential in designing high-performance catalysts for the oxygen evolution reaction (OER). However, combining these aspects within a catalyst is a significant challenge. In this investigation, a novel approach involving the development of hybrid Ir-doped CoMO4-Co(OH)2 (M = W and Mo) hollow nanoboxes was introduced, enabling remarkably efficient water oxidation electrocatalysis. Constructed from ultrathin nanosheet-assembled hollow nanoboxes, these structures boast a wealth of active centers for intermediate species, which in turn enhance both charge transfer and mass transport capabilities. Moreover, the compelling electronic and synergistic effects arising from the interaction between CoMO4 and Co(OH)2 significantly bolster OER electrocatalysis by facilitating efficient electron transfer. The introduction of Ir atoms serves to strategically adjust the electronic structure, fine-tune its electronic state, and operate as active centers to enhance OER electrocatalysis, thus diminishing the overpotential. This configuration results in Ir-CoWO4-Co(OH)2 and Ir-CoMoO4-Co(OH)2 exhibiting impressively low overpotentials of 252 and 261 mV, respectively, to 10 mA cm-2. Utilized in conjunction with the Pt/C catalyst in a two-electrode system for overall water splitting, a mere 1.53 V cell potential is needed to achieve the desired 10 mA cm-2 current density.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Yang Liu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Jie Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
7
|
Chang H, Lang K, Fan J, Ji L, Jiang B, Gao M, Wang C, Chen X. Directional surface reconstruction of C and S Co-Doped Co 2VO 4/CoP for the cooperative enhancement of hydrogen production via seawater electrolysis. J Colloid Interface Sci 2024; 674:894-901. [PMID: 38959735 DOI: 10.1016/j.jcis.2024.06.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The endeavor to architect bifunctional electrocatalysts that exhibit both exceptional activity and durability heralds an era of boundless potential for the comprehensive electrolysis of seawater, an aspiration that, nevertheless, poses a substantial challenge. Within this work, we describe the precise engineering of a three-dimensional interconnected nanoparticle system named SCdoped Co2VO4/CoP (SCCo2VO4), achieved through a meticulously arranged hydrothermal treatment sequence followed by gas-phase carbonization and phosphorization. The resulting SCCo2VO4 electrode exhibits outstanding bifunctional electrocatalytic stability, attributed to the strategic anionic doping and abundant heterogeneous interfaces. Doping not only adjusts the electronic structure, enhancing electron transfer efficiency but also optimizes the surface-active sites. This electrode prodigiously necessitated an extraordinarily minimal overpotential of merely 92 and 350 mV to attain current densities of 10 and 50 mA cm-2 for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, in 1 M KOH solution. Noteworthily, when integrated into an electrolyzer for the exhaustive splitting of seawater, the SCP-Co2VO4 manifested an exceptionally low cell voltage of 2.08 V@50 mA cm-2 and showcased a durability that eclipses that of most hitherto documented nickel-based bifunctional materials. Further elucidation through Density Functional Theory (DFT) analyses underscored that anion doping and the inherent heterostructure adeptly optimize the Gibbs free energy of intermediates comprising hydrogen, chlorine, and oxygen (manifested as OH, O, OOH) within the HER and OER paradigms, thus propelling the electrochemical kinetics of seawater splitting to unprecedented velocities. These revelations unfurl a pioneering design philosophy for the creation of cost-effective yet superior catalysts aimed at the holistic division of water molecules, charting a course towards the realization of efficient and sustainable hydrogen production methodologies.
Collapse
Affiliation(s)
- Haiyang Chang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China; Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republicof China, Heilongjiang University, 150080, China
| | - Kun Lang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republicof China, Heilongjiang University, 150080, China
| | - Jiahui Fan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China; Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republicof China, Heilongjiang University, 150080, China
| | - Lei Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republicof China, Heilongjiang University, 150080, China.
| | - Ming Gao
- Hunan University, College of Mechanical and Vehicle Engineering, Changsha 410082, PR China.
| | - Cheng Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Xudong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
8
|
Zhao H, Wang J. Supported nano-sized precious metal catalysts for oxidation of catalytic volatile organic compounds. Phys Chem Chem Phys 2024; 26:15804-15817. [PMID: 38775810 DOI: 10.1039/d3cp05812c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Volatile organic compounds (VOCs) are common contaminants found as indoor as well as outdoor pollutants, which can induce acute or chronic health hazards to the human physiological system. The catalytic oxidation method is widely considered as one of the effective methods for removing VOCs, and the development of highly effective catalysts is highly urgent for booming this interesting field. This review focuses on the recent progress of VOC oxidation catalyzed by supported nano-sized precious metal catalysts, and discusses the effects of metal composition, supports, size, and morphology on the catalytic activity. In addition, the roles played by both nano-sized precious metals and supports in enhancing the performance of catalytic VOCs are also systematically discussed, which will guide the further development of more advanced VOC catalysts.
Collapse
Affiliation(s)
- Hui Zhao
- Capital Construction Office, Changzhou University, Changzhou 213164, China
| | - Jipeng Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
9
|
Li N, Zhu B, Huang L, Huo L, Dong Q, Ma J. Piezoelectric Polarization and Sulfur Vacancy Enhanced Photocatalytic Hydrogen Evolution Performance of Bi 2S 3/ZnSn(OH) 6 Piezo-photocatalyst. Inorg Chem 2024; 63:10011-10021. [PMID: 38752554 DOI: 10.1021/acs.inorgchem.4c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
The combination of piezoelectric catalysis and photocatalysis could effectively enhance the carrier separation efficiency and further improve the hydrogen production activity. However, piezoelectric polarization always suffers from a low polarization strength, which severely restricts its actual applications. In this study, we successfully synthesized a novel sulfur vacancy-rich Bi2S3/ZnSn (OH)6 (BS-12/ZSH) piezo-photocatalyst for hydrogen evolution through water splitting. Notably, the piezo-photocatalytic hydrogen generation rate of the 8% BS-12/ZSH catalyst (336.21 μmol/g/h) was superior to that of pristine ZSH (29.71 μmol/g/h) and BS-12 (21.66 μmol/g/h). In addition, the hydrogen generation for 8% BS-12/ZSH (336.21 μmol/g/h) under ultrasonic coupling illumination was significantly higher than that under single illumination (52.09 μmol/g/h) and ultrasound (121.90 μmol/g/h), owing to the cooperative interaction of the sulfur vacancy and piezoelectric field. Various characterization analyses confirmed that (1) the introduction of sulfur vacancies in BS-12 provided more active sites, (2) BS-12 with sulfur vacancies acted as a co-catalyst to accelerate the hydrogen production rate, and (3) the piezoelectric field eliminated the electrostatic shielding and offered an additional driving force, which effectively promoted the separation of electron-hole pairs. This research clearly reveals the synergistic effect between piezocatalysis and photocatalysis as well as offers a promising sight for the rational design of high-efficiency piezo-photocatalysts.
Collapse
Affiliation(s)
- Nan Li
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Bin Zhu
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Liangqi Huang
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Lanlan Huo
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Qian Dong
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Jiangquan Ma
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
10
|
Na S, Chai DF, Li J, Chen S, Yang X, Fu S, Sui G, Guo D. Tuning the interface of M IM II(OH)F@M IM II1-xS (M Ⅰ: Ni, Co; M Ⅱ: Co, Fe) by atomic replacement strategy toward high performance overall water splitting. J Colloid Interface Sci 2024; 655:145-156. [PMID: 37931554 DOI: 10.1016/j.jcis.2023.10.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Constructing heterostructure is considered as one of the most promising strategies to reveal high efficiency hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance. Nevertheless, it is highly challenging to obtain stable interfaces and sufficient active sites via conventional method. In addition, Ni, Co and Fe elements share the valence electron structures of 3d6-84s2, the appropriate integration of these metals to induce synergistic effect in multicomponent electrocatalysts can enhance electrochemical activity. Herein, in this work, the MIMII(OH)F@MIMII1-xS (NiFe(OH)F@NiFe1-xS, NiCo(OH)F@NiCo1-xS, CoFe(OH)F@CoFe1-xS) autogenous heterostructure on nickel foam are constructed. As a result, NiFe(OH)F@NiFe1-xS-0.05, NiCo(OH)F@NiCo1-xS-0.05, and CoFe(OH)F@CoFe1-xS-0.05 demonstrate outstanding overpotential for HER (70 mV, 90 mV, 81 mV at -10 mA cm-2) and OER (370 mV, 470 mV, 370 mV at 10 mA cm-2) in alkaline electrolyte, while the overpotential for HER is 176 mV, 189 mV, 167 mV at -10 mA cm-2 and corresponding OER is 290 mV, 390 mV, 300 mV at 10 mA cm-2 in simulated seawater, respectively. In addition, the NiFe, NiCo, CoFe-based electrolyzer acquire favorable overall water splitting activity in alkaline (1.72 V, 1.87 V, 1.66 V) and simulated seawater (1.73 V, 1.75 V, 1.69 V) at 10 mA cm-2. Overall, the above results authenticate the feasibility of developing autogenous heterostructure electrocatalysts for providing hydrogen and oxygen in alkaline and simulated seawater.
Collapse
Affiliation(s)
- Shengnan Na
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Shijie Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
11
|
Li L, Xu J, Zhu Q, Meng X, Xu H, Han M. Non-noble metal single-atoms for oxygen electrocatalysis in rechargeable zinc-air batteries: recent developments and future perspectives. Dalton Trans 2024; 53:1915-1934. [PMID: 38192245 DOI: 10.1039/d3dt03249c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Ever-growing demands for zinc-air batteries (ZABs) call for the development of advanced electrocatalysts. Single-atom catalysts (SACs), particularly those for isolating non-noble metals (NBMs), are attracting great interest due to their merits of low cost, high atom utilization efficiency, structural tunability, and extraordinary activity. Rational design of advanced NBM SACs relies heavily on an in-depth understanding of reaction mechanisms. To gain a better understanding of the reaction mechanisms of oxygen electrocatalysis in ZABs and guide the design and optimization of more efficient NBM SACs, we herein organize a comprehensive review by summarizing the fundamental concepts in the field of ZABs and the recent advances in the reported NBM SACs. Moreover, the selection of NBM elements and supports of SACs and some effective strategies for enhancing the electrochemical performance of ZABs are illustrated in detail. Finally, the challenges and future direction in this field of ZABs are also discussed.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Jixing Xu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Xiangjun Meng
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Hongliang Xu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| |
Collapse
|
12
|
Yuan J, Li Y, Xu H, Qiao Y, He G, Chen H. Engineering improved strategies for spinel cathodes in high-performing zinc-ion batteries. NANOSCALE 2024; 16:1025-1037. [PMID: 38117187 DOI: 10.1039/d3nr05225g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The development of high-performing cathode materials for aqueous zinc-ion batteries (ZIBs) is highly important for the future large-scale energy storage. Owing to the distinctive framework structure, diversity of valences, and high electrochemical activity, spinel materials have been widely investigated and used for aqueous ZIBs. However, the stubborn issues of low electrical conductivity and sluggish kinetics plague their smooth applications in aqueous ZIBs, which stimulates the development of effective strategies to address these issues. This review highlights the recent advances of spinel-based cathode materials that include the configuration of aqueous ZIBs and corresponding reaction mechanisms. Subsequently, the classifications of spinel materials and their properties are also discussed. Then, the review mainly summarizes the effective strategies for elevating their electrochemical performance, including their morphology and structure design, defect engineering, heteroatom doping, and coupling with a conductive support. In the final section, several sound prospects in this fervent field are also proposed for future research and applications.
Collapse
Affiliation(s)
- Jingjing Yuan
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yifan Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yifan Qiao
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
13
|
Wang C, Fei Z, Wang Y, Ren F, Du Y. Recent progress of Ni-based nanomaterials for the electrocatalytic oxygen evolution reaction at large current density. Dalton Trans 2024; 53:851-861. [PMID: 38054822 DOI: 10.1039/d3dt03636g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The precise design and development of high-performing oxygen evolution reaction (OER) for the production of industrial hydrogen gas through water electrolysis has been a widely studied topic. A profound understanding of the nature of electrocatalytic processes reveals that Ni-based catalysts are highly active toward OER that can stably operate at a high current density for a long period of time. Given the current gap between research and applications in industrial water electrolysis, we have completed a systematic review by constructively discussing the recent progress of Ni-based catalysts for electrocatalytic OER at a large current density, with special focus on the morphology and composition regulation of Ni-based electrocatalysts for achieving extraordinary OER performance. This review will facilitate future research toward rationally designing next-generation OER electrocatalysts that can meet industrial demands, thereby promoting new sustainable solutions for energy shortage and environment issues.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Zhenghao Fei
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Yanqing Wang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Fangfang Ren
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
14
|
Li L, Ye X, Xiao Q, Zhu Q, Hu Y, Han M. Nanostructure engineering of Pt/Pd-based oxygen reduction reaction electrocatalysts. Phys Chem Chem Phys 2023; 25:30172-30187. [PMID: 37930248 DOI: 10.1039/d3cp03522k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Increasing the atomic utilization of Pt and Pd elements is the key to the advancement and broad dissemination of fuel cells. Central to this task is the design and fabrication of highly active and stable Pt- or Pd-based electrocatalysts for the oxygen reduction reaction (ORR), which requires a comprehensive understanding of the ORR pathways and mechanism. Past endeavors have accumulated a wealth of knowledge about the Pt/Pd-based ORR electrocatalysts based on structure engineering, while a systematic review of the nanostructure engineering of Pt/Pd-based ORR electrocatalysts has been rarely reported. In this review, we provide a systematic discussion about the current status of Pt/Pd-based ORR electrocatalysts from the perspective of nanostructure engineering, and we highlight the ORR pathways, mechanisms and theories in order to understand the ORR in a more complex nanocatalyst. Particularly, the underlying structure-function relationship of Pt/Pd-based ORR electrocatalysts is specifically highlighted, which will guide the future synthesis of more efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Xintong Ye
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qi Xiao
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Ying Hu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| |
Collapse
|
15
|
Zhang B, Qian X, Xu H, Jiang L, Xia J, Chen H, He G. Se-doping-induced sulfur vacancy engineering of CuCo 2S 4 nanosheets for enhanced electrocatalytic overall water splitting. NANOSCALE 2023; 15:16199-16208. [PMID: 37779388 DOI: 10.1039/d3nr03609j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The coordination of the electronic structure and charge transfer through heteroatomic doping and sulfur vacancies is one of the most vital strategies for enhancing the electrocatalytic performance of the oxygen and hydrogen evolution reactions (OER, HER) through water splitting. Se-doped CuCo2S4 nanosheets (CuCo2S3.68Se0.32) with abundant sulfur vacancies were synthesized via a simple hydrothermal method to achieve remarkably efficient electrocatalytic water splitting. Importantly, incorporating Se in three-dimensional nanosheet structures effectively fine-tunes the electronic structure, ensuring ample accessibility of active sites for swift charge carrier transfer and improved reaction kinetics. The optimized CuCo2S3.68Se0.32 offers substantially high electrocatalytic activity with overpotentials of 65 and 230 mV at the current density of 10 mA cm-2 for HER and OER, respectively, which is comparable to commercial catalysts. Combining Se-doping and rich sulfur vacancies facilitates fast charge transport, thus significantly boosting the electrocatalytic activity. Furthermore, utilizing CuCo2S3.68Se0.32 as both the cathode and anode, a two-electrode electrolyser exhibits remarkable performance. It achieves a low voltage of 1.52 V at 10 mA cm-2 and demonstrates exceptional durability over time. This study investigates the significance of doping and vacancies in enhancing electrocatalytic activity for water splitting.
Collapse
Affiliation(s)
- Bianli Zhang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Lin Jiang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jiawei Xia
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
16
|
Li L, Xu H, Zhu Q, Meng X, Xu J, Han M. Recent advances of H-intercalated Pd-based nanocatalysts for electrocatalytic reactions. Dalton Trans 2023; 52:13452-13466. [PMID: 37721115 DOI: 10.1039/d3dt02201c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The intercalation of H into Pd-based nanocatalysts plays a crucial role in optimizing the catalytic performance by tailoring the structural and electronic properties. We herein present a comprehensive review about the recent progress of interstitial hydrogen atom modified Pd-based nanocatalysts for various energy-related electrocatalytic reactions. Before systematically manifesting the great potential of Pd-based hydrides for electrocatalytic applications, we have briefly illustrated the synthesis strategies and corresponding mechanisms for the Pd-based hydrides. This is followed by a comprehensive discussion about the fundamentals and functions of H intercalation in tailoring their physicochemical and electrochemical properties. Subsequently, we focus on the widespread application of Pd-based hydrides for electrocatalytic reactions, with the emphasis on the role of H intercalation played in determining electrocatalytic performance. Finally, the future direction and perspectives regarding the development of more efficient Pd-based hydrides are also manifested.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Hongliang Xu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Xiangjun Meng
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Jixing Xu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| |
Collapse
|
17
|
Li Y, Yuan J, Qiao Y, Xu H, Zhang Z, Zhang W, He G, Chen H. Recent progress in structural modification of polymer gel electrolytes for use in solid-state zinc-ion batteries. Dalton Trans 2023; 52:11780-11796. [PMID: 37593775 DOI: 10.1039/d3dt01764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Zinc-ion batteries are one of the promising energy storage devices, which have the advantages of environmental friendliness, high safety and low price and are expected to be used in large-scale battery application fields. However, four prominent water-induced adverse reactions, including zinc dendrite formation, zinc corrosion, passivation and the hydrogen evolution reaction in aqueous systems, seriously shorten the cycling life of zinc-ion batteries and greatly hinder their development. Based on this, polymer gel electrolytes have been developed to alleviate these issues due to their unique network structure, which can reduce water activity and suppress water-induced side reactions. Based on the challenges of polymer gel electrolytes, this review systematically summarizes the latest research progress in the use of additives in them and explores new perspectives in response to the existing problems with polymer electrolytes. In order to expand the performance of polymer gel electrolytes in zinc-ion batteries, a range of different types of additives are added via physical/chemical crosslinking, such as organic or inorganic substances, natural plants, etc. In addition, different types of additives and polymerization crosslinking from different angles essentially improve the ionic conductivity of the gel electrolyte, inhibit the growth of zinc dendrites, and reduce hydrogen evolution and oxygen-absorbed corrosion. After these modifications of polymer gel electrolytes, a more stable and superior electrochemical performance of zinc-ion batteries can be obtained, which provides some strategies for solid-state zinc-ion batteries.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Jingjing Yuan
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yifan Qiao
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Zhihao Zhang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Wenyao Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
18
|
Li L, Zhu Q, Han M, Tu X, Shen Y. MOF-derived single-atom catalysts for oxygen electrocatalysis in metal-air batteries. NANOSCALE 2023; 15:13487-13497. [PMID: 37563956 DOI: 10.1039/d3nr02548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Electrocatalysts play a critical role in oxygen electrocatalysis, enabling great improvements for the future development and application of metal-air batteries. Single-atom catalysts (SACs) derived from metal-organic frameworks (MOFs) are promising catalysts for oxygen electrocatalysis since they are endowed with the merits of a distinctive electronic structure, a low-coordination environment, quantum size effect, and strong metal-support interaction. In addition, MOFs afford a desirable molecular platform for ensuring the synthesis of well-dispersed SACs, endowing them with remarkably high catalytic activity and durability. In this review, we focus on the current status of MOF-derived SACs used as catalysts for oxygen electrocatalysis, with special attention to MOF-derived strategies for the fabrication of SACs and their application in various metal-air batteries. Finally, to facilitate the future deployment of high-performing SACs, some technical challenges and the corresponding research directions are also proposed.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Xiaobin Tu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Ying Shen
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| |
Collapse
|
19
|
Yang L, Wang K, Jin L, Xu H, Chen H. Engineering metallenes for boosting electrocatalytic biomass-oxidation-assisted hydrogen evolution reaction. Dalton Trans 2023; 52:11378-11389. [PMID: 37551456 DOI: 10.1039/d3dt01562a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Metallenes exhibit great potential for catalytic reaction, particularly for the hydrogen evolution reaction (HER) and biomass oxidation reaction, due to their favorable electronic configurations, ultrahigh specific surface areas, and highly accessible surface atoms. Therefore, metallenes can function as bifunctional electrocatalysts to boost the energy-saving biomass-oxidation-assisted HER, and have attracted great interest. Given the growing importance of green hydrogen as an alternative energy source in recent years, it is timely and imperative to summarize the recent progress and current status of metallene-based catalysts for the biomass-oxidation-assisted HER. Here, we review the recent advances in metallenes in terms of composition and structural regulations including alloying, nonmetal doping, defect engineering, surface functionalization, and heterostructure engineering strategies and their applications in driving electrocatalytic HER, with special focus on biomass-oxidation-assisted hydrogen production. The underlying structure-activity relationship and mechanisms are also comprehensively discussed. Finally, we also propose the challenges and future directions of metallene-based catalysts for the applications in biomass-oxidation-assisted HER.
Collapse
Affiliation(s)
- Lida Yang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Lie Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|