1
|
Adam NL, Kowalik G, Tyler A, Mooiweer R, Neofytou AP, McElroy S, Kunze K, Speier P, Stäb D, Neji R, Nazir MS, Razavi R, Chiribiri A, Roujol S. Fast reconstruction of SMS bSSFP myocardial perfusion images using noise map estimation network (NoiseMapNet): a head-to-head comparison with parallel imaging and iterative reconstruction. Front Cardiovasc Med 2024; 11:1350345. [PMID: 39055659 PMCID: PMC11269255 DOI: 10.3389/fcvm.2024.1350345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Background Simultaneous multi-slice (SMS) bSSFP imaging enables stress myocardial perfusion imaging with high spatial resolution and increased spatial coverage. Standard parallel imaging techniques (e.g., TGRAPPA) can be used for image reconstruction but result in high noise level. Alternatively, iterative reconstruction techniques based on temporal regularization (ITER) improve image quality but are associated with reduced temporal signal fidelity and long computation time limiting their online use. The aim is to develop an image reconstruction technique for SMS-bSSFP myocardial perfusion imaging combining parallel imaging and image-based denoising using a novel noise map estimation network (NoiseMapNet), which preserves both sharpness and temporal signal profiles and that has low computational cost. Methods The proposed reconstruction of SMS images consists of a standard temporal parallel imaging reconstruction (TGRAPPA) with motion correction (MOCO) followed by image denoising using NoiseMapNet. NoiseMapNet is a deep learning network based on a 2D Unet architecture and aims to predict a noise map from an input noisy image, which is then subtracted from the noisy image to generate the denoised image. This approach was evaluated in 17 patients who underwent stress perfusion imaging using a SMS-bSSFP sequence. Images were reconstructed with (a) TGRAPPA with MOCO (thereafter referred to as TGRAPPA), (b) iterative reconstruction with integrated motion compensation (ITER), and (c) proposed NoiseMapNet-based reconstruction. Normalized mean squared error (NMSE) with respect to TGRAPPA, myocardial sharpness, image quality, perceived SNR (pSNR), and number of diagnostic segments were evaluated. Results NMSE of NoiseMapNet was lower than using ITER for both myocardium (0.045 ± 0.021 vs. 0.172 ± 0.041, p < 0.001) and left ventricular blood pool (0.025 ± 0.014 vs. 0.069 ± 0.020, p < 0.001). There were no significant differences between all methods for myocardial sharpness (p = 0.77) and number of diagnostic segments (p = 0.36). ITER led to higher image quality than NoiseMapNet/TGRAPPA (2.7 ± 0.4 vs. 1.8 ± 0.4/1.3 ± 0.6, p < 0.001) and higher pSNR than NoiseMapNet/TGRAPPA (3.0 ± 0.0 vs. 2.0 ± 0.0/1.3 ± 0.6, p < 0.001). Importantly, NoiseMapNet yielded higher pSNR (p < 0.001) and image quality (p < 0.008) than TGRAPPA. Computation time of NoiseMapNet was only 20s for one entire dataset. Conclusion NoiseMapNet-based reconstruction enables fast SMS image reconstruction for stress myocardial perfusion imaging while preserving sharpness and temporal signal profiles.
Collapse
Affiliation(s)
- Naledi Lenah Adam
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Grzegorz Kowalik
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Andrew Tyler
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Ronald Mooiweer
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Alexander Paul Neofytou
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Sarah McElroy
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Karl Kunze
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Peter Speier
- Cardiovascular Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Daniel Stäb
- MR Research Collaborations, Siemens Healthcare Limited, Melbourne, VIC, Australia
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Royal Brompton Hospital, Guy’s and St Thomas NHS Foundation Trust, London, United Kingdom
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Cheng K, Hill JM, de Silva R. Coronary Sinus Reducer Therapy for Refractory Angina and its Role in Modern Interventional Practice: A Contemporary Review. Interv Cardiol 2024; 19:e11. [PMID: 39145119 PMCID: PMC11322950 DOI: 10.15420/icr.2023.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 08/16/2024] Open
Abstract
Coronary sinus reducer (CSR) implantation is an emerging treatment option for patients with refractory angina. This condition represents a major global cardiovascular healthcare challenge, with patients experiencing chronic anginal symptoms that significantly impair their quality of life and for whom few effective treatments exist. The clinical burden of refractory angina is only set to grow because of improved survival from coronary artery disease, increased life expectancy and the presence of residual angina after percutaneous or surgical coronary revascularisation. Therefore, new, effective, evidence-based therapies are urgently needed. In this review, we highlight the unmet clinical needs of patients with refractory angina, discuss the development of the CSR device and review the preclinical and clinical evidence base underlying CSR implantation. In addition, we discuss the current role of CSR implantation in contemporary interventional practice, highlighting knowledge gaps and discussing areas of on-going research.
Collapse
Affiliation(s)
- Kevin Cheng
- National Heart and Lung Institute, Imperial College LondonLondon, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation TrustLondon, UK
| | - Jonathan M Hill
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation TrustLondon, UK
| | - Ranil de Silva
- National Heart and Lung Institute, Imperial College LondonLondon, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation TrustLondon, UK
| |
Collapse
|
3
|
Johnson NP, Gould KL. Epicardial inflow versus myocardial distribution: average regional transmural coronary flow is not enough. EUROINTERVENTION 2024; 20:e684-e685. [PMID: 39229880 PMCID: PMC11145308 DOI: 10.4244/eij-e-24-00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Affiliation(s)
- Nils P Johnson
- Weatherhead PET Center, Division of Cardiology, Department of Medicine, McGovern Medical School at UTHealth and Memorial Hermann Hospital, Houston, TX, USA
| | - K Lance Gould
- Weatherhead PET Center, Division of Cardiology, Department of Medicine, McGovern Medical School at UTHealth and Memorial Hermann Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Scannell CM, Crawley R, Alskaf E, Breeuwer M, Plein S, Chiribiri A. High-resolution quantification of stress perfusion defects by cardiac magnetic resonance. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae001. [PMID: 38283662 PMCID: PMC10810243 DOI: 10.1093/ehjimp/qyae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Aims Quantitative stress perfusion cardiac magnetic resonance (CMR) is becoming more widely available, but it is still unclear how to integrate this information into clinical decision-making. Typically, pixel-wise perfusion maps are generated, but diagnostic and prognostic studies have summarized perfusion as just one value per patient or in 16 myocardial segments. In this study, the reporting of quantitative perfusion maps is extended from the standard 16 segments to a high-resolution bullseye. Cut-off thresholds are established for the high-resolution bullseye, and the identified perfusion defects are compared with visual assessment. Methods and results Thirty-four patients with known or suspected coronary artery disease were retrospectively analysed. Visual perfusion defects were contoured on the CMR images and pixel-wise quantitative perfusion maps were generated. Cut-off values were established on the high-resolution bullseye consisting of 1800 points and compared with the per-segment, per-coronary, and per-patient resolution thresholds. Quantitative stress perfusion was significantly lower in visually abnormal pixels, 1.11 (0.75-1.57) vs. 2.35 (1.82-2.9) mL/min/g (Mann-Whitney U test P < 0.001), with an optimal cut-off of 1.72 mL/min/g. This was lower than the segment-wise optimal threshold of 1.92 mL/min/g. The Bland-Altman analysis showed that visual assessment underestimated large perfusion defects compared with the quantification with good agreement for smaller defect burdens. A Dice overlap of 0.68 (0.57-0.78) was found. Conclusion This study introduces a high-resolution bullseye consisting of 1800 points, rather than 16, per patient for reporting quantitative stress perfusion, which may improve sensitivity. Using this representation, the threshold required to identify areas of reduced perfusion is lower than for segmental analysis.
Collapse
Affiliation(s)
- Cian M Scannell
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 5, 5612 AEEindhoven, The Netherlands
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Richard Crawley
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Ebraham Alskaf
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Marcel Breeuwer
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 5, 5612 AEEindhoven, The Netherlands
| | - Sven Plein
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
5
|
Nazir MS, Shome J, Villa ADM, Ryan M, Kassam Z, Razavi R, Kozerke S, Ismail TF, Perera D, Chiribiri A, Plein S. 2D high resolution vs. 3D whole heart myocardial perfusion cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging 2022; 23:811-819. [PMID: 34179941 PMCID: PMC9159745 DOI: 10.1093/ehjci/jeab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
AIMS Developments in myocardial perfusion cardiovascular magnetic resonance (CMR) allow improvements in spatial resolution and/or myocardial coverage. Whole heart coverage may provide the most accurate assessment of myocardial ischaemic burden, while high spatial resolution is expected to improve detection of subendocardial ischaemia. The objective of this study was to compare myocardial ischaemic burden as depicted by 2D high resolution and 3D whole heart stress myocardial perfusion in patients with coronary artery disease. METHODS AND RESULTS Thirty-eight patients [age 61 ± 8 (21% female)] underwent 2D high resolution (spatial resolution 1.2 mm2) and 3D whole heart (in-plane spatial resolution 2.3 mm2) stress CMR at 3-T in randomized order. Myocardial ischaemic burden (%) was visually quantified as perfusion defect at peak stress perfusion subtracted from subendocardial myocardial scar and expressed as a percentage of the myocardium. Median myocardial ischaemic burden was significantly higher with 2D high resolution compared with 3D whole heart [16.1 (2.0-30.6) vs. 13.4 (5.2-23.2), P = 0.004]. There was excellent agreement between myocardial ischaemic burden (intraclass correlation coefficient 0.81; P < 0.0001), with mean ratio difference between 2D high resolution vs. 3D whole heart 1.28 ± 0.67 (95% limits of agreement -0.03 to 2.59). When using a 10% threshold for a dichotomous result for presence or absence of significant ischaemia, there was moderate agreement between the methods (κ = 0.58, P < 0.0001). CONCLUSION 2D high resolution and 3D whole heart myocardial perfusion stress CMR are comparable for detection of ischaemia. 2D high resolution gives higher values for myocardial ischaemic burden compared with 3D whole heart, suggesting that 2D high resolution is more sensitive for detection of ischaemia.
Collapse
Affiliation(s)
- Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, 4th Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London SW1 7EH, UK
| | - Joy Shome
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, 4th Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London SW1 7EH, UK
| | - Adriana D M Villa
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, 4th Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London SW1 7EH, UK
| | - Matthew Ryan
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, Kings College London, London, UK
| | - Ziyan Kassam
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, 4th Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London SW1 7EH, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, 4th Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London SW1 7EH, UK
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Tevfik F Ismail
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, 4th Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London SW1 7EH, UK
| | - Divaka Perera
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, Kings College London, London, UK
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, 4th Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London SW1 7EH, UK
| | - Sven Plein
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, 4th Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London SW1 7EH, UK
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
6
|
McElroy S, Ferrazzi G, Nazir MS, Evans C, Ferreira J, Bosio F, Mughal N, Kunze KP, Neji R, Speier P, Stäb D, Ismail TF, Masci PG, Villa ADM, Razavi R, Chiribiri A, Roujol S. Simultaneous multislice steady-state free precession myocardial perfusion with full left ventricular coverage and high resolution at 1.5 T. Magn Reson Med 2022; 88:663-675. [PMID: 35344593 PMCID: PMC9310832 DOI: 10.1002/mrm.29229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
Purpose To implement and evaluate a simultaneous multi‐slice balanced SSFP (SMS‐bSSFP) perfusion sequence and compressed sensing reconstruction for cardiac MR perfusion imaging with full left ventricular (LV) coverage (nine slices/heartbeat) and high spatial resolution (1.4 × 1.4 mm2) at 1.5T. Methods A preliminary study was performed to evaluate the performance of blipped controlled aliasing in parallel imaging (CAIPI) and RF‐CAIPI with gradient‐controlled local Larmor adjustment (GC‐LOLA) in the presence of fat. A nine‐slice SMS‐bSSFP sequence using RF‐CAIPI with GC‐LOLA with high spatial resolution (1.4 × 1.4 mm2) and a conventional three‐slice sequence with conventional spatial resolution (1.9 × 1.9 mm2) were then acquired in 10 patients under rest conditions. Qualitative assessment was performed to assess image quality and perceived signal‐to‐noise ratio (SNR) on a 4‐point scale (0: poor image quality/low SNR; 3: excellent image quality/high SNR), and the number of myocardial segments with diagnostic image quality was recorded. Quantitative measurements of myocardial sharpness and upslope index were performed. Results Fat signal leakage was significantly higher for blipped CAIPI than for RF‐CAIPI with GC‐LOLA (7.9% vs. 1.2%, p = 0.010). All 10 SMS‐bSSFP perfusion datasets resulted in 16/16 diagnostic myocardial segments. There were no significant differences between the SMS and conventional acquisitions in terms of image quality (2.6 ± 0.6 vs. 2.7 ± 0.2, p = 0.8) or perceived SNR (2.8 ± 0.3 vs. 2.7 ± 0.3, p = 0.3). Inter‐reader variability was good for both image quality (ICC = 0.84) and perceived SNR (ICC = 0.70). Myocardial sharpness was improved using the SMS sequence compared to the conventional sequence (0.37 ± 0.08 vs 0.32 ± 0.05, p < 0.001). There was no significant difference between measurements of upslope index for the SMS and conventional sequences (0.11 ± 0.04 vs. 0.11 ± 0.03, p = 0.84). Conclusion SMS‐bSSFP with multiband factor 3 and compressed sensing reconstruction enables cardiac MR perfusion imaging with three‐fold increased spatial coverage and improved myocardial sharpness compared to a conventional sequence, without compromising perceived SNR, image quality, upslope index or number of diagnostic segments.
Collapse
Affiliation(s)
- Sarah McElroy
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | - Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Carl Evans
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Joana Ferreira
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Filippo Bosio
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nabila Mughal
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Karl P Kunze
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, England, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,MR Research Collaborations, Siemens Healthcare Limited, Frimley, England, UK
| | - Peter Speier
- Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany
| | - Daniel Stäb
- MR Research Collaborations, Siemens Healthcare Limited, Melbourne, Australia
| | - Tevfik F Ismail
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Pier Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Adriana D M Villa
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
7
|
McElroy S, Kunze KP, Milidonis X, Huang L, Nazir MS, Evans C, Bosio F, Mughal N, Masci PG, Neji R, Razavi R, Chiribiri A, Roujol S. Quantification of balanced SSFP myocardial perfusion imaging at 1.5 T: Impact of the reference image. Magn Reson Med 2022; 87:702-717. [PMID: 34554603 DOI: 10.1002/mrm.29019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE To investigate the use of a high flip-angle (HFA) balanced SSFP (bSSFP) reference image (in comparison to conventional proton density [PD]-weighted reference images) for conversion of bSSFP myocardial perfusion images into dynamic T1 maps for improved myocardial blood flow (MBF) quantification at 1.5 T. METHODS The HFA-bSSFP (flip angle [FA] = 50°), PD gradient-echo (PD-GRE; FA = 5°), and PD-bSSFP (FA = 8°) reference images were acquired before a dual-sequence bSSFP perfusion acquisition. Simulations were used to study accuracy and precision of T1 and MBF quantification using the three techniques. The accuracy and precision of T1 , and the precision and intersegment variability of MBF were compared among the three techniques in 8 patients under rest conditions. RESULTS In simulations, HFA-bSSFP demonstrated improved T1 /MBF precision (higher T1 /MBF SD of 30%-80%/50%-100% and 30%-90%/60%-115% for PD-GRE and PD-bSSFP, respectively). Proton density-GRE and PD-bSSFP were more sensitive to effective FA than HFA-bSSFP (maximum T1 /MBF errors of 13%/43%, 20%/43%, and 1%/3%, respectively). Sensitivity of all techniques (defined as T1 /MBF errors) to native T1 , native T2 , and effective saturation efficiency were negligible (<1%/<1%), moderate (<14%/<19%), and high (<63%/<94%), respectively. In vivo, no difference in T1 accuracy was observed among HFA-bSSFP, PD-GRE, and PD-bSSFP (-9 ± 44 ms vs -28 ± 55 ms vs -22 ± 71 ms, respectively; p > .08). The HFA-bSSFP led to improved T1 /MBF precision (T1 /MBF SD: 41 ± 19 ms/0.24 ± 0.08 mL/g/min vs PD-GRE: 48 ± 20 ms/0.29 ± 0.09 mL/g/min and PD-bSSFP: 59 ± 23 ms/0.33 ± 0.11 mL/g/min; p ≤ .02) and lower MBF intersegment variability (0.14 ± 0.09 mL/g/min vs PD-GRE: 0.21 ± 0.09 mL/g/min and PD-bSSFP: 0.20 ± 0.10 mL/g/min; p ≤ .046). CONCLUSION We have demonstrated the feasibility of using a HFA-bSSFP reference image for MBF quantification of bSSFP perfusion imaging at 1.5 T. Results from simulations demonstrate that the HFA-bSSFP reference image results in improved precision and reduced sensitivity to effective FA compared with conventional techniques using a PD reference image. Preliminary in vivo data acquired at rest also demonstrate improved precision and intersegment variability using the HFA-bSSFP technique compared with PD techniques; however, a clinical study in patients with coronary artery disease under stress conditions is required to determine the clinical significance of this finding.
Collapse
Affiliation(s)
- Sarah McElroy
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Karl P Kunze
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Xenios Milidonis
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Li Huang
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Carl Evans
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Filippo Bosio
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Nabila Mughal
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Pier Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Franks R, Plein S, Chiribiri A. Clinical Application of Dynamic Contrast Enhanced Perfusion Imaging by Cardiovascular Magnetic Resonance. Front Cardiovasc Med 2021; 8:768563. [PMID: 34778420 PMCID: PMC8585782 DOI: 10.3389/fcvm.2021.768563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Functionally significant coronary artery disease impairs myocardial blood flow and can be detected non-invasively by myocardial perfusion imaging. While multiple myocardial perfusion imaging modalities exist, the high spatial and temporal resolution of cardiovascular magnetic resonance (CMR), combined with its freedom from ionising radiation make it an attractive option. Dynamic contrast enhanced CMR perfusion imaging has become a well-validated non-invasive tool for the assessment and risk stratification of patients with coronary artery disease and is recommended by international guidelines. This article presents an overview of CMR perfusion imaging and its clinical application, with a focus on chronic coronary syndromes, highlighting its strengths and challenges, and discusses recent advances, including the emerging role of quantitative perfusion analysis.
Collapse
Affiliation(s)
- Russell Franks
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sven Plein
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Ferrazzi G, McElroy S, Neji R, Kunze KP, Nazir MS, Speier P, Stäb D, Forman C, Razavi R, Chiribiri A, Roujol S. All-systolic first-pass myocardial rest perfusion at a long saturation time using simultaneous multi-slice imaging and compressed sensing acceleration. Magn Reson Med 2021; 86:663-676. [PMID: 33749026 PMCID: PMC7611406 DOI: 10.1002/mrm.28712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To enable all-systolic first-pass rest myocardial perfusion with long saturation times. To investigate the change in perfusion contrast and dark rim artefacts through simulations and surrogate measurements. METHODS Simulations were employed to investigate optimal saturation time for myocardium-perfusion defect contrast and blood-to-myocardium signal ratios. Two saturation recovery blocks with long/short saturation times (LTS/STS) were employed to image 3 slices at end-systole and diastole. Simultaneous multi-slice balanced steady state free precession imaging and compressed sensing acceleration were combined. The sequence was compared to a 3 slice-by-slice clinical protocol in 10 patients. Quantitative assessment of myocardium-peak pre contrast and blood-to-myocardium signal ratios, as well as qualitative assessment of perceived SNR, image quality, blurring, and dark rim artefacts, were performed. RESULTS Simulations showed that with a bolus of 0.075 mmol/kg, a LTS of 240-470 ms led to a relative increase in myocardium-perfusion defect contrast of 34% ± 9%-28% ± 27% than a STS = 120 ms, while reducing blood-to-myocardium signal ratio by 18% ± 10%-32% ± 14% at peak myocardium. With a bolus of 0.05 mmol/kg, LTS was 320-570 ms with an increase in myocardium-perfusion defect contrast of 63% ± 13%-62% ± 29%. Across patients, LTS led to an average increase in myocardium-peak pre contrast of 59% (P < .001) at peak myocardium and a lower blood-to-myocardium signal ratio of 47% (P < .001) and 15% (P < .001) at peak blood/myocardium. LTS had improved motion robustness (P = .002), image quality (P < .001), and decreased dark rim artefacts (P = .008) than the clinical protocol. CONCLUSION All-systolic rest perfusion can be achieved by combining simultaneous multi-slice and compressed sensing acceleration, enabling 3-slice cardiac coverage with reduced motion and dark rim artefacts. Numerical simulations indicate that myocardium-perfusion defect contrast increases at LTS.
Collapse
Affiliation(s)
- Giulio Ferrazzi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- IRCCS San Camillo Hospital, Venice, Italy
| | - Sarah McElroy
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Karl P. Kunze
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Peter Speier
- Cardiovascular MR predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Daniel Stäb
- MR Research Collaborations, Siemens Healthcare Limited, Melbourne, Australia
| | - Christoph Forman
- Cardiovascular MR predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Paddock S, Tsampasian V, Assadi H, Mota BC, Swift AJ, Chowdhary A, Swoboda P, Levelt E, Sammut E, Dastidar A, Broncano Cabrero J, Del Val JR, Malcolm P, Sun J, Ryding A, Sawh C, Greenwood R, Hewson D, Vassiliou V, Garg P. Clinical Translation of Three-Dimensional Scar, Diffusion Tensor Imaging, Four-Dimensional Flow, and Quantitative Perfusion in Cardiac MRI: A Comprehensive Review. Front Cardiovasc Med 2021; 8:682027. [PMID: 34307496 PMCID: PMC8292630 DOI: 10.3389/fcvm.2021.682027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is a versatile tool that has established itself as the reference method for functional assessment and tissue characterisation. CMR helps to diagnose, monitor disease course and sub-phenotype disease states. Several emerging CMR methods have the potential to offer a personalised medicine approach to treatment. CMR tissue characterisation is used to assess myocardial oedema, inflammation or thrombus in various disease conditions. CMR derived scar maps have the potential to inform ablation therapy—both in atrial and ventricular arrhythmias. Quantitative CMR is pushing boundaries with motion corrections in tissue characterisation and first-pass perfusion. Advanced tissue characterisation by imaging the myocardial fibre orientation using diffusion tensor imaging (DTI), has also demonstrated novel insights in patients with cardiomyopathies. Enhanced flow assessment using four-dimensional flow (4D flow) CMR, where time is the fourth dimension, allows quantification of transvalvular flow to a high degree of accuracy for all four-valves within the same cardiac cycle. This review discusses these emerging methods and others in detail and gives the reader a foresight of how CMR will evolve into a powerful clinical tool in offering a precision medicine approach to treatment, diagnosis, and detection of disease.
Collapse
Affiliation(s)
- Sophie Paddock
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vasiliki Tsampasian
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hosamadin Assadi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Bruno Calife Mota
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Amrit Chowdhary
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Peter Swoboda
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eylem Levelt
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eva Sammut
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Amardeep Dastidar
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Jordi Broncano Cabrero
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Javier Royuela Del Val
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Paul Malcolm
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Julia Sun
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Alisdair Ryding
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Chris Sawh
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Richard Greenwood
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - David Hewson
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vassilios Vassiliou
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Milidonis X, Franks R, Schneider T, Sánchez-González J, Sammut EC, Plein S, Chiribiri A. Influence of the arterial input sampling location on the diagnostic accuracy of cardiovascular magnetic resonance stress myocardial perfusion quantification. J Cardiovasc Magn Reson 2021; 23:35. [PMID: 33775247 PMCID: PMC8006361 DOI: 10.1186/s12968-021-00733-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Quantification of myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) by cardiovascular magnetic resonance (CMR) perfusion requires sampling of the arterial input function (AIF). While variation in the AIF sampling location is known to impact quantification by CMR and positron emission tomography (PET) perfusion, there is no evidence to support the use of a specific location based on their diagnostic accuracy in the detection of coronary artery disease (CAD). This study aimed to evaluate the accuracy of stress MBF and MPR for different AIF sampling locations for the detection of abnormal myocardial perfusion with expert visual assessment as the reference. METHODS Twenty-five patients with suspected or known CAD underwent vasodilator stress-rest perfusion with a dual-sequence technique at 3T. A low-resolution slice was acquired in 3-chamber view to allow AIF sampling at five different locations: left atrium (LA), basal left ventricle (bLV), mid left ventricle (mLV), apical left ventricle (aLV) and aortic root (AoR). MBF and MPR were estimated at the segmental level using Fermi function-constrained deconvolution. Segments were scored as having normal or abnormal perfusion by visual assessment and the diagnostic accuracy of stress MBF and MPR for each location was evaluated using receiver operating characteristic curve analysis. RESULTS In both normal (300 out of 400, 75 %) and abnormal segments, rest MBF, stress MBF and MPR were significantly different across AIF sampling locations (p < 0.001). Stress MBF for the AoR (normal: 2.42 (2.15-2.84) mL/g/min; abnormal: 1.71 (1.28-1.98) mL/g/min) had the highest diagnostic accuracy (sensitivity 80 %, specificity 85 %, area under the curve 0.90; p < 0.001 versus stress MBF for all other locations including bLV: normal: 2.78 (2.39-3.14) mL/g/min; abnormal: 2.22 (1.83-2.48) mL/g/min; sensitivity 91 %, specificity 63 %, area under the curve 0.81) and performed better than MPR for the LV locations (p < 0.01). MPR for the AoR (normal: 2.43 (1.95-3.14); abnormal: 1.58 (1.34-1.90)) was not superior to MPR for the bLV (normal: 2.59 (2.04-3.20); abnormal: 1.69 (1.36-2.14); p = 0.717). CONCLUSIONS The AIF sampling location has a significant impact on MBF and MPR estimates by CMR perfusion, with AoR-based stress MBF comparing favorably to that for the current clinical reference bLV.
Collapse
Affiliation(s)
- Xenios Milidonis
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - Russell Franks
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Torben Schneider
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Philips Healthcare, Guilford, UK
| | | | - Eva C Sammut
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, UK
| | - Sven Plein
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Amedeo Chiribiri
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Wang J, Yang Y, Weller DS, Zhou R, Van Houten M, Sun C, Epstein FH, Meyer CH, Kramer CM, Salerno M. High spatial resolution spiral first-pass myocardial perfusion imaging with whole-heart coverage at 3 T. Magn Reson Med 2021; 86:648-662. [PMID: 33709415 DOI: 10.1002/mrm.28701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop and evaluate a high spatial resolution (1.25 × 1.25 mm2 ) spiral first-pass myocardial perfusion imaging technique with whole-heart coverage at 3T, to better assess transmural differences in perfusion between the endocardium and epicardium, to quantify the myocardial ischemic burden, and to improve the detection of obstructive coronary artery disease. METHODS Whole-heart high-resolution spiral perfusion pulse sequences and corresponding motion-compensated reconstruction techniques for both interleaved single-slice (SS) and simultaneous multi-slice (SMS) acquisition with or without outer-volume suppression (OVS) were developed. The proposed techniques were evaluated in 34 healthy volunteers and 8 patients (55 data sets). SS and SMS images were reconstructed using motion-compensated L1-SPIRiT and SMS-Slice-L1-SPIRiT, respectively. Images were blindly graded by 2 experienced cardiologists on a 5-point scale (5, excellent; 1, poor). RESULTS High-quality perfusion imaging was achieved for both SS and SMS acquisitions with or without OVS. The SS technique without OVS had the highest scores (4.5 [4, 5]), which were greater than scores for SS with OVS (3.5 [3.25, 3.75], P < .05), MB = 2 without OVS (3.75 [3.25, 4], P < .05), and MB = 2 with OVS (3.75 [2.75, 4], P < .05), but significantly higher than those for MB = 3 without OVS (4 [4, 4], P = .95). SMS image quality was improved using SMS-Slice-L1-SPIRiT as compared to SMS-L1-SPIRiT (P < .05 for both reviewers). CONCLUSION We demonstrated the successful implementation of whole-heart spiral perfusion imaging with high resolution at 3T. Good image quality was achieved, and the SS without OVS showed the best image quality. Evaluation in patients with expected ischemic heart disease is warranted.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Yang Yang
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Daniel S Weller
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Ruixi Zhou
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Matthew Van Houten
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Changyu Sun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Christopher M Kramer
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Michael Salerno
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Luu JM, Schmidt A, Flewitt J, Mikami Y, Ter Keurs H, Friedrich MG. Cardiovascular risk is associated with a transmural gradient of myocardial oxygenation during adenosine infusion. Eur Heart J Cardiovasc Imaging 2020; 20:1287-1295. [PMID: 30590548 DOI: 10.1093/ehjci/jey202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/17/2018] [Indexed: 11/12/2022] Open
Abstract
AIMS In patients with coronary artery disease (CAD), a transmural gradient of myocardial perfusion has been repeatedly observed, with the subendocardial layer showing more pronounced perfusion deficits. Oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) allows for monitoring transmural changes of myocardial oxygenation in vivo. We hypothesized that OS-CMR could help identify a transmural oxygenation gradient as a disease marker in patients at risk for CAD. METHODS AND RESULTS We assessed 34 patients with known CAD and 28 subjects with coronary risk factors but no evidence of significant CAD. Results were compared with 11 healthy volunteers. OS-CMR was performed at 1.5 T, applying a T2*-weighted cine steady state free precession sequence at baseline and during infusion of adenosine. A reader blinded to patient data quantified the relative change of myocardial oxygenation in OS-CMR, defined by the change of signal intensity (ΔSI%) between baseline and during adenosine infusion in the entire myocardium, the subepicardial layer, and the subendocardial layer. SI changes were homogenous throughout the myocardium in healthy subjects, whereas both, patients with risk factors only and patients with CAD, had a significantly smaller ΔSI% in the subendocardial layer than in the subendocardial layer. Both patient groups had an overall decreased ΔSI% across all layers when compared with healthy subjects (P < 0.05). CONCLUSION Even in the absence of overt CAD, cardiovascular risk factors are associated with a transmural gradient of the myocardial oxygenation response to adenosine as assessed by OS-CMR. An inducible transmural oxygenation gradient may serve as a non-invasive marker for cardiovascular risk.
Collapse
Affiliation(s)
- Judy M Luu
- Division of Cardiology, Department of Medicine, University of Manitoba, 409 Tache Avenue, Winnipeg, Manitoba, Canada
| | - Anna Schmidt
- Department of Cardiac Sciences, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, Foothills Medical Centre, Suite 0700-SSB, 1403-29th Street NW, Calgary AB, Canada
| | - Jacqueline Flewitt
- Department of Cardiac Sciences, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, Foothills Medical Centre, Suite 0700-SSB, 1403-29th Street NW, Calgary AB, Canada
| | - Yoko Mikami
- Department of Cardiac Sciences, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, Foothills Medical Centre, Suite 0700-SSB, 1403-29th Street NW, Calgary AB, Canada
| | - Henk Ter Keurs
- Department of Cardiac Sciences, Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, Foothills Medical Centre, Suite 0700-SSB, 1403-29th Street NW, Calgary AB, Canada
| | - Matthias G Friedrich
- Departments of Cardiology and Diagnostic Radiology, McGill University Health Centre, Royal Victoria Hospital, 1001 Decarie Blvd, Montreal, Canada.,Department of Radiology, Université de Montréal, Pavillon Roger-Gaudry - Local S-716, Montréal QC, Canada.,Departments of Cardiac Sciences and Radiology, University of Calgary, 3330 Hospital Dr. NW, Calgary AB, Canada
| |
Collapse
|
14
|
McElroy S, Ferrazzi G, Nazir MS, Kunze KP, Neji R, Speier P, Stäb D, Forman C, Razavi R, Chiribiri A, Roujol S. Combined simultaneous multislice bSSFP and compressed sensing for first-pass myocardial perfusion at 1.5 T with high spatial resolution and coverage. Magn Reson Med 2020; 84:3103-3116. [PMID: 32530064 PMCID: PMC7611375 DOI: 10.1002/mrm.28345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To implement and evaluate a pseudorandom undersampling scheme for combined simultaneous multislice (SMS) balanced SSFP (bSSFP) and compressed-sensing (CS) reconstruction to enable myocardial perfusion imaging with high spatial resolution and coverage at 1.5 T. METHODS A prospective pseudorandom undersampling scheme that is compatible with SMS-bSSFP phase-cycling requirements and CS was developed. The SMS-bSSFP CS with pseudorandom and linear undersampling schemes were compared in a phantom. A high-resolution (1.4 × 1.4 mm2 ) six-slice SMS-bSSFP CS perfusion sequence was compared with a conventional (1.9 × 1.9 mm2 ) three-slice sequence in 10 patients. Qualitative assessment of image quality, perceived SNR, and number of diagnostic segments and quantitative measurements of sharpness, upslope index, and contrast ratio were performed. RESULTS In phantom experiments, pseudorandom undersampling resulted in residual artifact (RMS error) reduction by a factor of 7 compared with linear undersampling. In vivo, the proposed sequence demonstrated higher perceived SNR (2.9 ± 0.3 vs. 2.2 ± 0.6, P = .04), improved sharpness (0.35 ± 0.03 vs. 0.32 ± 0.05, P = .01), and a higher number of diagnostic segments (100% vs. 94%, P = .03) compared with the conventional sequence. There were no significant differences between the sequences in terms of image quality (2.5 ± 0.4 vs. 2.8 ± 0.2, P = .08), upslope index (0.11 ± 0.02 vs. 0.10 ± 0.01, P = .3), or contrast ratio (3.28 ± 0.35 vs. 3.36 ± 0.43, P = .7). CONCLUSION A pseudorandom k-space undersampling compatible with SMS-bSSFP and CS reconstruction has been developed and enables cardiac MR perfusion imaging with increased spatial resolution and myocardial coverage, increased number of diagnostic segments and perceived SNR, and no difference in image quality, upslope index, and contrast ratio.
Collapse
Affiliation(s)
- Sarah McElroy
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Giulio Ferrazzi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Karl P. Kunze
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Peter Speier
- Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany
| | - Daniel Stäb
- MR Research Collaborations, Siemens Healthcare Pty Ltd, Melbourne, Australia
| | | | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
15
|
Gupta K, Hage FG, McConathy J, Bajaj NS. Measurement of blood flow in myocardial layers: A step toward comprehensive physiological evaluation. J Nucl Cardiol 2020; 27:1675-1678. [PMID: 30483956 DOI: 10.1007/s12350-018-01533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Kartik Gupta
- Department of Internal Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Fadi G Hage
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
- Section of Cardiology, Birmingham Veterans Affair Medical Center, Birmingham, AL, USA
| | - Jonathan McConathy
- Division of Molecular Imaging and Therapeutics, Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Navkaranbir S Bajaj
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA.
- Section of Cardiology, Birmingham Veterans Affair Medical Center, Birmingham, AL, USA.
- Division of Molecular Imaging and Therapeutics, Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
16
|
Milidonis X, Nazir MS, Schneider T, Capstick M, Drost S, Kok G, Pelevic N, Poelma C, Schaeffter T, Chiribiri A. Pixel-wise assessment of cardiovascular magnetic resonance first-pass perfusion using a cardiac phantom mimicking transmural myocardial perfusion gradients. Magn Reson Med 2020; 84:2871-2884. [PMID: 32426854 PMCID: PMC7611223 DOI: 10.1002/mrm.28296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/05/2020] [Accepted: 04/02/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE Cardiovascular magnetic resonance first-pass perfusion for the pixel-wise detection of coronary artery disease is rapidly becoming the clinical standard, yet no widely available method exists for its assessment and validation. This study introduces a novel phantom capable of generating spatially dependent flow values to enable assessment of new perfusion imaging methods at the pixel level. METHODS A synthetic multicapillary myocardial phantom mimicking transmural myocardial perfusion gradients was designed and manufactured with high-precision 3D printing. The phantom was used in a stationary flow setup providing reference myocardial perfusion rates and was scanned on a 3T system. Repeated first-pass perfusion MRI for physiological perfusion rates between 1 and 4 mL/g/min was performed using a clinical dual-sequence technique. Fermi function-constrained deconvolution was used to estimate pixel-wise perfusion rate maps. Phase contrast (PC)-MRI was used to obtain velocity measurements that were converted to perfusion rates for validation of reference values and cross-method comparison. The accuracy of pixel-wise maps was assessed against simulated reference maps. RESULTS PC-MRI indicated excellent reproducibility in perfusion rate (coefficient of variation [CoV] 2.4-3.5%) and correlation with reference values (R2 = 0.985) across the full physiological range. Similar results were found for first-pass perfusion MRI (CoV 3.7-6.2%, R2 = 0.987). Pixel-wise maps indicated a transmural perfusion difference of 28.8-33.7% for PC-MRI and 23.8-37.7% for first-pass perfusion, matching the reference values (30.2-31.4%). CONCLUSION The unique transmural perfusion pattern in the phantom allows effective pixel-wise assessment of first-pass perfusion acquisition protocols and quantification algorithms before their introduction into routine clinical use.
Collapse
Affiliation(s)
- Xenios Milidonis
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Muhummad Sohaib Nazir
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Torben Schneider
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.,Philips Healthcare, Guilford, United Kingdom
| | | | - Sita Drost
- Laboratory for Aero- and Hydrodynamics, Technische Universiteit Delft, Delft, Netherlands
| | | | | | - Christian Poelma
- Laboratory for Aero- and Hydrodynamics, Technische Universiteit Delft, Delft, Netherlands
| | | | - Amedeo Chiribiri
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Ullah W, Roomi S, Abdullah HM, Mukhtar M, Ali Z, Ye P, Haas DC, Figueredo VM. Diagnostic Accuracy of Cardiac Magnetic Resonance Versus Fractional Flow Reserve: A Systematic Review and Meta-Analysis. Cardiol Res 2020; 11:145-154. [PMID: 32494324 PMCID: PMC7239594 DOI: 10.14740/cr1028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background Fractional flow reserve (FFR) is considered the gold standard for diagnosis of coronary artery disease (CAD). Stress Cardiac magnetic resonance (SCMR) has been recently gaining traction as a non-invasive alternative to FFR. Methods Studies comparing the diagnostic accuracy of SCMR versus FFR were identified and analyzed using Review Manager (RevMan) 5.3 and Stata software. Results A total of 28 studies, comprising 2,387 patients, were included. The pooled sensitivity and specificity for SCMR were 86% and 86% at the patient level, and 82% and 88% at the vessel level, respectively. When the patient-level data were stratified based on the FFR thresholds, higher sensitivity and specificity (both 90%) were noted with the higher cutoff (0.75) and lower cutoff (0.8), respectively. At the vessel level, sensitivity and specificity at the lower FFR threshold were significantly higher at 88% and 89%, compared to the corresponding values for higher cutoff at 0.75. Similarly, meta-regression analysis of SCMR at higher (3T) resolution showed a higher sensitivity of 87% at the patient level and higher specificity of 90% at the vessel level. The highest sensitivity and specificity of SCMR (92% and 94%, respectively) were noted in studies with CAD prevalence greater than 60%. Conclusions SCMR has high diagnostic accuracy for CAD comparable to FFR at a spatial resolution of 3T and an FFR cut-off of 0.80. An increase in CAD prevalence further improved the specificity of SCMR.
Collapse
Affiliation(s)
- Waqas Ullah
- Internal Medicine, Abington Hospital-Jefferson Health, Abington, PA, USA
| | - Sohaib Roomi
- Internal Medicine, Abington Hospital-Jefferson Health, Abington, PA, USA
| | - Hafez M Abdullah
- Internal Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Maryam Mukhtar
- Internal Medicine, Fauji Foundation Hospital, Rawalpindi, Pakistan
| | - Zain Ali
- Internal Medicine, Abington Hospital-Jefferson Health, Abington, PA, USA
| | - Ping Ye
- Internal Medicine, University of South Dakota, Sioux Falls, SD, USA.,Avera Research Institute, Avera Health, Sioux Falls, SD, USA
| | - Donald C Haas
- Abington Hospital-Jefferson Health, Abington, PA, USA
| | | |
Collapse
|
18
|
Everaars H, van der Hoeven NW, Janssens GN, van Leeuwen MA, van Loon RB, Schumacher SP, Demirkiran A, Hofman MB, van der Geest RJ, van de Ven PM, Götte MJ, van Rossum AC, van Royen N, Nijveldt R. Cardiac Magnetic Resonance for Evaluating Nonculprit Lesions After Myocardial Infarction. JACC Cardiovasc Imaging 2020; 13:715-728. [DOI: 10.1016/j.jcmg.2019.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/10/2019] [Indexed: 01/14/2023]
|
19
|
Abstract
Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This review discusses similarities and differences between cardiac positron emission tomography (PET), absolute myocardial blood flow, and flow reserve with invasive fractional flow reserve (FFR). RECENT FINDINGS Fundamentally, cardiac PET measures absolute myocardial blood flow whereas FFR provides a relative flow reserve. Cardiac PET offers a non-invasive and therefore lower risk alternative, able to image the entire left ventricle regardless of coronary anatomy. While cardiac PET can provide unique information about the subendocardium, FFR pullbacks offer unparalleled spatial resolution. Both diagnostic tests provide a highly repeatable and technically successful index of coronary hemodynamics that accounts for the amount of distal myocardial mass, albeit only indirectly with FFR. The randomized evidence base for FFR and its associated cost effectiveness remains unsurpassed. Cardiac PET and FFR have been intertwined since the very development of FFR over 25 years ago. Recent work has emphasized the ability of both techniques to guide revascularization decisions by high-quality physiology. In the past few years, cardiac PET has expanded its evidence base regarding clinical outcomes, whereas FFR has solidified its position in randomized studies as the invasive reference standard.
Collapse
Affiliation(s)
- Nils P. Johnson
- Weatherhead PET Center, Division of Cardiology, Department of Medicine, McGovern Medical School at UTHealth, 6431 Fannin St., Room MSB 4.256, Houston, TX 77030 USA
- Memorial Hermann Hospital, Houston, TX USA
| | - K. Lance Gould
- Weatherhead PET Center, Division of Cardiology, Department of Medicine, McGovern Medical School at UTHealth, 6431 Fannin St., Room MSB 4.256, Houston, TX 77030 USA
- Memorial Hermann Hospital, Houston, TX USA
| |
Collapse
|
21
|
Romano S, Romer B, Evans K, Trybula M, Shenoy C, Kwong RY, Farzaneh-Far A. Prognostic Implications of Blunted Feature-Tracking Global Longitudinal Strain During Vasodilator Cardiovascular Magnetic Resonance Stress Imaging. JACC Cardiovasc Imaging 2020; 13:58-65. [PMID: 31005520 PMCID: PMC6745296 DOI: 10.1016/j.jcmg.2019.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The purpose of this study was to determine the prognostic value of feature-tracking global longitudinal strain (GLS) measured during vasodilator stress cardiac magnetic resonance (CMR) imaging. BACKGROUND Prior studies have suggested that blunted myocardial strain during dobutamine stress echocardiography may be associated with adverse prognosis. Recent developments in CMR feature-tracking techniques now allow assessment of strain in clinical practice using standard cine images without specialized pulse sequences or complex post-processing. Whether feature-tracking GLS measured during vasodilator stress provides independent and incremental prognostic data is unclear. METHODS Consecutive patients undergoing stress perfusion CMR were prospectively enrolled (n = 535). Feature-tracking stress GLS was measured immediately after regadenoson perfusion. Patients were followed for major adverse cardiac events (MACE): death, nonfatal myocardial infarction, heart failure hospitalization, sustained ventricular tachycardia, and late revascularization. Cox proportional hazards regression modeling was used to examine the association between stress GLS and MACE. The incremental prognostic value of stress GLS was assessed in nested models. RESULTS Over a median follow-up of 1.5 years, 82 patients experienced MACE. By Kaplan-Meier analysis, patients with stress GLS ≥ median (-19%) had significantly reduced event-free survival compared with those with stress GLS < median (log-rank p < 0.001). Stress GLS was significantly associated with risk of MACE after adjustment for clinical and imaging risk factors including ischemia, ejection fraction, and late gadolinium enhancement (hazard ratio: 1.267; p < 0.001). Addition of stress GLS into a model with clinical and imaging predictors resulted in significant increase in the C-index (from 0.80 to 0.85; p = 0.031) and a continuous net reclassification improvement of 0.898 (95% confidence interval: 0.565 to 1.124). CONCLUSIONS Feature-tracking stress GLS measured during vasodilator stress CMR is an independent predictor of MACE in patients with known or suspected coronary artery disease, incremental to common clinical and imaging risk factors. These findings suggest a role for feature-tracking derived stress GLS in identifying patients at highest risk of adverse events following stress CMR.
Collapse
Affiliation(s)
- Simone Romano
- Department of Medicine, University of Verona, Verona, Italy
| | - Benjamin Romer
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Kaleigh Evans
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Michael Trybula
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Chetan Shenoy
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Raymond Y Kwong
- Division of Cardiology, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Afshin Farzaneh-Far
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
22
|
Camaioni C, Knott KD, Augusto JB, Seraphim A, Rosmini S, Ricci F, Boubertakh R, Xue H, Hughes R, Captur G, Lopes LR, Brown LAE, Manisty C, Petersen SE, Plein S, Kellman P, Mohiddin SA, Moon JC. Inline perfusion mapping provides insights into the disease mechanism in hypertrophic cardiomyopathy. Heart 2019; 106:824-829. [PMID: 31822572 PMCID: PMC7282549 DOI: 10.1136/heartjnl-2019-315848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022] Open
Abstract
Objective In patients with hypertrophic cardiomyopathy (HCM), the role of small vessel disease and myocardial perfusion remains incompletely understood and data on absolute myocardial blood flow (MBF, mL/g/min) are scarce. We measured MBF using cardiovascular magnetic resonance fully quantitative perfusion mapping to determine the relationship between perfusion, hypertrophy and late gadolinium enhancement (LGE) in HCM. Methods 101 patients with HCM with unobstructed epicardial coronary arteries and 30 controls (with matched cardiovascular risk factors) underwent pixel-wise perfusion mapping during adenosine stress and rest. Stress, rest MBF and the myocardial perfusion reserve (MPR, ratio of stress to rest) were calculated globally and segmentally and then associated with segmental wall thickness and LGE. Results In HCM, 79% had a perfusion defect on clinical read. Stress MBF and MPR were reduced compared with controls (mean±SD 1.63±0.60 vs 2.30±0.64 mL/g/min, p<0.0001 and 2.21±0.87 vs 2.90±0.90, p=0.0003, respectively). Globally, stress MBF fell with increasing indexed left ventricle mass (R2 for the model 0.186, p=0.036) and segmentally with increasing wall thickness and LGE (both p<0.0001). In 21% of patients with HCM, MBF was lower during stress than rest (MPR <1) in at least one myocardial segment, a phenomenon which was predominantly subendocardial. Apparently normal HCM segments (normal wall thickness, no LGE) had reduced stress MBF and MPR compared with controls (mean±SD 1.88±0.81 mL/g/min vs 2.32±0.78 mL/g/min, p<0.0001). Conclusions Microvascular dysfunction is common in HCM and associated with hypertrophy and LGE. Perfusion can fall during vasodilator stress and is abnormal even in apparently normal myocardium suggesting it may be an early disease marker.
Collapse
Affiliation(s)
| | - Kristopher D Knott
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Joao B Augusto
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Andreas Seraphim
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | | | | | - Redha Boubertakh
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Hui Xue
- National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca Hughes
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Gaby Captur
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Luis Rocha Lopes
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | | | - Charlotte Manisty
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Steffen Erhard Petersen
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Sven Plein
- Department of Biomedical Imaging Science, University of Leeds, Leeds, UK
| | - Peter Kellman
- National Institutes of Health, Bethesda, Maryland, USA
| | | | - James C Moon
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK .,Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
23
|
Barone-Rochette G, Zoreka F, Djaileb L, Piliero N, Calizzano A, Quesada JL, Broisat A, Riou L, Machecourt J, Fagret D, Vanzetto G, Ghezzi C. Diagnostic value of stress thallium-201/rest technetium-99m-sestamibi sequential dual isotope high-speed myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis. J Nucl Cardiol 2019; 26:1269-1279. [PMID: 29380286 DOI: 10.1007/s12350-018-1189-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/04/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The aim of this study was to determine the diagnostic accuracy of stress thallium-201/rest technetium-99m-sestamibi sequential dual-isotope high-speed myocardial perfusion imaging (DI-HS-MPI) against invasively determined fractional flow reserve (FFR). METHODS Fifty-four consecutive patients prospectively underwent DI-HS-MPI before invasive coronary angiography. Perfusion was scored visually by summed stress score on a patient and coronary territory basis. Significant coronary artery disease (CAD) was defined by the presence of ≥ 90% stenosis/occlusion or fractional flow reserve ≤ 0.80 for coronary stenosis ≥ 50%. RESULTS FFR was measured in 69 of 162 coronary vessels, with 1.28 ± 0.56 vessels assessed/patient. Sensitivity, specificity, and diagnostic accuracy of MPI for the detection of significant CAD were 92.8%, 69.2%, and 81.4%, on a patient basis, and 83.7%, 90.4%, and 88.8% by coronary territory. CONCLUSIONS DI-HS-MPI accurately detects functionally significant CAD as defined by using FFR.
Collapse
Affiliation(s)
- Gilles Barone-Rochette
- Department of Cardiology, University Hospital, Grenoble Alpes, France.
- INSERM U1039, Bioclinic Radiopharmaceutics Laboratory, Grenoble Alpes, France.
- French Alliance Clinical Trial, French Clinical Research Infrastructure Network, Paris, France.
| | - Feras Zoreka
- Department of Cardiology, University Hospital, Grenoble Alpes, France
| | - Loïc Djaileb
- Department of Nuclear medicine, University Hospital, Grenoble Alpes, France
| | - Nicolas Piliero
- Department of Cardiology, University Hospital, Grenoble Alpes, France
| | - Alex Calizzano
- Department of Nuclear medicine, University Hospital, Grenoble Alpes, France
| | - Jean Louis Quesada
- Center of Clinical Investigations, Grenoble Alpes University Hospital, Grenoble, France
| | - Alexis Broisat
- INSERM U1039, Bioclinic Radiopharmaceutics Laboratory, Grenoble Alpes, France
| | - Laurent Riou
- INSERM U1039, Bioclinic Radiopharmaceutics Laboratory, Grenoble Alpes, France
| | | | - Daniel Fagret
- INSERM U1039, Bioclinic Radiopharmaceutics Laboratory, Grenoble Alpes, France
- Department of Nuclear medicine, University Hospital, Grenoble Alpes, France
| | - Gerald Vanzetto
- Department of Cardiology, University Hospital, Grenoble Alpes, France
- INSERM U1039, Bioclinic Radiopharmaceutics Laboratory, Grenoble Alpes, France
- French Alliance Clinical Trial, French Clinical Research Infrastructure Network, Paris, France
| | - Catherine Ghezzi
- INSERM U1039, Bioclinic Radiopharmaceutics Laboratory, Grenoble Alpes, France
| |
Collapse
|
24
|
Duanmu Z, Chen W, Gao H, Yang X, Luo X, Hill NA. A One-Dimensional Hemodynamic Model of the Coronary Arterial Tree. Front Physiol 2019; 10:853. [PMID: 31338038 PMCID: PMC6629789 DOI: 10.3389/fphys.2019.00853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/20/2019] [Indexed: 01/28/2023] Open
Abstract
One-dimensional (1D) hemodynamic models of arteries have increasingly been applied to coronary circulation. In this study, we have adopted flow and pressure profiles in Olufsen's 1D structured tree as coronary boundary conditions, with terminals coupled to the dynamic pressure feedback resulting from the intra-myocardial stress because of ventricular contraction. We model a trifurcation structure of the example coronary tree as two adjacent bifurcations. The estimated results of blood pressure and flow rate from our simulation agree well with the clinical measurements and published data. Furthermore, the 1D model enables us to use wave intensity analysis to simulate blood flow in the developed coronary model. Six characteristic waves are observed in both left and right coronary flows, though the waves' magnitudes differ from each other. We study the effects of arterial wall stiffness on coronary blood flow in the left circumflex artery (LCX). Different diseased cases indicate that distinct pathological reactions of the cardiovascular system can be better distinguished through Wave Intensity analysis, which shows agreement with clinical observations. Finally, the feedback pressure in terminal vessels and measurement deviation are also investigated by changing parameters in the LCX. We find that larger feedback pressure increases the backward wave and decreases the forward one. Although simplified, this 1D model provides new insight into coronary hemodynamics in healthy and diseased conditions. We believe that this approach offers reference resources for studies on coronary circulation disease diagnosis, treatment and simulation.
Collapse
Affiliation(s)
- Zheng Duanmu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Xilan Yang
- Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Nicholas A Hill
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
25
|
Knott KD, Fernandes JL, Moon JC. Automated Quantitative Stress Perfusion in a Clinical Routine. Magn Reson Imaging Clin N Am 2019; 27:507-520. [PMID: 31279453 DOI: 10.1016/j.mric.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cardiovascular magnetic resonance (CMR) perfusion imaging is a robust noninvasive technique to evaluate ischemia in patients with coronary artery disease (CAD). Although qualitative and semiquantitative methods have shown that CMR has high accuracy in diagnosing flow-obstructing lesions in CAD, quantitative ischemic burden is an important variable used in clinical practice for treatment decisions. Quantitative CMR perfusion techniques have evolved significantly, with accuracy comparable with both PET and microsphere evaluation. Routine clinical use of these quantitative techniques has been facilitated by the introduction of automated methods that accelerate the work flow and rapidly generate pixel-based myocardial blood flow maps.
Collapse
Affiliation(s)
- Kristopher D Knott
- Barts Heart Centre, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, 2nd Floor, King George V Block, London EC1A 7BE, UK
| | - Juliano Lara Fernandes
- Jose Michel Kalaf Research Insitute, Radiologia Clinica de Campinas, Av Jose de Souza Campos 840, Campinas, São Paulo 13092-100, Brazil
| | - James C Moon
- Barts Heart Centre, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, 2nd Floor, King George V Block, London EC1A 7BE, UK.
| |
Collapse
|
26
|
Value of Relative Myocardial Perfusion at MRI for Fractional Flow Reserve-Defined Ischemia: A Pilot Study. AJR Am J Roentgenol 2019; 212:1002-1009. [PMID: 30860888 DOI: 10.2214/ajr.18.20469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE. Correcting the perfusion in areas distal to coronary stenosis (risk) according to that of normal (remote) areas defines the relative myocardial perfusion index, which is similar to the fractional flow reserve (FFR) concept. The aim of this study was to assess the value of relative myocardial perfusion by MRI in predicting lesion-specific inducible ischemia as defined by FFR. MATERIALS AND METHODS. Forty-six patients (33 men and 13 women; mean [± SD] age, 61 ± 9 years) who underwent adenosine perfusion MRI and FFR measurement distal to 49 coronary artery stenoses during coronary angiography were retrospectively evaluated. Subendocardial time-enhancement maximal upslopes, normalized by the respective left ventricle cavity upslopes, were obtained in risk and remote subendocardium during adenosine and rest MRI perfusion and were correlated to the FFR values. RESULTS. The mean FFR value was 0.84 ± 0.09 (range, 0.60-0.98) and was less than or equal to 0.80 in 31% of stenoses (n = 15). The relative subendocardial perfusion index (risk-to-remote upslopes) during hyperemia showed better correlations with the FFR value (r = 0.59) than the uncorrected risk perfusion parameters (i.e., both the upslope during hyperemia and the perfusion reserve index [stress-to-rest upslopes]; r = 0.27 and 0.29, respectively). A cutoff value of 0.84 of the relative subendocardial perfusion index had an ROC AUC of 0.88 to predict stenosis at an FFR of less than or equal to 0.80. CONCLUSION. Using adenosine perfusion MRI, the relative myocardial perfusion index enabled the best prediction of FFR-defined lesion-specific myocardial ischemia. This index could be used to noninvasively determine the need for revascularization of known coronary stenoses.
Collapse
|
27
|
Contemporary Issues in Quantitative Myocardial Perfusion CMR Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Kotecha T, Martinez-Naharro A, Boldrini M, Knight D, Hawkins P, Kalra S, Patel D, Coghlan G, Moon J, Plein S, Lockie T, Rakhit R, Patel N, Xue H, Kellman P, Fontana M. Automated Pixel-Wise Quantitative Myocardial Perfusion Mapping by CMR to Detect Obstructive Coronary Artery Disease and Coronary Microvascular Dysfunction: Validation Against Invasive Coronary Physiology. JACC Cardiovasc Imaging 2019; 12:1958-1969. [PMID: 30772231 DOI: 10.1016/j.jcmg.2018.12.022] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This study sought to assess the performance of cardiovascular magnetic resonance (CMR) myocardial perfusion mapping against invasive coronary physiology reference standards for detecting coronary artery disease (CAD, defined by fractional flow reserve [FFR] ≤0.80), microvascular dysfunction (MVD) (defined by index of microcirculatory resistance [IMR] ≥25) and the ability to differentiate between the two. BACKGROUND Differentiation of epicardial (CAD) and MVD in patients with stable angina remains challenging. Automated in-line CMR perfusion mapping enables quantification of myocardial blood flow (MBF) to be performed rapidly within a clinical workflow. METHODS Fifty patients with stable angina and 15 healthy volunteers underwent adenosine stress CMR at 1.5T with quantification of MBF and myocardial perfusion reserve (MPR). FFR and IMR were measured in 101 coronary arteries during subsequent angiography. RESULTS Twenty-seven patients had obstructive CAD and 23 had nonobstructed arteries (7 normal IMR, 16 abnormal IMR). FFR positive (epicardial stenosis) areas had significantly lower stress MBF (1.47 ± 0.48 ml/g/min) and MPR (1.75 ± 0.60) than FFR-negative IMR-positive (MVD) areas (stress MBF: 2.10 ± 0.35 ml/g/min; MPR: 2.41 ± 0.79) and normal areas (stress MBF: 2.47 ± 0.50 ml/g/min; MPR: 2.94 ± 0.81). Stress MBF ≤1.94 ml/g/min accurately detected obstructive CAD on a regional basis (area under the curve: 0.90; p < 0.001). In patients without regional perfusion defects, global stress MBF <1.82 ml/g/min accurately discriminated between obstructive 3-vessel disease and MVD (area under the curve: 0.94; p < 0.001). CONCLUSIONS This novel automated pixel-wise perfusion mapping technique can be used to detect physiologically significant CAD defined by FFR, MVD defined by IMR, and to differentiate MVD from multivessel coronary disease. A CMR-based diagnostic algorithm using perfusion mapping for detection of epicardial disease and MVD warrants further clinical validation.
Collapse
Affiliation(s)
- Tushar Kotecha
- Institute of Cardiovascular Science, University College London, United Kingdom; Royal Free Hospital, London, United Kingdom
| | - Ana Martinez-Naharro
- Royal Free Hospital, London, United Kingdom; Division of Medicine, University College London, United Kingdom
| | | | - Daniel Knight
- Institute of Cardiovascular Science, University College London, United Kingdom; Royal Free Hospital, London, United Kingdom
| | - Philip Hawkins
- Royal Free Hospital, London, United Kingdom; Division of Medicine, University College London, United Kingdom
| | | | | | | | - James Moon
- Institute of Cardiovascular Science, University College London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Sven Plein
- Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom
| | - Tim Lockie
- Royal Free Hospital, London, United Kingdom
| | - Roby Rakhit
- Institute of Cardiovascular Science, University College London, United Kingdom; Royal Free Hospital, London, United Kingdom
| | - Niket Patel
- Institute of Cardiovascular Science, University College London, United Kingdom; Royal Free Hospital, London, United Kingdom
| | - Hui Xue
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland
| | - Marianna Fontana
- Royal Free Hospital, London, United Kingdom; Division of Medicine, University College London, United Kingdom.
| |
Collapse
|
29
|
Nazir MS, Neji R, Speier P, Reid F, Stäb D, Schmidt M, Forman C, Razavi R, Plein S, Ismail TF, Chiribiri A, Roujol S. Simultaneous multi slice (SMS) balanced steady state free precession first-pass myocardial perfusion cardiovascular magnetic resonance with iterative reconstruction at 1.5 T. J Cardiovasc Magn Reson 2018; 20:84. [PMID: 30526627 PMCID: PMC6287353 DOI: 10.1186/s12968-018-0502-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Simultaneous-Multi-Slice (SMS) perfusion imaging has the potential to acquire multiple slices, increasing myocardial coverage without sacrificing in-plane spatial resolution. To maximise signal-to-noise ratio (SNR), SMS can be combined with a balanced steady state free precession (bSSFP) readout. Furthermore, application of gradient-controlled local Larmor adjustment (GC-LOLA) can ensure robustness against off-resonance artifacts and SNR loss can be mitigated by applying iterative reconstruction with spatial and temporal regularisation. The objective of this study was to compare cardiovascular magnetic resonance (CMR) myocardial perfusion imaging using SMS bSSFP imaging with GC-LOLA and iterative reconstruction to 3 slice bSSFP. METHODS Two contrast-enhanced rest perfusion sequences were acquired in random order in 8 patients: 6-slice SMS bSSFP and 3 slice bSSFP. All images were reconstructed with TGRAPPA. SMS images were also reconstructed using a non-linear iterative reconstruction with L1 regularisation in wavelet space (SMS-iter) with 7 different combinations for spatial (λσ) and temporal (λτ) regularisation parameters. Qualitative ratings of overall image quality (0 = poor image quality, 1 = major artifact, 2 = minor artifact, 3 = excellent), perceived SNR (0 = poor SNR, 1 = major noise, 2 = minor noise, 3 = high SNR), frequency of sequence related artifacts and patient related artifacts were undertaken. Quantitative analysis of contrast ratio (CR) and percentage of dark rim artifact (DRA) was performed. RESULTS Among all SMS-iter reconstructions, SMS-iter 6 (λσ 0.001 λτ 0.005) was identified as the optimal reconstruction with the highest overall image quality, least sequence related artifact and higher perceived SNR. SMS-iter 6 had superior overall image quality (2.50 ± 0.53 vs 1.50 ± 0.53, p = 0.005) and perceived SNR (2.25 ± 0.46 vs 0.75 ± 0.46, p = 0.010) compared to 3 slice bSSFP. There were no significant differences in sequence related artifact, CR (3.62 ± 0.39 vs 3.66 ± 0.65, p = 0.88) or percentage of DRA (5.25 ± 6.56 vs 4.25 ± 4.30, p = 0.64) with SMS-iter 6 compared to 3 slice bSSFP. CONCLUSIONS SMS bSSFP with GC-LOLA and iterative reconstruction improved image quality compared to a 3 slice bSSFP with doubled spatial coverage and preserved in-plane spatial resolution. Future evaluation in patients with coronary artery disease is warranted.
Collapse
Affiliation(s)
- Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London, SW1 7EH UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London, SW1 7EH UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | | | - Fiona Reid
- Division of Health and Social Care Research, King’s College London, London, UK
| | - Daniel Stäb
- Siemens Healthcare Pty Ltd, Melbourne, Australia
| | | | | | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London, SW1 7EH UK
| | - Sven Plein
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London, SW1 7EH UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT UK
| | - Tevfik F. Ismail
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London, SW1 7EH UK
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London, SW1 7EH UK
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Road, London, SW1 7EH UK
| |
Collapse
|
30
|
Doris MK, Otaki Y, Arnson Y, Tamarappoo B, Goeller M, Gransar H, Wang F, Hayes S, Friedman J, Thomson L, Slomka P, Dey D, Berman D. Non-invasive fractional flow reserve in vessels without severe obstructive stenosis is associated with coronary plaque burden. J Cardiovasc Comput Tomogr 2018; 12:379-384. [DOI: 10.1016/j.jcct.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/13/2018] [Accepted: 05/03/2018] [Indexed: 10/17/2022]
|
31
|
Williams RP, Asrress KN, Lumley M, Arri S, Patterson T, Ellis H, Manou‐Stathopoulou V, Macfarlane C, Chandran S, Moschonas K, Oakeshott P, Lockie T, Chiribiri A, Clapp B, Perera D, Plein S, Marber MS, Redwood SR. Deleterious Effects of Cold Air Inhalation on Coronary Physiological Indices in Patients With Obstructive Coronary Artery Disease. J Am Heart Assoc 2018; 7:e008837. [PMID: 30762468 PMCID: PMC6064824 DOI: 10.1161/jaha.118.008837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/11/2018] [Indexed: 01/09/2023]
Abstract
Background Cold air inhalation during exercise increases cardiac mortality, but the pathophysiology is unclear. During cold and exercise, dual-sensor intracoronary wires measured coronary microvascular resistance ( MVR ) and blood flow velocity ( CBF ), and cardiac magnetic resonance measured subendocardial perfusion. Methods and Results Forty-two patients (62±9 years) undergoing cardiac catheterization, 32 with obstructive coronary stenoses and 10 without, performed either (1) 5 minutes of cold air inhalation (5°F) or (2) two 5-minute supine-cycling periods: 1 at room temperature and 1 during cold air inhalation (5°F) (randomized order). We compared rest and peak stress MVR , CBF , and subendocardial perfusion measurements. In patients with unobstructed coronary arteries (n=10), cold air inhalation at rest decreased MVR by 6% ( P=0.41), increasing CBF by 20% ( P<0.01). However, in patients with obstructive stenoses (n=10), cold air inhalation at rest increased MVR by 17% ( P<0.01), reducing CBF by 3% ( P=0.85). Consequently, in patients with obstructive stenoses undergoing the cardiac magnetic resonance protocol (n=10), cold air inhalation reduced subendocardial perfusion ( P<0.05). Only patients with obstructive stenoses performed this protocol (n=12). Cycling at room temperature decreased MVR by 29% ( P<0.001) and increased CBF by 61% ( P<0.001). However, cold air inhalation during cycling blunted these adaptations in MVR ( P=0.12) and CBF ( P<0.05), an effect attributable to defective early diastolic CBF acceleration ( P<0.05) and associated with greater ST -segment depression ( P<0.05). Conclusions In patients with obstructive coronary stenoses, cold air inhalation causes deleterious changes in MVR and CBF . These diminish or abolish the normal adaptations during exertion that ordinarily match myocardial blood supply to demand.
Collapse
Affiliation(s)
- Rupert P. Williams
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Kaleab N. Asrress
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Matthew Lumley
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Satpal Arri
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Tiffany Patterson
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Howard Ellis
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | | | - Catherine Macfarlane
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Shruthi Chandran
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Kostantinos Moschonas
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Pippa Oakeshott
- Population Health Research InstituteSt George's University of LondonUnited Kingdom
| | - Timothy Lockie
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Amedeo Chiribiri
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Brian Clapp
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Divaka Perera
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Sven Plein
- Leeds UniversityLeeds Teaching Hospitals NHS TrustLeedsUnited Kingdom
| | - Michael S. Marber
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Simon R. Redwood
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| |
Collapse
|
32
|
Quantitative Myocardial Perfusion Imaging Versus Visual Analysis in Diagnosing Myocardial Ischemia. JACC Cardiovasc Imaging 2018; 11:711-718. [DOI: 10.1016/j.jcmg.2018.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 01/26/2018] [Accepted: 02/22/2018] [Indexed: 11/18/2022]
|
33
|
Nakamori S, Sakuma H, Dohi K, Ishida M, Tanigawa T, Yamada A, Takase S, Nakajima H, Sawai T, Masuda J, Nagata M, Ichikawa Y, Kitagawa K, Fujii E, Yamada N, Ito M. Combined Assessment of Stress Myocardial Perfusion Cardiovascular Magnetic Resonance and Flow Measurement in the Coronary Sinus Improves Prediction of Functionally Significant Coronary Stenosis Determined by Fractional Flow Reserve in Multivessel Disease. J Am Heart Assoc 2018; 7:JAHA.117.007736. [PMID: 29432130 PMCID: PMC5850257 DOI: 10.1161/jaha.117.007736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Recent studies using stress‐rest perfusion cardiovascular magnetic resonance (CMR) demonstrated a close correlation between myocardial ischemia and reduced fractional flow reserve (FFR). However, its diagnostic concordance may be reduced in patients with multivessel disease. We sought to evaluate the concordance of adenosine stress‐rest perfusion CMR for predicting reduced FFR, and to determine the additive value of measuring global coronary flow reserve (CFR) in the coronary sinus in multivessel disease. Methods and Results Ninety‐six patients with angiographic luminal narrowing >50% underwent comprehensive CMR study and FFR measurements in 139 coronary vessels. FFR <0.80 was considered hemodynamically significant. Global CFR was quantified as the ratio of stress‐rest coronary sinus flow measured by phase‐contrast cine CMR. In 25 patients with single‐vessel disease, visual assessment of perfusion CMR yielded high diagnostic concordance for predicting flow‐limiting stenosis, with the area under receiver operating characteristic curve of 0.93 on a per‐patient basis. However, in 71 patients with multivessel disease, perfusion CMR underestimated flow‐limiting stenosis, resulting in the reduced area under receiver operating characteristic curve of 0.74. When CFR of <2.0 measured in the coronary sinus was considered as global myocardial ischemia, combined assessment provided correct reclassifications in 7 patients with false‐negative myocardial ischemia, and improved the diagnostic concordance to 92% sensitivity and 73% specificity with the area under receiver operating characteristic curve of 0.88 (95% confidence interval, 0.80%–0.97%, P=0.002). Conclusions Visual analysis of stress‐rest perfusion CMR has limited concordance with FFR in patients with multivessel disease. Multiparametric CMR integrating stress‐rest perfusion CMR and flow measurement in the coronary sinus is useful for detecting reduced FFR in multivessel disease.
Collapse
Affiliation(s)
- Shiro Nakamori
- Department of Cardiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kaoru Dohi
- Department of Cardiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaki Ishida
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takashi Tanigawa
- Department of Cardiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akimasa Yamada
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shinichi Takase
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroshi Nakajima
- Department of Cardiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Toshiki Sawai
- Department of Cardiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Jun Masuda
- Department of Cardiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motonori Nagata
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yasutaka Ichikawa
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kakuya Kitagawa
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eitaro Fujii
- Department of Cardiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Norikazu Yamada
- Department of Cardiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaaki Ito
- Department of Cardiology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
34
|
Effects of hyperaemia on left ventricular longitudinal strain in patients with suspected coronary artery disease : A first-pass stress perfusion cardiovascular magnetic resonance imaging study. Neth Heart J 2018; 26:85-93. [PMID: 29313213 PMCID: PMC5783894 DOI: 10.1007/s12471-017-1071-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aims Myocardial perfusion imaging during hyperaemic stress is commonly used to detect coronary artery disease. The aim of this study was to investigate the relationship between left ventricular global longitudinal strain (GLS), strain rate (GLSR), myocardial early (E’) and late diastolic velocities (A’) with adenosine stress first-pass perfusion cardiovascular magnetic resonance (CMR) imaging. Methods and results 44 patients met the inclusion criteria and underwent CMR imaging. The CMR imaging protocol included: rest/stress horizontal long-axis (HLA) cine, rest/stress first-pass adenosine perfusion and late gadolinium enhancement imaging. Rest and stress HLA cine CMR images were analysed using feature-tracking software for the assessment of myocardial deformation. The presence of perfusion defects was scored on a binomial scale. In patients with hyperaemia-induced perfusion defects, rest global longitudinal strain GLS (−16.9 ± 3.7 vs. −19.6 ± 3.4; p-value = 0.02), E’ (−86 ± 22 vs. −109 ± 38; p-value = 0.02), GLSR (69 ± 31 vs. 93 ± 38; p-value = 0.01) and stress GLS (−16.5 ± 4 vs. −21 ± 3.1; p < 0.001) were significantly reduced when compared with patients with no perfusion defects. Stress GLS was the strongest independent predictor of perfusion defects (odds ratio 1.43 95% confidence interval 1.14–1.78, p-value <0.001). A threshold of −19.8% for stress GLS demonstrated 78% sensitivity and 73% specificity for the presence of hyperaemia-induced perfusion defects. Conclusions At peak myocardial hyperaemic stress, GLS is reduced in the presence of a perfusion defect in patients with suspected coronary artery disease. This reduction is most likely caused by reduced endocardial blood flow at maximal hyperaemia because of transmural redistribution of blood flow in the presence of significant coronary stenosis. Electronic supplementary material The online version of this article (10.1007/s12471-017-1071-3) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Kiaos A, Tziatzios I, Hadjimiltiades S, Karvounis C, Karamitsos TD. Data on diagnostic performance of stress perfusion cardiac magnetic resonance for coronary artery disease detection at the vessel level. Data Brief 2017. [PMID: 29541674 PMCID: PMC5847623 DOI: 10.1016/j.dib.2017.11.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Stress perfusion cardiac magnetic resonance (CMR) has been proposed as an important gatekeeper for invasive coronary angiography (ICA) and percutaneous coronary interventions (PCI) in patients evaluated for possible coronary artery disease (CAD) (Fihn et al., 2012; Montalescot et al., 2013) [1], [2]. Several meta-analyses have evaluated the accuracy of stress perfusion CMR to diagnose CAD at the vessel level (Danad et al., 2017; Dai et al., 2016; Jiang et al., 2016; Takx et al., 2015; Li et al., 2015; Desai and Jha, 2013; Jaarsma et al. 2012; Hamon et al., 2010; Nandalur et al. 2007) [3], [4], [5], [6], [7], [8], [9], [10], [11]. However, they included in the same analysis studies with different definitions of significant CAD (i.e. fractional flow reserve [FFR] < 0.75 and < 0.80 or coronary stenosis ≥ 50% and ≥ 70%), magnetic field strength (1.5 or 3 Tesla [T]), and study protocol (integration or not of late gadolinium enhancement [LGE] into stress perfusion protocol). Data of 34 studies (6091 arteries) have been pooled with the aim of analyzing the accuracy of stress perfusion CMR for the diagnosis of ischemic heart disease at the vessel level according to different definitions of significant CAD, magnetic field strength and study protocol (Arnold et al., 2010; Bettencourt et al., 2013; Cheng et al., 2007; Chiribiri et al., 2013; Cury et al., 2006; De Mello et al., 2012; Donati et al., 2010; Ebersberger et al., 2013; Gebker et al., 2008; Greulich et al., 2015; Hussain et al., 2016; Ishida et al., 2005, 2003; Kamiya et al., 2014; Kitagawa et al., 2008; Klein et al., 2008; Klem et al., 2006; Klumpp et al., 2010; Krittayaphong et al., 2009; Lockie et al., 2011; Ma et al., 2012; Merkle et al., 2007; Meyer et al., 2008; Mor-Avi et al., 2008; Pan et al., 2015; Papanastasiou et al., 2016; Pons Lladó et al., 2004; Sakuma et al., 2005; Salerno et al., 2014; Scheffel et al., 2010; van Werkhoven et al., 2010; Walcher et al., 2013; Watkins et al., 2009; Yun et al., 2015) [12–45]. This article describes data related article titled “Diagnostic Performance of Stress Perfusion Cardiac Magnetic Resonance for the Detection of Coronary Artery Disease” (Kiaos et al., submitted for publication) [46].
Collapse
Affiliation(s)
- Apostolos Kiaos
- 1st Department of Cardiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Tziatzios
- 1st Department of Cardiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavros Hadjimiltiades
- 1st Department of Cardiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalambos Karvounis
- 1st Department of Cardiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros D Karamitsos
- 1st Department of Cardiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
36
|
van Dijk R, van Assen M, Vliegenthart R, de Bock GH, van der Harst P, Oudkerk M. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis. J Cardiovasc Magn Reson 2017; 19:92. [PMID: 29178905 PMCID: PMC5702972 DOI: 10.1186/s12968-017-0393-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. METHOD Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. RESULTS Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory analysis our results show similar diagnostic accuracy comparing anatomical (AUC 0.86(0.83-0.89)) and functional reference standards (AUC 0.88(0.84-0.90)). Only the per territory analysis sensitivity did not show significant heterogeneity. None of the groups showed signs of publication bias. CONCLUSIONS The clinical value of semi-quantitative and quantitative CMR perfusion analysis remains uncertain due to extensive inter-study heterogeneity and large differences in CMR perfusion acquisition protocols, reference standards, and methods of assessment of myocardial perfusion parameters. For wide spread implementation, standardization of CMR perfusion techniques is essential. TRIAL REGISTRATION CRD42016040176 .
Collapse
Affiliation(s)
- R. van Dijk
- Center for Medical Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EB 45, Groningen, The Netherlands
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M. van Assen
- Center for Medical Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EB 45, Groningen, The Netherlands
| | - R. Vliegenthart
- Center for Medical Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EB 45, Groningen, The Netherlands
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G. H. de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - P. van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M. Oudkerk
- Center for Medical Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EB 45, Groningen, The Netherlands
| |
Collapse
|
37
|
CMR First-Pass Perfusion for Suspected Inducible Myocardial Ischemia. JACC Cardiovasc Imaging 2017; 9:1338-1348. [PMID: 27832901 DOI: 10.1016/j.jcmg.2016.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 01/28/2023]
Abstract
Cardiovascular magnetic resonance (CMR) has evolved from a pioneering research tool to an established noninvasive imaging method for detecting inducible myocardial perfusion deficits. In this consensus document, experts of different imaging techniques summarize the existing body of evidence regarding CMR perfusion as a viable complement to other established noninvasive tools for the assessment of perfusion and discuss the advantages and pitfalls of the technique. A rapid, standardized CMR perfusion protocol is described, which is safe, clinically feasible, and cost-effective for centers with contemporary magnetic resonance equipment. CMR perfusion can be recommended as a routine diagnostic tool to identify inducible myocardial ischemia.
Collapse
|
38
|
Siastała P, Kądziela J, Małek ŁA, Śpiewak M, Lech K, Witkowski A. Do we need invasive confirmation of cardiac magnetic resonance results? ADVANCES IN INTERVENTIONAL CARDIOLOGY 2017; 13:26-31. [PMID: 28344614 PMCID: PMC5364279 DOI: 10.5114/aic.2017.66183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/19/2016] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Coronary artery revascularization is indicated in patients with documented significant obstruction of coronary blood flow associated with a large area of myocardial ischemia and/or untreatable symptoms. There are a few invasive or noninvasive methods that can provide information about the functional results of coronary artery narrowing. The application of more than one method of ischemia detection in one patient to reevaluate the indications for revascularization is used in case of atypical or no symptoms and/or borderline stenosis. AIM To evaluate whether the results of cardiac magnetic resonance need to be reconfirmed by the invasive functional method. MATERIAL AND METHODS The hospital database revealed 25 consecutive patients with 29 stenoses who underwent cardiac magnetic resonance (CMR) and fractional flow reserve (FFR) between the end of 2010 and the end of 2014. The maximal time interval between CMR and FFR was 6 months. None of the patients experienced any clinical events or underwent procedures on coronary arteries between the studies. RESULTS According to the analysis, the agreement of CMR perfusion with the FFR method was at the level of 89.7%. Assuming that FFR is the gold standard in assessing the severity of stenoses, the sensitivity of CMR perfusion was 90.9%. The percentage of non-severe lesions which were correctly identified in CMR was 88.9%. CONCLUSIONS The study shows that CMR perfusion is a highly sensitive method to detect hemodynamically significant CAD and exclude nonsevere lesions. With FFR as the reference standard, the diagnostic accuracy of MR perfusion to detect ischemic CAD is high.
Collapse
Affiliation(s)
- Paweł Siastała
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Jacek Kądziela
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Łukasz A Małek
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Mateusz Śpiewak
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Katarzyna Lech
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Adam Witkowski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| |
Collapse
|
39
|
Wu J, Barton D, Xie F, O’Leary E, Steuter J, Pavlides G, Porter TR. Comparison of Fractional Flow Reserve Assessment With Demand Stress Myocardial Contrast Echocardiography in Angiographically Intermediate Coronary Stenoses. Circ Cardiovasc Imaging 2016; 9:CIRCIMAGING.116.004129. [DOI: 10.1161/circimaging.116.004129] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
Abstract
Background—
Real-time myocardial contrast echocardiography (RTMCE) directly measures capillary flow (CBF), which in turn is a major regulator of coronary flow and resistance during demand or hyperemic stress. Although fractional flow reserve (FFR) was developed to assess the physiological relevance of an epicardial stenosis, it assumes maximal microvascular vasodilation and minimal resistance during vasodilator stress. Therefore, we sought to determine the relationship between CBF assessed with RTMCE during stress echocardiography and FFR in intermediate coronary lesions.
Methods and Results—
Sixty-seven vessels with 50% to 80% diameter stenoses by quantitative coronary angiography in 58 consecutive patients were examined with FFR and RTMCE (mean age, 60±13 years). RTMCE was performed using an incremental dobutamine (n=32) or exercise (n=26) stress protocol, and myocardial perfusion was assessed using a continuous infusion of ultrasound contrast. The presence or absence of inducible perfusion defects and wall motion abnormalities were correlated with FFR. Mean percent diameter stenosis was 60±9%. Eighteen stenoses (27%) had an FFR ≤ 0.8. Although 17 of the 18 stenoses that were FFR+ had abnormal CBF during RTMCE, 28 of the 49 stenoses (57%) that were FFR had abnormal CBF, and 24 (49%) had abnormal wall motion in the corresponding coronary artery territory during stress echocardiography.
Conclusions—
In a significant percentage of intermediate stenoses with normal FFR values, CBF during demand stress is reduced, resulting in myocardial ischemia.
Collapse
Affiliation(s)
- Juefei Wu
- From the Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (J.W.); Department of Cardiology, Internal Medicine, University of Nebraska Medical Center, Omaha (D.B., F.X., E.O’L., G.P., T.R.P.); and Nebraska Heart, Lincoln (J.S.)
| | - David Barton
- From the Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (J.W.); Department of Cardiology, Internal Medicine, University of Nebraska Medical Center, Omaha (D.B., F.X., E.O’L., G.P., T.R.P.); and Nebraska Heart, Lincoln (J.S.)
| | - Feng Xie
- From the Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (J.W.); Department of Cardiology, Internal Medicine, University of Nebraska Medical Center, Omaha (D.B., F.X., E.O’L., G.P., T.R.P.); and Nebraska Heart, Lincoln (J.S.)
| | - Edward O’Leary
- From the Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (J.W.); Department of Cardiology, Internal Medicine, University of Nebraska Medical Center, Omaha (D.B., F.X., E.O’L., G.P., T.R.P.); and Nebraska Heart, Lincoln (J.S.)
| | - John Steuter
- From the Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (J.W.); Department of Cardiology, Internal Medicine, University of Nebraska Medical Center, Omaha (D.B., F.X., E.O’L., G.P., T.R.P.); and Nebraska Heart, Lincoln (J.S.)
| | - Gregory Pavlides
- From the Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (J.W.); Department of Cardiology, Internal Medicine, University of Nebraska Medical Center, Omaha (D.B., F.X., E.O’L., G.P., T.R.P.); and Nebraska Heart, Lincoln (J.S.)
| | - Thomas R. Porter
- From the Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (J.W.); Department of Cardiology, Internal Medicine, University of Nebraska Medical Center, Omaha (D.B., F.X., E.O’L., G.P., T.R.P.); and Nebraska Heart, Lincoln (J.S.)
| |
Collapse
|
40
|
Zarka S, Bouleti C, Arangalage D, Chopra H, Chillon S, Henry-Feugeas MC, Abtan J, Juliard JM, Iung B, Vahanian A, Laissy JP, Ou P. Usefulness of Subepicardial Hyperemia on Contrast-Enhanced First-Pass Magnetic Resonance Perfusion Imaging for Diagnosis of Acute Myocarditis. Am J Cardiol 2016; 118:440-5. [PMID: 27296557 DOI: 10.1016/j.amjcard.2016.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Hyperemia is a major criterion for the diagnosis of acute myocarditis on cardiac magnetic resonance imaging but its assessment is challenging and time consuming. We evaluated the usefulness of the contrast-enhanced first-pass perfusion (FPP) on magnetic resonance imaging for detecting subepicardial hyperemia in acute myocarditis. Forty-seven consecutive patients (mean age: 42 ± 15.6 years; 35 men) with a definite diagnosis of acute myocarditis according to the state-of-the-art guidelines were included and compared with 16 control subjects. FPP was evaluated by 2 blinded observers and compared with the reference late gadolinium enhancement. Detection of hyperemia was performed on both qualitative and quantitative methods. Relative increased signal intensity (SI) in the subepicardial hyperemic layer was measured with SI ratio (SI of the subepicardial layer/SI of the immediately adjacent subendocardial layer). Twenty-four patients (51%) with acute myocarditis exhibited subepicardial hyperemia, detected with a good interobserver reproducibility (kappa coefficient: 0.75). The SI in the myocardium of myocarditis patients was increased compared with controls (1.08 ± 0.03 vs 0.945 ± 0.04, p = 0.03) and the SI in myocarditis patients with hyperemia compared with those without hyperemia (1.22 ± 0.04 vs 0.94 ± 0.04, p <0.0001). Sensitivity, specificity, positive predictive, and negative predictive values of FPP for detecting hyperemia were 85%, 94%, 85%, and 93%, respectively. In conclusion, contrast-enhanced first-pass magnetic resonance imaging is a fast and useful method for assessing myocardial hyperemia in patients with acute myocarditis.
Collapse
Affiliation(s)
- Samuel Zarka
- Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Claire Bouleti
- Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; Paris-Diderot University, DHU FIRE, Paris, France
| | - Dimitri Arangalage
- Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; Paris-Diderot University, DHU FIRE, Paris, France
| | - Houzefa Chopra
- Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Sylvie Chillon
- Department of Radiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
| | | | - Jérémie Abtan
- Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; Paris-Diderot University, DHU FIRE, Paris, France
| | - Jean-Michel Juliard
- Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; Paris-Diderot University, DHU FIRE, Paris, France
| | - Bernard Iung
- Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; Paris-Diderot University, DHU FIRE, Paris, France
| | - Alec Vahanian
- Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; Paris-Diderot University, DHU FIRE, Paris, France
| | - Jean-Pierre Laissy
- Paris-Diderot University, DHU FIRE, Paris, France; Department of Radiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Phalla Ou
- Paris-Diderot University, DHU FIRE, Paris, France; Department of Radiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; INSERM U1148 Bichat Hospital, Paris, France.
| |
Collapse
|
41
|
Jiang B, Cai W, Lv X, Liu H. Diagnostic Performance and Clinical Utility of Myocardial Perfusion MRI for Coronary Artery Disease with Fractional Flow Reserve as the Standard Reference: A Meta-analysis. Heart Lung Circ 2016; 25:1031-8. [PMID: 27108100 DOI: 10.1016/j.hlc.2016.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Stress myocardial perfusion imaging is a noninvasive alternative to invasive fractional flow reserve for evaluating haemodynamically significant coronary artery disease. We aimed to systematically analyse the diagnostic performance and clinical utility of myocardial perfusion MRI for coronary artery disease (CAD) using fractional flow reserve (FFR) as the standard reference. METHODS We searched PubMed, EMBASE, and Cochrane Library to July 2015 for studies using perfusion MR as a diagnostic test for CAD versus FFR. The meta-analysis was performed based on Cochrane guideline. RESULTS We identified 20 studies with 1,570 patients. Pooled analyses were performed at per-patient level (1,041 patients) and per-territory level (2,690 coronary territories). The sensitivity, specificity, area under sROC curve were 0.88 (95% CI: 0.85, 0.91), 0.88 (95% CI: 0.84, 0.90), and 0.94 (95% CI: 0.92, 0.96) at per-patient level, and 0.86 (95% CI: 0.81, 0.90), 0.88 (95% CI: 0.84, 0.92), and 0.93 (95% CI: 0.91, 0.95) at per-territory level. Post-test probability was altered by positive (likelihood ratio) LR of 7.1 (95% CI: 5.6, 9.0) and negative LR of 0.13 (95% CI: 0.10, 0.17) based on Bayes' theorem. CONCLUSIONS Diagnostic accuracy of myocardial perfusion MRI for CAD is high and can alter the post-test probability of CAD.
Collapse
Affiliation(s)
- Binghu Jiang
- Department of Radiology, Sir Yifu Hospital Affiliated with Nanjing Medical University, China
| | - Wei Cai
- Department of Cardiology, BenQ Medical Center, Nanjing Medical University, China
| | - Xianjun Lv
- Department of Interventional Radiology, BenQ Medical Center, Nanjing Medical University, China
| | - Huaijun Liu
- Department of Radiology, the Second Hospital of Hebei Medical University, China.
| |
Collapse
|
42
|
Fahmi R, Eck BL, Levi J, Fares A, Wu H, Vembar M, Dhanantwari A, Bezerra HG, Wilson DL. Effect of Beam Hardening on Transmural Myocardial Perfusion Quantification in Myocardial CT Imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9788:97882I. [PMID: 32210495 PMCID: PMC7093060 DOI: 10.1117/12.2217447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The detection of subendocardial ischemia exhibiting an abnormal transmural perfusion gradient (TPG) may help identify ischemic conditions due to micro-vascular dysfunction. We evaluated the effect of beam hardening (BH) artifacts on TPG quantification using myocardial CT perfusion (CTP). We used a prototype spectral detector CT scanner (Philips Healthcare) to acquire dynamic myocardial CTP scans in a porcine ischemia model with partial occlusion of the left anterior descending (LAD) coronary artery guided by pressure wire-derived fractional flow reserve (FFR) measurements. Conventional 120 kVp and 70 keV projection-based mono-energetic images were reconstructed from the same projection data and used to compute myocardial blood flow (MBF) using the Johnson-Wilson model. Under moderate LAD occlusion (FFR~0.7), we used three 5 mm short axis slices and divided the myocardium into three LAD segments and three remote segments. For each slice and each segment, we characterized TPG as the mean "endo-to-epi" transmural flow ratio (TFR). BH-induced hypoenhancement on the ischemic anterior wall at 120 kVp resulted in significantly lower mean TFR value as compared to the 70 keV TFR value (0.29±0.01 vs. 0.55±0.01; p<1e-05). No significant difference was measured between 120 kVp and 70 keV mean TFR values on segments moderately affected or unaffected by BH. In the entire ischemic LAD territory, 120 kVp mean endocardial flow was significantly reduced as compared to mean epicardial flow (15.80±10.98 vs. 40.85±23.44 ml/min/100g; p<1e-04). At 70 keV, BH was effectively minimized resulting in mean endocardial MBF of 40.85±15.3407 ml/min/100g vs. 74.09±5.07 ml/min/100g (p=0.0054) in the epicardium. We also found that BH artifact in the conventional 120 kVp images resulted in falsely reduced MBF measurements even under non-ischemic conditions.
Collapse
Affiliation(s)
- Rachid Fahmi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Brendan L Eck
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jacob Levi
- Department of Physics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Anas Fares
- Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH, 44106, USA
| | - Hao Wu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mani Vembar
- Philips Healthcare, Cleveland, OH 44143, USA
| | | | - Hiram G Bezerra
- Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH, 44106, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
43
|
Dey D, Diaz Zamudio M, Schuhbaeck A, Juarez Orozco LE, Otaki Y, Gransar H, Li D, Germano G, Achenbach S, Berman DS, Meave A, Alexanderson E, Slomka PJ. Relationship Between Quantitative Adverse Plaque Features From Coronary Computed Tomography Angiography and Downstream Impaired Myocardial Flow Reserve by 13N-Ammonia Positron Emission Tomography: A Pilot Study. Circ Cardiovasc Imaging 2016; 8:e003255. [PMID: 26467104 DOI: 10.1161/circimaging.115.003255] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND We investigated the relationship of quantitative plaque features from coronary computed tomography (CT) angiography and coronary vascular dysfunction by impaired myocardial flow reserve (MFR) by (13)N-Ammonia positron emission tomography (PET). METHODS AND RESULTS Fifty-one patients (32 men, 62.4±9.5 years) underwent combined rest-stress (13)N-ammonia PET and CT angiography scans by hybrid PET/CT. Regional MFR was measured from PET. From CT angiography, 153 arteries were evaluated by semiautomated software, computing arterial noncalcified plaque (NCP), low-density NCP (NCP<30 HU), calcified and total plaque volumes, and corresponding plaque burden (plaque volumex100%/vessel volume), stenosis, remodeling index, contrast density difference (maximum difference in luminal attenuation per unit area in the lesion), and plaque length. Quantitative stenosis, plaque burden, and myocardial mass were combined by boosted ensemble machine-learning algorithm into a composite risk score to predict impaired MFR (MFR≤2.0) by PET in each artery. Nineteen patients had impaired regional MFR in at least 1 territory (41/153 vessels). Patients with impaired regional MFR had higher arterial NCP (32.4% versus 17.2%), low-density NCP (7% versus 4%), and total plaque burden (37% versus 19.3%, P<0.02). In multivariable analysis with 10-fold cross-validation, NCP burden was the most significant predictor of impaired MFR (odds ratio, 1.35; P=0.021 for all). For prediction of impaired MFR with 10-fold cross-validation, receiver operating characteristics area under the curve for the composite score was 0.83 (95% confidence interval, 0.79-0.91) greater than for quantitative stenosis (0.66, 95% confidence interval, 0.57-0.76, P=0.005). CONCLUSIONS Compared with stenosis, arterial NCP burden and a composite score combining quantitative stenosis and plaque burden from CT angiography significantly improves identification of downstream regional vascular dysfunction.
Collapse
Affiliation(s)
- Damini Dey
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.).
| | - Mariana Diaz Zamudio
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.)
| | - Annika Schuhbaeck
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.)
| | - Luis Eduardo Juarez Orozco
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.)
| | - Yuka Otaki
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.)
| | - Heidi Gransar
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.)
| | - Debiao Li
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.)
| | - Guido Germano
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.)
| | - Stephan Achenbach
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.)
| | - Daniel S Berman
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.)
| | - Aloha Meave
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.)
| | - Erick Alexanderson
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.)
| | - Piotr J Slomka
- From the Biomedical Imaging Research Institute (D.D., D.L.) and Department of Imaging and Medicine (M.D.Z., Y.O., H.G., G.G., D.S.B., P.J.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiology, University of Erlangen, Erlangen, Germany (A.S., S.A.); Departments of Nuclear Cardiology (E.A., L.E.J.O.) and Cardiac Magnetic Resonance Department (A.M.), Instituto Nacional de Cardiologia Ignacio Chavez, Mexico, DF, Mexico; and Unidad PET/CT Ciclotron Facultad de Medicina UNAM, Mexico, DF, Mexico (E.A.)
| |
Collapse
|
44
|
Chiribiri A, Villa ADM, Sammut E, Breeuwer M, Nagel E. Perfusion dyssynchrony analysis. Eur Heart J Cardiovasc Imaging 2015; 17:1414-1423. [PMID: 26705485 PMCID: PMC5155575 DOI: 10.1093/ehjci/jev326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/08/2015] [Indexed: 11/14/2022] Open
Abstract
AIMS We sought to describe perfusion dyssynchrony analysis specifically to exploit the high temporal resolution of stress perfusion CMR. This novel approach detects differences in the temporal distribution of the wash-in of contrast agent across the left ventricular wall. METHODS AND RESULTS Ninety-eight patients with suspected coronary artery disease (CAD) were retrospectively identified. All patients had undergone perfusion CMR at 3T and invasive angiography with fractional flow reserve (FFR) of lesions visually judged >50% stenosis. Stress images were analysed using four different perfusion dyssynchrony indices: the variance and coefficient of variation of the time to maximum signal upslope (V-TTMU and C-TTMU) and the variance and coefficient of variation of the time to peak myocardial signal enhancement (V-TTP and C-TTP). Patients were classified according to the number of vessels with haemodynamically significant CAD indicated by FFR <0.8. All indices of perfusion dyssynchrony were capable of identifying the presence of significant CAD. C-TTP >10% identified CAD with sensitivity 0.889, specificity 0.857 (P < 0.0001). All indices correlated with the number of diseased vessels. C-TTP >12% identified multi-vessel disease with sensitivity 0.806, specificity 0.657 (P < 0.0001). C-TTP was also the dyssynchrony index with the best inter- and intra-observer reproducibility. Perfusion dyssynchrony indices showed weak correlation with other invasive and non-invasive measurements of the severity of ischaemia, including FFR, visual ischaemic burden, and MPR. CONCLUSION These findings suggest that perfusion dyssynchrony analysis is a robust novel approach to the analysis of first-pass perfusion and has the potential to add complementary information to aid assessment of CAD.
Collapse
Affiliation(s)
- Amedeo Chiribiri
- Division of Imaging Sciences and Biomedical Engineering, Department of Cardiovascular Imaging, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Adriana D M Villa
- Division of Imaging Sciences and Biomedical Engineering, Department of Cardiovascular Imaging, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Eva Sammut
- Division of Imaging Sciences and Biomedical Engineering, Department of Cardiovascular Imaging, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Marcel Breeuwer
- Philips Healthcare, Imaging Systems-MR Eindhoven, The Netherlands.,Eindhoven University of Technology, Biomedical Engineering, Biomedical Image Analysis, Eindhoven, The Netherlands
| | - Eike Nagel
- Division of Imaging Sciences and Biomedical Engineering, Department of Cardiovascular Imaging, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,DZHK Centre for Cardiovascular Imaging, University Hospital Frankfurt/Main, Frankfurt am Main, Germany
| |
Collapse
|
45
|
Sinclair MD, Lee J, Cookson AN, Rivolo S, Hyde ER, Smith NP. Measurement and modeling of coronary blood flow. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:335-56. [PMID: 26123867 DOI: 10.1002/wsbm.1309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/10/2023]
Abstract
Ischemic heart disease that comprises both coronary artery disease and microvascular disease is the single greatest cause of death globally. In this context, enhancing our understanding of the interaction of coronary structure and function is not only fundamental for advancing basic physiology but also crucial for identifying new targets for treating these diseases. A central challenge for understanding coronary blood flow is that coronary structure and function exhibit different behaviors across a range of spatial and temporal scales. While experimental studies have sought to understand this feature by isolating specific mechanisms, in tandem, computational modeling is increasingly also providing a unique framework to integrate mechanistic behaviors across different scales. In addition, clinical methods for assessing coronary disease severity are continuously being informed and updated by findings in basic physiology. Coupling these technologies, computational modeling of the coronary circulation is emerging as a bridge between the experimental and clinical domains, providing a framework to integrate imaging and measurements from multiple sources with mathematical descriptions of governing physical laws. State-of-the-art computational modeling is being used to combine mechanistic models with data to provide new insight into coronary physiology, optimization of medical technologies, and new applications to guide clinical practice.
Collapse
Affiliation(s)
- Matthew D Sinclair
- Division of Imaging Sciences and Biomedical Engineering, British Heart Foundation (BHF) Centre of Excellence, King's College London, London, UK
| | - Jack Lee
- Division of Imaging Sciences and Biomedical Engineering, British Heart Foundation (BHF) Centre of Excellence, King's College London, London, UK
| | - Andrew N Cookson
- Division of Imaging Sciences and Biomedical Engineering, British Heart Foundation (BHF) Centre of Excellence, King's College London, London, UK
| | - Simone Rivolo
- Division of Imaging Sciences and Biomedical Engineering, British Heart Foundation (BHF) Centre of Excellence, King's College London, London, UK
| | - Eoin R Hyde
- Division of Imaging Sciences and Biomedical Engineering, British Heart Foundation (BHF) Centre of Excellence, King's College London, London, UK
| | - Nicolas P Smith
- Division of Imaging Sciences and Biomedical Engineering, British Heart Foundation (BHF) Centre of Excellence, King's College London, London, UK.,Department of Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
Measuring myocardial perfusion: the role of PET, MRI and CT. Clin Radiol 2015; 70:576-84. [DOI: 10.1016/j.crad.2014.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/11/2014] [Accepted: 12/29/2014] [Indexed: 02/08/2023]
|
47
|
Pan J, Huang S, Lu Z, Li J, Wan Q, Zhang J, Gao C, Yang X, Wei M. Comparison of myocardial transmural perfusion gradient by magnetic resonance imaging to fractional flow reserve in patients with suspected coronary artery disease. Am J Cardiol 2015; 115:1333-40. [PMID: 25796365 DOI: 10.1016/j.amjcard.2015.02.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/07/2015] [Accepted: 02/07/2015] [Indexed: 11/15/2022]
Abstract
The goal of this study was to evaluate the diagnostic accuracy of transmural perfusion gradient (TPG) and transmural perfusion gradient reserve (TPGR) with 3.0 T cardiac magnetic resonance (CMR) against invasively determined fractional flow reserve (FFR) to detect coronary artery stenosis. Quantitative analysis of myocardial perfusion with CMR to diagnosis coronary artery disease (CAD) has been widely accepted. However, traditional transmural myocardial perfusion analysis with CMR neglects that endocardium is more vulnerable to ischemia than epicardium. TPG and TPGR can take the inhomogenous perfusion impairment into account and be more sensitive and specific for diagnosis of CAD. In this study, 71 patients (57 men, age 60.1 ± 6.4 years) with known or suspected CAD referred for invasive angiography study underwent rest and adenosine-induced stress CMR perfusion imaging scan. FFR was attempted to be measured in all major epicardial coronary arteries. FFR ≤0.75 was regarded to indicate a hemodynamic significant coronary lesion. A TPG ≤0.85 predicted significant CAD with sensitivity and specificity of 74.55% and 83.65%, respectively. Sensitivity and specificity of TPGR ≤0.81 were 90.91% and 89.94%, respectively. Area under the receiver-operating curve to detect FFR ≤0.75 was 0.86 for TPG and 0.95 for TPGR. TPGR yielded significantly better sensitivity and specificity for diagnosis of CAD than traditional myocardial blood flow, myocardial perfusion reserve, and TPG (p < 0.0001). In conclusion, TPG and TPGR analyses with MRI are capable of detecting hemodynamic stenosis of coronary artery and superior to traditional myocardial perfusion analysis. Furthermore, TPGR appears to be superior to TPG in the diagnosis of coronary artery stenosis.
Collapse
Affiliation(s)
- Jingwei Pan
- Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Siyi Huang
- Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhigang Lu
- Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jingbo Li
- Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qing Wan
- Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiayin Zhang
- Department of Radiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chengjie Gao
- Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin Yang
- School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Meng Wei
- Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
48
|
Manisty C, Ripley DP, Herrey AS, Captur G, Wong TC, Petersen SE, Plein S, Peebles C, Schelbert EB, Greenwood JP, Moon JC. Splenic Switch-off: A Tool to Assess Stress Adequacy in Adenosine Perfusion Cardiac MR Imaging. Radiology 2015; 276:732-40. [PMID: 25923223 DOI: 10.1148/radiol.2015142059] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE To investigate the pharmacology and potential clinical utility of splenic switch-off to identify understress in adenosine perfusion cardiac magnetic resonance (MR) imaging. MATERIALS AND METHODS Splenic switch-off was assessed in perfusion cardiac MR examinations from 100 patients (mean age, 62 years [age range, 18-87 years]) by using three stress agents (adenosine, dobutamine, and regadenoson) in three different institutions, with appropriate ethical permissions. In addition, 100 negative adenosine images from the Clinical Evaluation of MR Imaging in Coronary Heart Disease (CE-MARC) trial (35 false and 65 true negative; mean age, 59 years [age range, 40-73 years]) were assessed to ascertain the clinical utility of the sign to detect likely pharmacologic understress. Differences in splenic perfusion were compared by using Wilcoxon signed rank or Wilcoxon rank sum tests, and true-negative and false-negative findings in CE-MARC groups were compared by using the Fisher exact test. RESULTS The spleen was visible in 99% (198 of 200) of examinations and interobserver agreement in the visual grading of splenic switch-off was excellent (κ = 0.92). Visually, splenic switch-off occurred in 90% of adenosine studies, but never in dobutamine or regadenoson studies. Semiquantitative assessments supported these observations: peak signal intensity was 78% less with adenosine than at rest (P < .001), but unchanged with regadenoson (4% reduction; P = .08). Calculated peak splenic divided by myocardial signal intensity (peak splenic/myocardial signal intensity) differed between stress agents (adenosine median, 0.34; dobutamine median, 1.34; regadenoson median, 1.13; P < .001). Failed splenic switch-off was significantly more common in CE-MARC patients with false-negative findings than with true-negative findings (34% vs 9%, P < .005). CONCLUSION Failed splenic switch-off with adenosine is a new, simple observation that identifies understressed patients who are at risk for false-negative findings on perfusion MR images. These data suggest that almost 10% of all patients may be understressed, and that repeat examination of individuals with failed splenic switch-off may significantly improve test sensitivity.
Collapse
Affiliation(s)
- Charlotte Manisty
- From the Heart Hospital Imaging Centre, University College London, 16-18 Westmoreland St, London W1G 8PH, England (C.M., A.S.H., G.C., J.C.M.); Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, England (D.P.R., S.P., J.P.G.); Department of Medicine (T.C.W., E.B.S.) and UPMC Cardiovascular Magnetic Resonance Center (E.B.S.), University of Pittsburgh School of Medicine, Pittsburgh, Pa; NIHR Cardiovascular Biomedical Research Unit, Barts Health NHS Trust and Queen Mary University of London, London, England (S.E.P.); and Wessex Cardiothoracic Unit, Southampton University Hospitals NHS Trust, Southampton, England (C.P.)
| | - David P Ripley
- From the Heart Hospital Imaging Centre, University College London, 16-18 Westmoreland St, London W1G 8PH, England (C.M., A.S.H., G.C., J.C.M.); Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, England (D.P.R., S.P., J.P.G.); Department of Medicine (T.C.W., E.B.S.) and UPMC Cardiovascular Magnetic Resonance Center (E.B.S.), University of Pittsburgh School of Medicine, Pittsburgh, Pa; NIHR Cardiovascular Biomedical Research Unit, Barts Health NHS Trust and Queen Mary University of London, London, England (S.E.P.); and Wessex Cardiothoracic Unit, Southampton University Hospitals NHS Trust, Southampton, England (C.P.)
| | - Anna S Herrey
- From the Heart Hospital Imaging Centre, University College London, 16-18 Westmoreland St, London W1G 8PH, England (C.M., A.S.H., G.C., J.C.M.); Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, England (D.P.R., S.P., J.P.G.); Department of Medicine (T.C.W., E.B.S.) and UPMC Cardiovascular Magnetic Resonance Center (E.B.S.), University of Pittsburgh School of Medicine, Pittsburgh, Pa; NIHR Cardiovascular Biomedical Research Unit, Barts Health NHS Trust and Queen Mary University of London, London, England (S.E.P.); and Wessex Cardiothoracic Unit, Southampton University Hospitals NHS Trust, Southampton, England (C.P.)
| | - Gabriella Captur
- From the Heart Hospital Imaging Centre, University College London, 16-18 Westmoreland St, London W1G 8PH, England (C.M., A.S.H., G.C., J.C.M.); Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, England (D.P.R., S.P., J.P.G.); Department of Medicine (T.C.W., E.B.S.) and UPMC Cardiovascular Magnetic Resonance Center (E.B.S.), University of Pittsburgh School of Medicine, Pittsburgh, Pa; NIHR Cardiovascular Biomedical Research Unit, Barts Health NHS Trust and Queen Mary University of London, London, England (S.E.P.); and Wessex Cardiothoracic Unit, Southampton University Hospitals NHS Trust, Southampton, England (C.P.)
| | - Timothy C Wong
- From the Heart Hospital Imaging Centre, University College London, 16-18 Westmoreland St, London W1G 8PH, England (C.M., A.S.H., G.C., J.C.M.); Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, England (D.P.R., S.P., J.P.G.); Department of Medicine (T.C.W., E.B.S.) and UPMC Cardiovascular Magnetic Resonance Center (E.B.S.), University of Pittsburgh School of Medicine, Pittsburgh, Pa; NIHR Cardiovascular Biomedical Research Unit, Barts Health NHS Trust and Queen Mary University of London, London, England (S.E.P.); and Wessex Cardiothoracic Unit, Southampton University Hospitals NHS Trust, Southampton, England (C.P.)
| | - Steffen E Petersen
- From the Heart Hospital Imaging Centre, University College London, 16-18 Westmoreland St, London W1G 8PH, England (C.M., A.S.H., G.C., J.C.M.); Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, England (D.P.R., S.P., J.P.G.); Department of Medicine (T.C.W., E.B.S.) and UPMC Cardiovascular Magnetic Resonance Center (E.B.S.), University of Pittsburgh School of Medicine, Pittsburgh, Pa; NIHR Cardiovascular Biomedical Research Unit, Barts Health NHS Trust and Queen Mary University of London, London, England (S.E.P.); and Wessex Cardiothoracic Unit, Southampton University Hospitals NHS Trust, Southampton, England (C.P.)
| | - Sven Plein
- From the Heart Hospital Imaging Centre, University College London, 16-18 Westmoreland St, London W1G 8PH, England (C.M., A.S.H., G.C., J.C.M.); Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, England (D.P.R., S.P., J.P.G.); Department of Medicine (T.C.W., E.B.S.) and UPMC Cardiovascular Magnetic Resonance Center (E.B.S.), University of Pittsburgh School of Medicine, Pittsburgh, Pa; NIHR Cardiovascular Biomedical Research Unit, Barts Health NHS Trust and Queen Mary University of London, London, England (S.E.P.); and Wessex Cardiothoracic Unit, Southampton University Hospitals NHS Trust, Southampton, England (C.P.)
| | - Charles Peebles
- From the Heart Hospital Imaging Centre, University College London, 16-18 Westmoreland St, London W1G 8PH, England (C.M., A.S.H., G.C., J.C.M.); Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, England (D.P.R., S.P., J.P.G.); Department of Medicine (T.C.W., E.B.S.) and UPMC Cardiovascular Magnetic Resonance Center (E.B.S.), University of Pittsburgh School of Medicine, Pittsburgh, Pa; NIHR Cardiovascular Biomedical Research Unit, Barts Health NHS Trust and Queen Mary University of London, London, England (S.E.P.); and Wessex Cardiothoracic Unit, Southampton University Hospitals NHS Trust, Southampton, England (C.P.)
| | - Erik B Schelbert
- From the Heart Hospital Imaging Centre, University College London, 16-18 Westmoreland St, London W1G 8PH, England (C.M., A.S.H., G.C., J.C.M.); Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, England (D.P.R., S.P., J.P.G.); Department of Medicine (T.C.W., E.B.S.) and UPMC Cardiovascular Magnetic Resonance Center (E.B.S.), University of Pittsburgh School of Medicine, Pittsburgh, Pa; NIHR Cardiovascular Biomedical Research Unit, Barts Health NHS Trust and Queen Mary University of London, London, England (S.E.P.); and Wessex Cardiothoracic Unit, Southampton University Hospitals NHS Trust, Southampton, England (C.P.)
| | - John P Greenwood
- From the Heart Hospital Imaging Centre, University College London, 16-18 Westmoreland St, London W1G 8PH, England (C.M., A.S.H., G.C., J.C.M.); Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, England (D.P.R., S.P., J.P.G.); Department of Medicine (T.C.W., E.B.S.) and UPMC Cardiovascular Magnetic Resonance Center (E.B.S.), University of Pittsburgh School of Medicine, Pittsburgh, Pa; NIHR Cardiovascular Biomedical Research Unit, Barts Health NHS Trust and Queen Mary University of London, London, England (S.E.P.); and Wessex Cardiothoracic Unit, Southampton University Hospitals NHS Trust, Southampton, England (C.P.)
| | - James C Moon
- From the Heart Hospital Imaging Centre, University College London, 16-18 Westmoreland St, London W1G 8PH, England (C.M., A.S.H., G.C., J.C.M.); Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, England (D.P.R., S.P., J.P.G.); Department of Medicine (T.C.W., E.B.S.) and UPMC Cardiovascular Magnetic Resonance Center (E.B.S.), University of Pittsburgh School of Medicine, Pittsburgh, Pa; NIHR Cardiovascular Biomedical Research Unit, Barts Health NHS Trust and Queen Mary University of London, London, England (S.E.P.); and Wessex Cardiothoracic Unit, Southampton University Hospitals NHS Trust, Southampton, England (C.P.)
| |
Collapse
|
49
|
Zarinabad N, Hautvast GLTF, Sammut E, Arujuna A, Breeuwer M, Nagel E, Chiribiri A. Effects of tracer arrival time on the accuracy of high-resolution (voxel-wise) myocardial perfusion maps from contrast-enhanced first-pass perfusion magnetic resonance. IEEE Trans Biomed Eng 2015; 61:2499-2506. [PMID: 24833413 DOI: 10.1109/tbme.2014.2322937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
First-pass perfusion cardiac magnetic resonance(CMR) allows the quantitative assessment of myocardial blood flow(MBF). However, flow estimates are sensitive to the delay between the arterial and myocardial tissue tracer arrival time (tOnset) and the accurate estimation of MBF relies on the precise identification of tOnset . The aim of this study is to assess the sensitivity of the quantification process to tOnset at voxel level. Perfusion data were obtained from series of simulated data, a hardware perfusion phantom, and patients. Fermi deconvolution has been used for analysis. A novel algorithm, based on sequential deconvolution,which minimizes the error between myocardial curves and fitted curves obtained after deconvolution, has been used to identify the optimal tOnset for each region. Voxel-wise analysis showed to be more sensitive to tOnset compared to segmental analysis. The automated detection of the tOnset allowed a net improvement of the accuracy of MBF quantification and in patients the identification of perfusion abnormalities in territories that were missed when a constant user-selected tOnset was used. Our results indicate that high-resolution MBF quantification should be performed with optimized tOnset values at voxel level.
Collapse
Affiliation(s)
- Niloufar Zarinabad
- Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas¿ Hospital, London, U.K
| | - Gilion L T F Hautvast
- Philips Group Innovation¿Healthcare Incubators, Philips Research High Tech Campus, Eindhoven, AE, The Netherlands
| | - Eva Sammut
- Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas¿ Hospital, London, U.K
| | - Aruna Arujuna
- Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas¿ Hospital, London, U.K
| | - Marcel Breeuwer
- Philips Healthcare, Imaging Systems¿MR, Best, DA, The Netherlands
| | - Eike Nagel
- Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas¿ Hospital, London, U.K
| | - Amedeo Chiribiri
- Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas¿ Hospital, London, U.K
| |
Collapse
|
50
|
Heydari B, Kwong RY, Jerosch-Herold M. Technical advances and clinical applications of quantitative myocardial blood flow imaging with cardiac MRI. Prog Cardiovasc Dis 2015; 57:615-22. [PMID: 25727176 DOI: 10.1016/j.pcad.2015.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The recent FAME 2 study highlights the importance of myocardial ischemia assessment, particularly in the post-COURAGE trial era of managing patients with stable coronary artery disease. Qualitative assessment of myocardial ischemia by stress cardiovascular magnetic resonance imaging (CMR) has gained widespread clinical acceptance and utility. Despite the high diagnostic and prognostic performance of qualitative stress CMR, the ability to quantitatively assess myocardial perfusion reserve and absolute myocardial blood flow remains an important and ambitious goal for non-invasive imagers. Quantitative perfusion by stress CMR remains a research technique that has yielded progressively more encouraging results in more recent years. The ability to safely, rapidly, and precisely procure quantitative myocardial perfusion data would provide clinicians with a powerful tool that may substantially alter clinical practice and improve downstream patient outcomes and the cost effectiveness of healthcare delivery. This may also provide a surrogate endpoint for clinical trials, reducing study population sizes and costs through increased power. This review will cover emerging quantitative CMR techniques for myocardial perfusion assessment by CMR, including novel methods, such as 3-dimensional quantitative myocardial perfusion, and some of the challenges that remain before more widespread clinical adoption of these techniques may take place.
Collapse
Affiliation(s)
- Bobak Heydari
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115
| | - Raymond Y Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115
| | - Michael Jerosch-Herold
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115.
| |
Collapse
|