1
|
Wang X, Sia CH, Adamson PD, Greer CE, Huang W, Lee HK, Leng S, Loong YT, Raffiee NAS, Tan SY, Tan SH, Teo LLS, Wong SL, Yang X, Yew MS, Yong TH, Zhong L, Shaw LJ, Chan MYY, Hausenloy DJ, Baskaran L. Characterizing Nonculprit Lesions and Perivascular Adipose Tissue of Patients Following Acute Myocardial Infarction Using Coronary Computed Tomography Angiography: A Comparative Study. J Am Heart Assoc 2024; 13:e037258. [PMID: 39470055 DOI: 10.1161/jaha.124.037258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The comparison of coronary computed tomography angiography plaques and perivascular adipose tissue (PVAT) between patients with acute myocardial infarction (AMI) posttreatment and patients with stable coronary artery disease is poorly understood. Our objective was to evaluate the differences in coronary computed tomography angiography-quantified plaque and PVAT characteristics in patients post-AMI and identify signs of residual inflammation. METHODS AND RESULTS We analyzed 205 patients (age, 59.77±9.24 years; 92.20% men) with AMI ≤1 month and matched them with 205 patients with stable coronary artery disease (age, 60.52±10.04 years; 90.24% men) based on age, sex, and cardiovascular risk factors. Coronary computed tomography angiography scans were assessed for nonculprit plaque and vessel characteristics, plaque volumes by composition, high-risk plaques, and PVAT mean attenuation. Both patient groups exhibited similar noncalcified plaque volumes (383.35±313.23 versus 378.63±426.25 mm3, P=0.899). However, multivariable analysis revealed that patients post-AMI had a greater patient-wise noncalcified plaque volume ratio (estimate, 0.089 [95% CI, 0.053-0.125], P<0.001), largely attributed to a higher fibrofatty and necrotic core volume ratio, along with higher peri-lesion PVAT mean attenuation (estimate, 3.968 [95% CI, 2.556-5.379], P<0.001). When adjusted for vessel length, patients post-AMI had more high-risk plaques (estimate, 0.417 [95% CI, 0.298-0.536], P<0.001) per patient. CONCLUSIONS Patients post-AMI displayed heightened noncalcified plaque components, largely due to fibrofatty and necrotic core content, more high-risk plaques, and increased PVAT mean attenuation on a per-patient level, highlighting the necessity for refined risk assessment in patients with AMI after treatment.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Cardiovascular and Metabolic Disorders Programme Duke-National University of Singapore Singapore
| | - Ching H Sia
- National University Heart Center Singapore Singapore
- Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Philip D Adamson
- Department of Medicine University of Otago Christchurch New Zealand
- BHF Centre for Cardiovascular Science University of Edinburgh UK
| | | | - Weimin Huang
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*Star) Singapore Singapore
| | - Hwee K Lee
- Bioinformatics Institute Agency for Science, Technology and Research (A*Star) Singapore Singapore
| | - Shuang Leng
- National Heart Center Singapore Singapore
- Duke-National University of Singapore Singapore
| | | | | | - Swee Y Tan
- Cardiovascular and Metabolic Disorders Programme Duke-National University of Singapore Singapore
- National Heart Center Singapore Singapore
| | - Sock H Tan
- Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Lynette L S Teo
- Department of Diagnostic Imaging National University Hospital Singapore Singapore
| | | | - Xiaoxun Yang
- Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Min S Yew
- Department of Cardiology Tan Tock Seng Hospital Singapore Singapore
| | - Thon H Yong
- Department of Cardiology Changi General Hospital Singapore Singapore
| | - Liang Zhong
- Cardiovascular and Metabolic Disorders Programme Duke-National University of Singapore Singapore
- National Heart Center Singapore Singapore
| | - Leslee J Shaw
- Icahn School of Medicine at Mount Sinai New York City NY USA
| | - Mark Y Y Chan
- National University Heart Center Singapore Singapore
- Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Programme Duke-National University of Singapore Singapore
- National Heart Research Institute Singapore National Heart Centre Singapore Singapore
- Yong Loo Lin School of Medicine National University Singapore Singapore
- The Hatter Cardiovascular Institute University College London UK
| | - Lohendran Baskaran
- National Heart Center Singapore Singapore
- Duke-National University of Singapore Singapore
- National Heart Research Institute Singapore National Heart Centre Singapore Singapore
- CVS.AI, National Heart Research Institute Singapore National Heart Centre Singapore Singapore
| |
Collapse
|
2
|
Nozaki YO, Fujimoto S, Takahashi D, Kudo A, Kawaguchi YO, Sato H, Kudo H, Takamura K, Hiki M, Dohi T, Tomizawa N, Kumamaru KK, Aoki S, Minamino T. Additional prognostic impact of plaque characterization with on-site CT-derived fractional flow reserve in coronary CT angiography. J Cardiol 2024; 84:336-341. [PMID: 38876399 DOI: 10.1016/j.jjcc.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND On-site computed tomography-derived fractional flow reserve (CT-FFR) is a feasible method for examining lesion-specific ischemia, and plaque analysis of coronary CT angiography (CCTA) is useful for predicting future cardiac events. However, their utility and association on a per-vessel level remain unclear. METHODS We analyzed vessels showing 50-90 % stenosis on CCTA where planned revascularization was not performed after CCTA within 90 days. Relevant features, including CT-FFR and the plaque burden [necrotic core to the total plaque volume (% necrotic core), and non-calcified plaque (NCP) to vessel volume (% NCP)] using a novel algorithm for analyzing plaque to predict vessel-oriented composite outcomes (VOCO), including cardiac death, non-fatal myocardial infarction, and unplanned vessel-related revascularization, were assessed. RESULTS In 256 patients (68.7 ± 9.4 years; 73.8 % male) with 354 vessels (10.5 % CT-FFR ≤ 0.80), VOCO occurred in 24 vessels (6.8 %) during a median follow-up of 3.6 years. Multivariable Cox analysis revealed CT-FFR ≤ 0.80 had the pronounced impact on VOCO, and moreover, higher % necrotic core and % NCP were independently associated with VOCO [adjusted hazard ratio 3.43 (95 % confidence interval 1.42-8.29) and 4.05 (1.19-13.71), respectively], especially for vessels with CT-FFR > 0.80. CONCLUSIONS In vessels without planned revascularization, per-vessel CT-FFR ≤ 0.80 was the notable predictor of future cardiac events. Additionally, necrotic core volume and NCP were identified as independent predictors along with CT-FFR.
Collapse
Affiliation(s)
- Yui O Nozaki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinichiro Fujimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Daigo Takahashi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Kudo
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuko O Kawaguchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideyuki Sato
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Radiological Technology, Juntendo University Hospital, Tokyo, Japan
| | - Hikaru Kudo
- Department of Radiological Technology, Juntendo University Hospital, Tokyo, Japan
| | - Kazuhisa Takamura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Makoto Hiki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomotaka Dohi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuo Tomizawa
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kanako K Kumamaru
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
3
|
Iraqi N, Mortensen MB, Sand NPR, Busk M, Grove EL, Dey D, Pedersen KB, Kanstrup H, Pedersen AU, Madsen KT, Parner E, Jensen JM, Nørgaard BL. Interscan reproducibility of computed tomography derived coronary plaque volume measurements. J Cardiovasc Comput Tomogr 2024:S1934-5925(24)00443-X. [PMID: 39379201 DOI: 10.1016/j.jcct.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Coronary computed tomography angiography (CCTA) enables detailed quantification and characterization of coronary atherosclerotic plaques, offering diagnostic and prognostic value. Interscan reproducibility studies on plaque volume measurements are limited. This study aims to assess the interscan reproducibility of coronary plaque quantification and the implications of clinical and technical characteristics on interscan reproducibility. METHODS CCTA was performed twice in 101 patients with known coronary artery disease at a 1-h interval. The scans were conducted using identical CCTA acquisition protocols. Coronary plaque volumes were quantified using a semi-automated software and performed on a per-lesion, per-vessel, and per-patient level. RESULTS Median plaque volumes were comparable between the first and second CCTA scan. Interscan correlation was high for total plaque (TP), non-calcified plaque (NCP), and calcified plaque (CP) across all analyses (Pearson's coefficient 0.93-0.99), but lower for low-density non-calcified plaque (LD-NCP) volume measurements (Pearson's coefficient 0.74-0.77). Bland-Altman analyses demonstrated higher interscan agreement on a per-patient level compared to on per-vessel and per-lesion level. Interscan reproducibility on CP volumes was affected by CT image quality with narrower LoA in scans with the highest image quality score (p = 0.003), or lowest image reconstructive iteration level (p < 0.001). Limits of agreement were significantly narrower for TP, NCP, and CP volumes in LAD-lesions and vessels compared to non-LAD lesions and vessels (p ≤ 0.001). CONCLUSION Overall reproducibility of repeated CCTA derived plaque measurements by a semi-automated software was modest, and was influenced by image quality, image reconstruction settings, and lesion location.
Collapse
Affiliation(s)
- Nadia Iraqi
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
| | - Martin Bødtker Mortensen
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Peter Rønnow Sand
- Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Denmark; Institute of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| | - Martin Busk
- Department of Cardiology, Little Belt Hospital, Vejle-Kolding, Denmark
| | - Erik Lerkevang Grove
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, USA
| | | | - Helle Kanstrup
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Alexandra Uglebjerg Pedersen
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Erik Parner
- Section for Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jesper Møller Jensen
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Bjarne Linde Nørgaard
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Nieman K, García-García HM, Hideo-Kajita A, Collet C, Dey D, Pugliese F, Weissman G, Tijssen JGP, Leipsic J, Opolski MP, Ferencik M, Lu MT, Williams MC, Bruining N, Blanco PJ, Maurovich-Horvat P, Achenbach S. Standards for quantitative assessments by coronary computed tomography angiography (CCTA): An expert consensus document of the society of cardiovascular computed tomography (SCCT). J Cardiovasc Comput Tomogr 2024; 18:429-443. [PMID: 38849237 DOI: 10.1016/j.jcct.2024.05.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
In current clinical practice, qualitative or semi-quantitative measures are primarily used to report coronary artery disease on cardiac CT. With advancements in cardiac CT technology and automated post-processing tools, quantitative measures of coronary disease severity have become more broadly available. Quantitative coronary CT angiography has great potential value for clinical management of patients, but also for research. This document aims to provide definitions and standards for the performance and reporting of quantitative measures of coronary artery disease by cardiac CT.
Collapse
Affiliation(s)
- Koen Nieman
- Stanford University School of Medicine and Cardiovascular Institute, Stanford, CA, United States.
| | - Hector M García-García
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, United States.
| | | | - Carlos Collet
- Onze Lieve Vrouwziekenhuis, Cardiovascular Center Aalst, Aalst, Belgium
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Francesca Pugliese
- NIHR Cardiovascular Biomedical Research Unit at Barts, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London & Department of Cardiology, Barts Health NHS Trust, London, UK
| | - Gaby Weissman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, United States
| | - Jan G P Tijssen
- Department of Cardiology, Academic Medical Center, Room G4-230, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Jonathon Leipsic
- Department of Radiology and Medicine (Cardiology), University of British Columbia, Vancouver, BC, Canada
| | - Maksymilian P Opolski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Maros Ferencik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Michael T Lu
- Cardiovascular Imaging Research Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Nico Bruining
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Pal Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Stephan Achenbach
- Department of Cardiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Nurmohamed NS, Gaillard EL, Malkasian S, de Groot RJ, Ibrahim S, Bom MJ, Kaiser Y, Earls JP, Min JK, Kroon J, Planken RN, Danad I, van Rosendael AR, Choi AD, Stroes ES, Knaapen P. Lipoprotein(a) and Long-Term Plaque Progression, Low-Density Plaque, and Pericoronary Inflammation. JAMA Cardiol 2024; 9:826-834. [PMID: 39018040 PMCID: PMC11255968 DOI: 10.1001/jamacardio.2024.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/16/2024] [Indexed: 07/18/2024]
Abstract
Importance Lipoprotein(a) (Lp[a]) is a causal risk factor for cardiovascular disease; however, long-term effects on coronary atherosclerotic plaque phenotype, high-risk plaque formation, and pericoronary adipose tissue inflammation remain unknown. Objective To investigate the association of Lp(a) levels with long-term coronary artery plaque progression, high-risk plaque, and pericoronary adipose tissue inflammation. Design, Setting, and Participants This single-center prospective cohort study included 299 patients with suspected coronary artery disease (CAD) who underwent per-protocol repeated coronary computed tomography angiography (CCTA) imaging with an interscan interval of 10 years. Thirty-two patients were excluded because of coronary artery bypass grafting, resulting in a study population of 267 patients. Data for this study were collected from October 2008 to October 2022 and analyzed from March 2023 to March 2024. Exposures The median scan interval was 10.2 years. Lp(a) was measured at follow-up using an isoform-insensitive assay. CCTA scans were analyzed with a previously validated artificial intelligence-based algorithm (atherosclerosis imaging-quantitative computed tomography). Main Outcome and Measures The association between Lp(a) and change in percent plaque volumes was investigated in linear mixed-effects models adjusted for clinical risk factors. Secondary outcomes were presence of low-density plaque and presence of increased pericoronary adipose tissue attenuation at baseline and follow-up CCTA imaging. Results The 267 included patients had a mean age of 57.1 (SD, 7.3) years and 153 were male (57%). Patients with Lp(a) levels of 125 nmol/L or higher had twice as high percent atheroma volume (6.9% vs 3.0%; P = .01) compared with patients with Lp(a) levels less than 125 nmol/L. Adjusted for other risk factors, every doubling of Lp(a) resulted in an additional 0.32% (95% CI, 0.04-0.60) increment in percent atheroma volume during the 10 years of follow-up. Every doubling of Lp(a) resulted in an odds ratio of 1.23 (95% CI, 1.00-1.51) and 1.21 (95% CI, 1.01-1.45) for the presence of low-density plaque at baseline and follow-up, respectively. Patients with higher Lp(a) levels had increased pericoronary adipose tissue attenuation around both the right coronary artery and left anterior descending at baseline and follow-up. Conclusions and Relevance In this long-term prospective serial CCTA imaging study, higher Lp(a) levels were associated with increased progression of coronary plaque burden and increased presence of low-density noncalcified plaque and pericoronary adipose tissue inflammation. These data suggest an impact of elevated Lp(a) levels on coronary atherogenesis of high-risk, inflammatory, rupture-prone plaques over the long term.
Collapse
Affiliation(s)
- Nick S. Nurmohamed
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Division of Cardiology, The George Washington University School of Medicine, Washington, DC
| | - Emilie L. Gaillard
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Shant Malkasian
- Department of Radiological Sciences, Medical Sciences I, University of California, Irvine, California
| | - Robin J. de Groot
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Shirin Ibrahim
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Michiel J. Bom
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Yannick Kaiser
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - James P. Earls
- Division of Cardiology, The George Washington University School of Medicine, Washington, DC
- Cleerly, Denver, Colorado
| | | | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - R. Nils Planken
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Universiteit van Amsterdam, Amsterdam, the Netherlands
| | - Ibrahim Danad
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Andrew D. Choi
- Division of Cardiology, The George Washington University School of Medicine, Washington, DC
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Knaapen
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Flores Tomasino G, Han D, Pimentel R, Paz W, Liang J, Cheng VY, Slomka P, Berman DS, Dey D. Reproducibility of artificial intelligence-enabled plaque measurements between systolic and diastolic phases from coronary computed tomography angiography. Eur Radiol 2024; 34:5705-5712. [PMID: 38466392 DOI: 10.1007/s00330-024-10688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES Current coronary CT angiography (CTA) guidelines suggest both end-systolic and mid-diastolic phases of the cardiac cycle can be used for CTA image acquisition. However, whether differences in the phase of the cardiac cycle influence coronary plaque measurements is not known. We aim to explore the potential impact of cardiac phases on quantitative plaque assessment. METHODS We enrolled 39 consecutive patients (23 male, age 66.2 ± 11.5 years) who underwent CTA with dual-source CT with visually evident coronary atherosclerosis and with good image quality. End-systolic and mid- to late-diastolic phase images were reconstructed from the same CTA scan. Quantitative plaque and stenosis were analyzed in both systolic and diastolic images using artificial intelligence (AI)-enabled plaque analysis software (Autoplaque). RESULTS Overall, 186 lesions from 39 patients were analyzed. There were excellent agreement and correlation between systolic and diastolic images for all plaque volume measurements (Lin's concordance coefficient ranging from 0.97 to 0.99; R ranging from 0.96 to 0.98). There were no substantial intrascan differences per patient between systolic and diastolic phases (p > 0.05 for all) for total (1017.1 ± 712.9 mm3 vs. 1014.7 ± 696.2 mm3), non-calcified (861.5 ± 553.7 mm3 vs. 856.5 ± 528.7 mm3), calcified (155.7 ± 229.3 mm3 vs. 158.2 ± 232.4 mm3), and low-density non-calcified plaque volume (151.4 ± 106.1 mm3 vs. 151.5 ± 101.5 mm3) and diameter stenosis (42.5 ± 18.4% vs 41.3 ± 15.1%). CONCLUSION Excellent agreement and no substantial differences were observed in AI-enabled quantitative plaque measurements on CTA in systolic and diastolic images. Following further validation, standardized plaque measurements can be performed from CTA in systolic or diastolic cardiac phase. CLINICAL RELEVANCE STATEMENT Quantitative plaque assessment using artificial intelligence-enabled plaque analysis software can provide standardized plaque quantification, regardless of cardiac phase. KEY POINTS • The impact of different cardiac phases on coronary plaque measurements is unknown. • Plaque analysis using artificial intelligence-enabled software on systolic and diastolic CT angiography images shows excellent agreement. • Quantitative coronary artery plaque assessment can be performed regardless of cardiac phase.
Collapse
Affiliation(s)
- Guadalupe Flores Tomasino
- Departments of Imaging and Medicine, and the, Cedars-Sinai Medical Center , Smidt Heart Institute, Los Angeles, CA, USA
| | - Donghee Han
- Departments of Imaging and Medicine, and the, Cedars-Sinai Medical Center , Smidt Heart Institute, Los Angeles, CA, USA
| | - Raymond Pimentel
- Departments of Imaging and Medicine, and the, Cedars-Sinai Medical Center , Smidt Heart Institute, Los Angeles, CA, USA
| | - William Paz
- Departments of Imaging and Medicine, and the, Cedars-Sinai Medical Center , Smidt Heart Institute, Los Angeles, CA, USA
| | - Juni Liang
- Departments of Imaging and Medicine, and the, Cedars-Sinai Medical Center , Smidt Heart Institute, Los Angeles, CA, USA
| | | | - Piotr Slomka
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Berman
- Departments of Imaging and Medicine, and the, Cedars-Sinai Medical Center , Smidt Heart Institute, Los Angeles, CA, USA
| | - Damini Dey
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, 116 N Robertson Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
7
|
Pan Y, Gao Y, Wang Z, Dou Y, Sun X, Yang Z, Pan S, Jia C. Effects of low-tube voltage coronary CT angiography on plaque and pericoronary fat assessment: intraindividual comparison. Eur Radiol 2024; 34:5713-5723. [PMID: 38466391 DOI: 10.1007/s00330-024-10648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES To investigate the effects of low tube voltage on coronary plaques and pericoronary fat assessment, and to compare their extent among various levels of low voltage. MATERIALS AND METHODS Patients were recommended for high-pitch low-tube voltage coronary computed tomography angiography (CCTA), and they were included if they had poor image quality and were referred to a conventional CCTA. The patients were classified into a low-voltage group (with 70-kV, 80-kV, and 90-kV subgroups) and a conventional group (100/120 kV). Their total plaque and subcomponent volumes and pericoronary fat attenuation index (FAI) were measured. RESULTS A total of 1002 image slices (from 65 patients and 74 plaques) were included, including 21, 31, 13, 4, and 61 patients in the 70-kV, 80-kV, 90-kV, 100-kV, and 120-kV groups respectively. The CT values of noncalcified plaques in the conventional and low-voltage groups were 54.6 ± 21.3 HU and 31.5 ± 22.6 HU, respectively (p < 0.05). Compared with the conventional group, the necrotic core and calcification volume were increased, and the fibrolipid volume, periplaque, and right coronary artery FAI were decreased in the low-voltage group and its subgroups (p < 0.001). The magnitude of changes in fibrous and calcification volumes increased in the 70-kV subgroup compared with that in the 90-kV subgroup (p < 0.05). CONCLUSION Low tube voltages, particularly of 70 kV, have a significant effect on coronary plaque and FAI. The effect of low voltage on plaque composition is characterized by a polarization pattern, i.e., a decrease in fibrolipid (medium density) and an increase in necrotic core (low density) and calcification (high density). CLINICAL RELEVANCE STATEMENT Our results highlight the comparability and repeatability of plaque and pericoronary fat assessments facilitated by the same or a similar tube voltage. It is necessary to carry out studies on the specificity threshold of low tube voltage at each level. KEY POINTS • Low tube voltage had a significant effect on coronary plaque and pericoronary fat, particularly 70 kV. • The effect of low tube voltage on plaque composition shows the shift from medium-density mixed components to low- and high-density components. • It is necessary to correct the specificity threshold or attenuation difference for low tube voltage at each level.
Collapse
Affiliation(s)
- Yao Pan
- The Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhong Shan Road, Dalian, Liaoning, 116011, China
| | - Yaqi Gao
- The Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhong Shan Road, Dalian, Liaoning, 116011, China
| | - Zhaoqian Wang
- The Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhong Shan Road, Dalian, Liaoning, 116011, China
| | - Yana Dou
- Siemens Healthineers Ltd, No. 7, Wangjing Zhonghuan South Road, Beijing, 100102, China
| | - Xixia Sun
- The Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhong Shan Road, Dalian, Liaoning, 116011, China
| | - Zhiqiang Yang
- The Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhong Shan Road, Dalian, Liaoning, 116011, China
| | - Shuang Pan
- The Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhong Shan Road, Dalian, Liaoning, 116011, China
| | - Chongfu Jia
- The Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhong Shan Road, Dalian, Liaoning, 116011, China.
| |
Collapse
|
8
|
Nurmohamed NS, Shim I, Gaillard EL, Ibrahim S, Bom MJ, Earls JP, Min JK, Planken RN, Choi AD, Natarajan P, Stroes ESG, Knaapen P, Reeskamp LF, Fahed AC. Polygenic Risk Is Associated With Long-Term Coronary Plaque Progression and High-Risk Plaque. JACC Cardiovasc Imaging 2024:S1936-878X(24)00253-5. [PMID: 39152960 DOI: 10.1016/j.jcmg.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The longitudinal relation between coronary artery disease (CAD) polygenic risk score (PRS) and long-term plaque progression and high-risk plaque (HRP) features is unknown. OBJECTIVES The goal of this study was to investigate the impact of CAD PRS on long-term coronary plaque progression and HRP. METHODS Patients underwent CAD PRS measurement and prospective serial coronary computed tomography angiography (CTA) imaging. Coronary CTA scans were analyzed with a previously validated artificial intelligence-based algorithm (atherosclerosis imaging-quantitative computed tomography imaging). The relationship between CAD PRS and change in percent atheroma volume (PAV), percent noncalcified plaque progression, and HRP prevalence was investigated in linear mixed-effect models adjusted for baseline plaque volume and conventional risk factors. RESULTS A total of 288 subjects (mean age 58 ± 7 years; 60% male) were included in this study with a median scan interval of 10.2 years. At baseline, patients with a high CAD PRS had a more than 5-fold higher PAV than those with a low CAD PRS (10.4% vs 1.9%; P < 0.001). Per 10 years of follow-up, a 1 SD increase in CAD PRS was associated with a 0.69% increase in PAV progression in the multivariable adjusted model. CAD PRS provided additional discriminatory benefit for above-median noncalcified plaque progression during follow-up when added to a model with conventional risk factors (AUC: 0.73 vs 0.69; P = 0.039). Patients with high CAD PRS had an OR of 2.85 (95% CI: 1.14-7.14; P = 0.026) and 6.16 (95% CI: 2.55-14.91; P < 0.001) for having HRP at baseline and follow-up compared with those with low CAD PRS. CONCLUSIONS Polygenic risk is strongly associated with future long-term plaque progression and HRP in patients suspected of having CAD.
Collapse
Affiliation(s)
- Nick S Nurmohamed
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Division of Cardiology, The George Washington University School of Medicine, Washington, DC, USA
| | - Injeong Shim
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of South Korea
| | - Emilie L Gaillard
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Shirin Ibrahim
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Michiel J Bom
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | - R Nils Planken
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Universiteit van Amsterdam, Amsterdam, the Netherlands
| | - Andrew D Choi
- Division of Cardiology, The George Washington University School of Medicine, Washington, DC, USA
| | - Pradeep Natarajan
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Knaapen
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Akl C Fahed
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Buckler AJ, Abbara S, Budoff MJ, Carr JJ, De Cecco CN, DeMarco JK, Ferencik M, Figtree GA, Ikuta I, Kolossváry M, Konrad M, Lal BK, Marques H, Moss AJ, Obuchowski NA, van Beek EJR, Virmani R, Williams MC, Saba L, Joseph Schoepf U. Special Report on the Consensus QIBA Profile for Objective Analytical Validation of Non-calcified and High-risk Plaque and Other Biomarkers using Computed Tomography Angiography. Acad Radiol 2024:S1076-6332(24)00448-3. [PMID: 39060206 DOI: 10.1016/j.acra.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
RATIONALE AND OBJECTIVES Evidence is building in support of the clinical utility of atherosclerotic plaque imaging by computed tomography angiography (CTA). There is increasing organized activity to embrace non-calcified plaque (NCP) as a formally defined biomarker for clinical trials, and high-risk plaque (HRP) for clinical care, as the most relevant measures for the field to advance and worthy of community efforts to validate. Yet the ability to assess the quantitative performance of any given specific solution to make these measurements or classifications is not available. Vendors use differing definitions, assessment metrics, and validation data sets to describe their offerings without clinician users having the capability to make objective assessments of accuracy and precision and how this affects diagnostic confidence. MATERIALS AND METHODS The QIBA Profile for Atherosclerosis Biomarkers by CTA was created by the Quantitative Imaging Biomarkers Alliance (QIBA) to improve objectivity and decrease the variability of noninvasive plaque phenotyping. The Profile provides claims on the accuracy and precision of plaque measures individually and when combined. RESULTS Individual plaque morphology measurements are evaluated in terms of bias (accuracy), slope (consistency of the bias across the measurement range, needed for measurements of change), and variability. The multiparametric plaque stability phenotype is evaluated in terms of agreement with expert pathologists. The Profile is intended for a broad audience, including those engaged in discovery science, clinical trials, and patient care. CONCLUSION This report provides a rationale and overview of the Profile claims and how to comply with the Profile in research and clinical practice. SUMMARY STATEMENT This article summarizes objective means to validate the analytical performance of non-calcified plaque (NCP), other emerging plaque morphology measurements, and multiparametric histology-defined high-risk plaque (HRP), as outlined in the QIBA Profile for Atherosclerosis Biomarkers by CTA.
Collapse
Affiliation(s)
| | | | - Matthew J Budoff
- Department of Medicine, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA (M.J.B.)
| | - John Jeffrey Carr
- Vanderbilt University Medical Center, Nashville, Tennessee, USA (J.J.C.)
| | | | - J Kevin DeMarco
- Walter Reed National Military Medical Center and Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA (J.K.D.)
| | - Maros Ferencik
- Oregon Health & Science University, Portland, Oregon, USA (M.F.)
| | - Gemma A Figtree
- Department of Cardiology, Royal North Shore Hospital, St Leonards, NSW, Australia (G.A.F.); Cardiovascular Discovery Group, Kolling Institute of Medical Research, St Leonards, Australia (G.A.F.); Faculty of Medicine & Health, University of Sydney, Camperdown, Royal North Shore Hospital, St Leonards, NSW, Australia (G.A.F.)
| | - Ichiro Ikuta
- Mayo Clinic Arizona, Phoenix, Arizona, USA (I.I.)
| | - Márton Kolossváry
- Gottsegen National Cardiovascular Center, Budapest, Hungary (M.K.); Physiological Controls Research Center, University Research and Innovation Center, Óbuda University, Budapest, Hungary (M.K.)
| | - Mathis Konrad
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany (M.K.)
| | - Brajesh K Lal
- Department of Vascular Surgery, University of Maryland, Baltimore, Maryland, USA (B.K.L.); Vascular Service, VA Medical Center, Baltimore, Maryland, USA (B.K.L.)
| | - Hugo Marques
- Hospital da Luz, Imaging Department - Católica Medical School, Lisboa, Portugal (H.M.)
| | - Alastair J Moss
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK (A.J.M.)
| | - Nancy A Obuchowski
- Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio, USA (N.A.O.)
| | | | - Renu Virmani
- CV Path Institute, Gaithersburg, Maryland, USA (R.V.)
| | - Michelle C Williams
- Emory University, Atlanta, Georgia, USA (C.N.D.C., M.C.W.); Centre for Cardiovascular Science, University of Edinburgh, Scotland (M.C.W.)
| | - Luca Saba
- University of Cagliari, Sardinia, Italy (L.S.)
| | - U Joseph Schoepf
- Medical University of South Carolina, Charleston, South Carolina, USA (U.J.S.)
| |
Collapse
|
10
|
Aldana-Bitar J, Bhatt DL, Budoff MJ. Regression and stabilization of atherogenic plaques. Trends Cardiovasc Med 2024; 34:340-346. [PMID: 37494987 DOI: 10.1016/j.tcm.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Atherosclerotic plaque assessment has become a crucial element in the examination of cardiovascular diseases. Plaque may exhibit progression and could become unstable if not treated, making plaque regression and stabilization among the most important goals of any cardiovascular intervention in cardiovascular medicine. In this review, we explore the current understanding of plaque regression and stabilization, discuss imaging and measurement techniques, and examine the evidence for pharmacological interventions and other interventions aimed at addressing this condition.
Collapse
Affiliation(s)
- Jairo Aldana-Bitar
- The Lundquist Institute at Harbor-UCLA Medical Center, Division of Cardiology, Los Angeles, CA, USA
| | - Deepak L Bhatt
- Mount Sinai Heart, Dr. Valentin Fuster Professor of Medicine, Icahn School of Medicine at Mount Sinai Health System, New York, NY, USA
| | - Matthew J Budoff
- The Lundquist Institute at Harbor-UCLA Medical Center, Division of Cardiology, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Gao Y, Pan Y, Jia C. Influencing factors and improvement methods of coronary artery plaque evaluation in CT. Front Cardiovasc Med 2024; 11:1395350. [PMID: 38984352 PMCID: PMC11232181 DOI: 10.3389/fcvm.2024.1395350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/14/2024] [Indexed: 07/11/2024] Open
Abstract
Accurate evaluation of the nature and composition of coronary plaque involves clinical follow-up and prognosis. Coronary CT angiography is the most commonly non-invasive method for plaque evaluation, however, the qualitative and quantitative evaluation of plaque based on CT value is inaccurate, due to the influence of luminal attenuation, tube voltage, parameter setting and the subjectivity.
Collapse
Affiliation(s)
- Yaqi Gao
- Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yao Pan
- Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chongfu Jia
- Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Yoshida K, Tanabe Y, Hosokawa T, Morikawa T, Fukuyama N, Kobayashi Y, Kouchi T, Kawaguchi N, Matsuda M, Kido T, Kido T. Coronary computed tomography angiography for clinical practice. Jpn J Radiol 2024; 42:555-580. [PMID: 38453814 PMCID: PMC11139719 DOI: 10.1007/s11604-024-01543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024]
Abstract
Coronary artery disease (CAD) is a common condition caused by the accumulation of atherosclerotic plaques. It can be classified into stable CAD or acute coronary syndrome. Coronary computed tomography angiography (CCTA) has a high negative predictive value and is used as the first examination for diagnosing stable CAD, particularly in patients at intermediate-to-high risk. CCTA is also adopted for diagnosing acute coronary syndrome, particularly in patients at low-to-intermediate risk. Myocardial ischemia does not always co-exist with coronary artery stenosis, and the positive predictive value of CCTA for myocardial ischemia is limited. However, CCTA has overcome this limitation with recent technological advancements such as CT perfusion and CT-fractional flow reserve. In addition, CCTA can be used to assess coronary artery plaques. Thus, the indications for CCTA have expanded, leading to an increased demand for radiologists. The CAD reporting and data system (CAD-RADS) 2.0 was recently proposed for standardizing CCTA reporting. This RADS evaluates and categorizes patients based on coronary artery stenosis and the overall amount of coronary artery plaque and links this to patient management. In this review, we aimed to review the major trials and guidelines for CCTA to understand its clinical role. Furthermore, we aimed to introduce the CAD-RADS 2.0 including the assessment of coronary artery stenosis, plaque, and other key findings, and highlight the steps for CCTA reporting. Finally, we aimed to present recent research trends including the perivascular fat attenuation index, artificial intelligence, and the advancements in CT technology.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takaaki Hosokawa
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tomoro Morikawa
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoki Fukuyama
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yusuke Kobayashi
- Department of Radiology, Matsuyama Red Cross Hospital, Bunkyocho, Matsuyama, Ehime, Japan
| | - Takanori Kouchi
- Department of Radiology, Juzen General Hospital, Kitashinmachi, Niihama, Ehime, Japan
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Megumi Matsuda
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
13
|
Manubolu VS, Ichikawa K, Budoff MJ. Innovations in cardiac computed tomography: Imaging in coronary artery disease. Prog Cardiovasc Dis 2024; 84:51-59. [PMID: 38754532 DOI: 10.1016/j.pcad.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool in the non-invasive evaluation of coronary artery disease (CAD). Recent advancements in imaging techniques, quantitative plaque assessment methods, assessment of coronary physiology, and perivascular coronary inflammation have propelled CCTA to the forefront of CAD management, enabling precise risk stratification, disease monitoring, and evaluation of treatment response. However, challenges persist, including the need for cardiovascular outcomes data for therapy modifications based on CCTA findings and the lack of standardized quantitative plaque assessment techniques to establish universal guidelines for treatment strategies. This review explores the current utilization of CCTA in clinical practice, highlighting its clinical impact and discussing challenges and opportunities for future development. By addressing these nuances, CCTA holds promise for revolutionizing coronary imaging and improving CAD management in the years to come. Ultimately, the goal is to provide precise risk stratification, optimize medical therapy, and improve cardiovascular outcomes while ensuring cost-effectiveness for healthcare systems.
Collapse
|
14
|
Lee SE, Hong Y, Hong J, Jung J, Sung JM, Andreini D, Al-Mallah MH, Budoff MJ, Cademartiri F, Chinnaiyan K, Choi JH, Chun EJ, Conte E, Gottlieb I, Hadamitzky M, Kim YJ, Lee BK, Leipsic JA, Maffei E, Marques H, Gonçalves PDA, Pontone G, Shin S, Stone PH, Samady H, Virmani R, Narula J, Shaw LJ, Bax JJ, Lin FY, Min JK, Chang HJ. Prediction of the development of new coronary atherosclerotic plaques with radiomics. J Cardiovasc Comput Tomogr 2024; 18:274-280. [PMID: 38378314 DOI: 10.1016/j.jcct.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Radiomics is expected to identify imaging features beyond the human eye. We investigated whether radiomics can identify coronary segments that will develop new atherosclerotic plaques on coronary computed tomography angiography (CCTA). METHODS From a prospective multinational registry of patients with serial CCTA studies at ≥ 2-year intervals, segments without identifiable coronary plaque at baseline were selected and radiomic features were extracted. Cox models using clinical risk factors (Model 1), radiomic features (Model 2) and both clinical risk factors and radiomic features (Model 3) were constructed to predict the development of a coronary plaque, defined as total PV ≥ 1 mm3, at follow-up CCTA in each segment. RESULTS In total, 9583 normal coronary segments were identified from 1162 patients (60.3 ± 9.2 years, 55.7% male) and divided 8:2 into training and test sets. At follow-up CCTA, 9.8% of the segments developed new coronary plaque. The predictive power of Models 1 and 2 was not different in both the training and test sets (C-index [95% confidence interval (CI)] of Model 1 vs. Model 2: 0.701 [0.690-0.712] vs. 0.699 [0.0.688-0.710] and 0.696 [0.671-0.725] vs. 0.0.691 [0.667-0.715], respectively, all p > 0.05). The addition of radiomic features to clinical risk factors improved the predictive power of the Cox model in both the training and test sets (C-index [95% CI] of Model 3: 0.772 [0.762-0.781] and 0.767 [0.751-0.787], respectively, all p < 00.0001 compared to Models 1 and 2). CONCLUSION Radiomic features can improve the identification of segments that would develop new coronary atherosclerotic plaque. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT0280341.
Collapse
Affiliation(s)
- Sang-Eun Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea; CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Youngtaek Hong
- CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jongsoo Hong
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Juyeong Jung
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Min Sung
- CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Daniele Andreini
- IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Matthew J Budoff
- Department of Medicine, Lundquist Institute at Harbor-UCLA, Torrance, CA, USA
| | | | | | | | - Eun Ju Chun
- Seoul National University Bundang Hospital, Seongnam, South Korea
| | | | - Ilan Gottlieb
- Department of Radiology, Casa de Saude São Jose, Rio de Janeiro, Brazil
| | - Martin Hadamitzky
- Department of Radiology and Nuclear Medicine, German Heart Center Munich, Munich, Germany
| | - Yong Jin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Byoung Kwon Lee
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, BC, Canada
| | | | - Hugo Marques
- UNICA, Unit of Cardiovascular Imaging, Hospital da Luz, Lisbon, Portugal
| | | | - Gianluca Pontone
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Dental and Surgical Sciences, University of Milan, Milan, Italy
| | - Sanghoon Shin
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Peter H Stone
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Habib Samady
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Jagat Narula
- University of Texas Health Houston, Houston, TX, USA
| | - Leslee J Shaw
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fay Y Lin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Hyuk-Jae Chang
- CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea; Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea.
| |
Collapse
|
15
|
Tajima A, Bouisset F, Ohashi H, Sakai K, Mizukami T, Rizzini ML, Gallo D, Chiastra C, Morbiducci U, Ali ZA, Spratt JC, Ando H, Amano T, Kitslaar P, Wilgenhof A, Sonck J, De Bruyne B, Collet C. Advanced CT Imaging for the Assessment of Calcific Coronary Artery Disease and PCI Planning. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2024; 3:101299. [PMID: 39131223 PMCID: PMC11307873 DOI: 10.1016/j.jscai.2024.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 08/13/2024]
Abstract
Vascular calcification is a hallmark of atherosclerosis and adds considerable challenges for percutaneous coronary intervention (PCI). This review underscores the critical role of coronary computed tomography (CT) angiography in assessing and quantifying vascular calcification for optimal PCI planning. Severe calcification significantly impacts procedural outcomes, necessitating accurate preprocedural evaluation. We describe the potential of coronary CT for calcium assessment and how CT may enhance precision in device selection and procedural strategy. These advancements, along with the ongoing Precise Procedural and PCI Plan study, represent a transformative shift toward personalized PCI interventions, ultimately improving patient outcomes in the challenging landscape of calcified coronary lesions.
Collapse
Affiliation(s)
- Atomu Tajima
- Cardiovascular Center, OLV Hospital, Aalst, Belgium
| | | | - Hirofumi Ohashi
- Department of Cardiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Koshiro Sakai
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | | | - Maurizio Lodi Rizzini
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Diego Gallo
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Claudio Chiastra
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Ziad A. Ali
- St Francis Hospital & Heart Center, Roslyn, New York
| | | | - Hirohiko Ando
- Department of Cardiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tetsuya Amano
- Department of Cardiology, Aichi Medical University, Nagakute, Aichi, Japan
| | | | - Adriaan Wilgenhof
- Cardiovascular Center, OLV Hospital, Aalst, Belgium
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Jeroen Sonck
- Cardiovascular Center, OLV Hospital, Aalst, Belgium
| | | | | |
Collapse
|
16
|
Xiao H, Wang X, Yang P, Wang L, Xu J. Optimization of uniformity in coronary artery enhancement using a bolus tracking technique with a dual region of interest in coronary computed tomographic angiography. Acta Radiol 2024; 65:202-210. [PMID: 38059327 DOI: 10.1177/02841851231215421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
BACKGROUND Consistent coronary artery enhancement is essential to achieve accurate and reproducible quantification of coronary plaque composition. PURPOSE To optimize coronary artery uniformity of enhancement using a bolus tracking technique with a dual region of interest (ROI) in coronary computed tomography angiography (CCTA) on a 320-detector CT scanner. MATERIAL AND METHODS This prospective study recruited 100 consecutive patients who underwent CCTA and were randomly divided into two groups, namely, a manual trigger group (n = 50), in which a manual fast start technique was used to start the diagnostic scan with the visual evaluation of attenuation in the left atrium and left ventricle, and an automatic trigger group (n = 50), in which a bolus tracking technique was used to automatically start the breath-holding command and diagnostic scan with two ROIs placed in the right and left ventricles. Coronary artery image quality was assessed using quantitative and qualitative scores. The enhancement uniformity was characterized by attenuation variability of the ascending aorta (AAO) and coronary arteries. RESULTS No statistically significant differences in the image quality of the coronary arteries were observed between the two groups (all P > 0.05). The coefficients of variation (COVs) of arterial attenuation in the automatic trigger group were significantly smaller than in the manual trigger group (AAO: 9.89% vs. 17.93%; LMA: 10.35% vs. 18.98%; LAD proximal: 12.09% vs. 20.84%; LCX proximal: 11.85% vs. 20.95%; RCA proximal: 12.13% vs. 20.84%; all P < 0.05). CONCLUSION The automatic trigger technique accompanied with dual ROI provides consistent coronary artery enhancement and optimizes coronary artery enhancement uniformity in CCTA on a 320-detector CT scanner.
Collapse
Affiliation(s)
- Huawei Xiao
- Heart Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangquan Wang
- Heart Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Panfeng Yang
- Heart Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ling Wang
- Heart Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jian Xu
- Heart Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Calicchio F, Hu E, Newlander S, Van Rosendael A, Epstein E, Robinson A, Spierling Bagsic SR, Stojanovska J, Gonzalez J, Wesbey G. The effect of tube voltage on scan-rescan reproducibility of compositional plaque volume: technical variability is not true biological change. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae041. [PMID: 39045182 PMCID: PMC11195690 DOI: 10.1093/ehjimp/qyae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Affiliation(s)
| | - Eric Hu
- Department of Research and Development, Scripps Health, La Jolla, CA, USA
| | - Shawn Newlander
- Scripps Clinic, Scripps Health, 9898 Genesee Ave, 92037, La Jolla, CA, USA
| | | | - Elizabeth Epstein
- Scripps Clinic, Scripps Health, 9898 Genesee Ave, 92037, La Jolla, CA, USA
| | - Austin Robinson
- Scripps Clinic, Scripps Health, 9898 Genesee Ave, 92037, La Jolla, CA, USA
| | | | - Jadranka Stojanovska
- Department of Radiology and Cardiac Imaging, New York University Medical Center, New York, NY, USA
| | - Jorge Gonzalez
- Scripps Clinic, Scripps Health, 9898 Genesee Ave, 92037, La Jolla, CA, USA
| | - George Wesbey
- Scripps Clinic, Scripps Health, 9898 Genesee Ave, 92037, La Jolla, CA, USA
| |
Collapse
|
18
|
Omori H, Matsuo H, Fujimoto S, Sobue Y, Nozaki Y, Nakazawa G, Takahashi K, Osawa K, Okubo R, Kaneko U, Sato H, Kajiya T, Miyoshi T, Ichikawa K, Abe M, Kitagawa T, Ikenaga H, Saji M, Iguchi N, Ijichi T, Mikamo H, Kurata A, Moroi M, Iijima R, Malkasian S, Crabtree T, Min JK, Earls JP, Nakanishi R. Determination of lipid-rich plaques by artificial intelligence-enabled quantitative computed tomography using near-infrared spectroscopy as reference. Atherosclerosis 2023; 386:117363. [PMID: 37944269 DOI: 10.1016/j.atherosclerosis.2023.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Artificial intelligence quantitative CT (AI-QCT) determines coronary plaque morphology with high efficiency and accuracy. Yet, its performance to quantify lipid-rich plaque remains unclear. This study investigated the performance of AI-QCT for the detection of low-density noncalcified plaque (LD-NCP) using near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS). METHODS The INVICTUS Registry is a multi-center registry enrolling patients undergoing clinically indicated coronary CT angiography and IVUS, NIRS-IVUS, or optical coherence tomography. We assessed the performance of various Hounsfield unit (HU) and volume thresholds of LD-NCP using maxLCBI4mm ≥ 400 as the reference standard and the correlation of the vessel area, lumen area, plaque burden, and lesion length between AI-QCT and IVUS. RESULTS This study included 133 atherosclerotic plaques from 47 patients who underwent coronary CT angiography and NIRS-IVUS The area under the curve of LD-NCP<30HU was 0.97 (95% confidence interval [CI]: 0.93-1.00] with an optimal volume threshold of 2.30 mm3. Accuracy, sensitivity, and specificity were 94% (95% CI: 88-96%], 93% (95% CI: 76-98%), and 94% (95% CI: 88-98%), respectively, using <30 HU and 2.3 mm3, versus 42%, 100%, and 27% using <30 HU and >0 mm3 volume of LD-NCP (p < 0.001 for accuracy and specificity). AI-QCT strongly correlated with IVUS measurements; vessel area (r2 = 0.87), lumen area (r2 = 0.87), plaque burden (r2 = 0.78) and lesion length (r2 = 0.88), respectively. CONCLUSIONS AI-QCT demonstrated excellent diagnostic performance in detecting significant LD-NCP using maxLCBI4mm ≥ 400 as the reference standard. Additionally, vessel area, lumen area, plaque burden, and lesion length derived from AI-QCT strongly correlated with respective IVUS measurements.
Collapse
Affiliation(s)
- Hiroyuki Omori
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Shinichiro Fujimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Yoshihiro Sobue
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Yui Nozaki
- Department of Cardiovascular Biology and Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Gaku Nakazawa
- Department of Cardiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kuniaki Takahashi
- Department of Cardiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuhiro Osawa
- Department of General Internal Medicine 3, Kawasaki Medical School General Medical Center, Okayama Red-Cross Hospital, Okayama, Japan
| | - Ryo Okubo
- Toho University Omori Medical Center, Tokyo, Japan
| | | | - Hideyuki Sato
- Edogawa Hospital Tokyo, Japan; Department of Radiological Technology, Juntendo University Hospital, Tokyo, Japan
| | | | - Toru Miyoshi
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Keishi Ichikawa
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | | | - Toshiro Kitagawa
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroki Ikenaga
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mike Saji
- Toho University Omori Medical Center, Tokyo, Japan; Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Nobuo Iguchi
- Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Takeshi Ijichi
- Department of Cardiology, Tokai University, School of Medicine, Kanagawa, Japan
| | - Hiroshi Mikamo
- Department of Cardiology, Toho University Sakura Medical Center, Chiba, Japan
| | - Akira Kurata
- Department of Cardiology, Shikoku Cancer Center, Department of Radiology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Raisuke Iijima
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | | | | | | | - James P Earls
- Cleerly Inc., CO, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | |
Collapse
|
19
|
Aldana-Bitar J, Karlsberg RP, Budoff MJ. Letter by Aldana-Bitar et al Regarding Article, "Alirocumab and Coronary Atherosclerosis in Asymptomatic Patients With Familial Hypercholesterolemia: The ARCHITECT Study". Circulation 2023; 148:1057. [PMID: 37747953 DOI: 10.1161/circulationaha.123.065198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Affiliation(s)
- Jairo Aldana-Bitar
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center (J.A-B., M.J.B.)
- Cardiovascular Research Foundation of Southern California, Beverly Hills (J.A-B., R.P.K.)
| | - Ronald P Karlsberg
- Cardiovascular Research Foundation of Southern California, Beverly Hills (J.A-B., R.P.K.)
| | - Matthew J Budoff
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center (J.A-B., M.J.B.)
| |
Collapse
|
20
|
Bienstock S, Lin F, Blankstein R, Leipsic J, Cardoso R, Ahmadi A, Gelijns A, Patel K, Baldassarre LA, Hadley M, LaRocca G, Sanz J, Narula J, Chandrashekhar YS, Shaw LJ, Fuster V. Advances in Coronary Computed Tomographic Angiographic Imaging of Atherosclerosis for Risk Stratification and Preventive Care. JACC Cardiovasc Imaging 2023; 16:1099-1115. [PMID: 37178070 DOI: 10.1016/j.jcmg.2023.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 05/15/2023]
Abstract
The diagnostic evaluation of coronary artery disease is undergoing a dramatic transformation with a new focus on atherosclerotic plaque. This review details the evidence needed for effective risk stratification and targeted preventive care based on recent advances in automated measurement of atherosclerosis from coronary computed tomography angiography (CTA). To date, research findings support that automated stenosis measurement is reasonably accurate, but evidence on variability by location, artery size, or image quality is unknown. The evidence for quantification of atherosclerotic plaque is unfolding, with strong concordance reported between coronary CTA and intravascular ultrasound measurement of total plaque volume (r >0.90). Statistical variance is higher for smaller plaque volumes. Limited data are available on how technical or patient-specific factors result in measurement variability by compositional subgroups. Coronary artery dimensions vary by age, sex, heart size, coronary dominance, and race and ethnicity. Accordingly, quantification programs excluding smaller arteries affect accuracy for women, patients with diabetes, and other patient subsets. Evidence is unfolding that quantification of atherosclerotic plaque is useful to enhance risk prediction, yet more evidence is required to define high-risk patients across varied populations and to determine whether such information is incremental to risk factors or currently used coronary computed tomography techniques (eg, coronary artery calcium scoring or visual assessment of plaque burden or stenosis). In summary, there is promise for the utility of coronary CTA quantification of atherosclerosis, especially if it can lead to targeted and more intensive cardiovascular prevention, notably for those patients with nonobstructive coronary artery disease and high-risk plaque features. The new quantification techniques available to imagers must not only provide sufficient added value to improve patient care, but also add minimal and reasonable cost to alleviate the financial burden on our patients and the health care system.
Collapse
Affiliation(s)
- Solomon Bienstock
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fay Lin
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathon Leipsic
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Rhanderson Cardoso
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amir Ahmadi
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Annetine Gelijns
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Krishna Patel
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lauren A Baldassarre
- Department of Cardiovascular Medicine and Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael Hadley
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gina LaRocca
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Javier Sanz
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jagat Narula
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Leslee J Shaw
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Valentin Fuster
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Varga-Szemes A, Maurovich-Horvat P, Schoepf UJ, Zsarnoczay E, Pelberg R, Stone GW, Budoff MJ. Computed Tomography Assessment of Coronary Atherosclerosis: From Threshold-Based Evaluation to Histologically Validated Plaque Quantification. J Thorac Imaging 2023; 38:226-234. [PMID: 37115957 PMCID: PMC10287054 DOI: 10.1097/rti.0000000000000711] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Arterial plaque rupture and thrombosis is the primary cause of major cardiovascular and neurovascular events. The identification of atherosclerosis, especially high-risk plaques, is therefore crucial to identify high-risk patients and to implement preventive therapies. Computed tomography angiography has the ability to visualize and characterize vascular plaques. The standard methods for plaque evaluation rely on the assessment of plaque burden, stenosis severity, the presence of positive remodeling, napkin ring sign, and spotty calcification, as well as Hounsfield Unit (HU)-based thresholding for plaque quantification; the latter with multiple shortcomings. Semiautomated threshold-based segmentation techniques with predefined HU ranges identify and quantify limited plaque characteristics, such as low attenuation, non-calcified, and calcified plaque components. Contrary to HU-based thresholds, histologically validated plaque characterization, and quantification, an emerging Artificial intelligence-based approach has the ability to differentiate specific tissue types based on a biological correlate, such as lipid-rich necrotic core and intraplaque hemorrhage that determine plaque vulnerability. In this article, we review the relevance of plaque characterization and quantification and discuss the benefits and limitations of the currently available plaque assessment and classification techniques.
Collapse
Affiliation(s)
- Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Pal Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - U. Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Robert Pelberg
- Heart and Vascular Institute at The Christ Hospital Health Network, Cincinnati, OH
| | - Gregg W. Stone
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew J. Budoff
- Department of Medicine, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA
| |
Collapse
|
22
|
Rotzinger DC, Qanadli SD, Fahrni G. Imaging the Vulnerable Carotid Plaque with CT: Caveats to Consider. Comment on Wang et al. Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022, 12, 1192. Biomolecules 2023; 13:biom13020397. [PMID: 36830766 PMCID: PMC9953174 DOI: 10.3390/biom13020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/03/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023] Open
Abstract
We read with great interest the review by Wang et al. entitled "Identification Markers of Carotid Vulnerable Plaques: An Update", recently published in Biomolecules [...].
Collapse
Affiliation(s)
- David C. Rotzinger
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Correspondence: ; Tel.: +41-21-314-44-75
| | - Salah D. Qanadli
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Riviera-Chablais Hospital, 1847 Rennaz, Switzerland
| | - Guillaume Fahrni
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Lee SE, Sung JM, Andreini D, Al-Mallah MH, Budoff MJ, Cademartiri F, Chinnaiyan K, Choi JH, Chun EJ, Conte E, Gottlieb I, Hadamitzky M, Kim YJ, Lee BK, Leipsic JA, Maffei E, Marques H, de Araújo Gonçalves P, Pontone G, Shin S, Kitslaar PH, Reiber JH, Stone PH, Samady H, Virmani R, Narula J, Berman DS, Shaw LJ, Bax JJ, Lin FY, Min JK, Chang HJ. Association Between Changes in Perivascular Adipose Tissue Density and Plaque Progression. JACC Cardiovasc Imaging 2022; 15:1760-1767. [DOI: 10.1016/j.jcmg.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
|
24
|
Muscogiuri G, Guglielmo M, Serra A, Gatti M, Volpato V, Schoepf UJ, Saba L, Cau R, Faletti R, McGill LJ, De Cecco CN, Pontone G, Dell’Aversana S, Sironi S. Multimodality Imaging in Ischemic Chronic Cardiomyopathy. J Imaging 2022; 8:jimaging8020035. [PMID: 35200737 PMCID: PMC8877428 DOI: 10.3390/jimaging8020035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Ischemic chronic cardiomyopathy (ICC) is still one of the most common cardiac diseases leading to the development of myocardial ischemia, infarction, or heart failure. The application of several imaging modalities can provide information regarding coronary anatomy, coronary artery disease, myocardial ischemia and tissue characterization. In particular, coronary computed tomography angiography (CCTA) can provide information regarding coronary plaque stenosis, its composition, and the possible evaluation of myocardial ischemia using fractional flow reserve CT or CT perfusion. Cardiac magnetic resonance (CMR) can be used to evaluate cardiac function as well as the presence of ischemia. In addition, CMR can be used to characterize the myocardial tissue of hibernated or infarcted myocardium. Echocardiography is the most widely used technique to achieve information regarding function and myocardial wall motion abnormalities during myocardial ischemia. Nuclear medicine can be used to evaluate perfusion in both qualitative and quantitative assessment. In this review we aim to provide an overview regarding the different noninvasive imaging techniques for the evaluation of ICC, providing information ranging from the anatomical assessment of coronary artery arteries to the assessment of ischemic myocardium and myocardial infarction. In particular this review is going to show the different noninvasive approaches based on the specific clinical history of patients with ICC.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca, 20149 Milan, Italy
- Correspondence: ; Tel.: +39-329-404-9840
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, 3584 Utrecht, The Netherlands;
| | - Alessandra Serra
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09042 Cagliari, Italy; (A.S.); (L.S.); (R.C.)
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy; (M.G.); (R.F.)
| | - Valentina Volpato
- Department of Cardiac, Neurological and Metabolic Sciences, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca, 20149 Milan, Italy;
| | - Uwe Joseph Schoepf
- Department of Radiology and Radiological Science, MUSC Ashley River Tower, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, USA; (U.J.S.); (L.J.M.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09042 Cagliari, Italy; (A.S.); (L.S.); (R.C.)
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09042 Cagliari, Italy; (A.S.); (L.S.); (R.C.)
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy; (M.G.); (R.F.)
| | - Liam J. McGill
- Department of Radiology and Radiological Science, MUSC Ashley River Tower, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, USA; (U.J.S.); (L.J.M.)
| | - Carlo Nicola De Cecco
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA;
| | | | - Serena Dell’Aversana
- Department of Radiology, Ospedale S. Maria Delle Grazie—ASL Napoli 2 Nord, 80078 Pozzuoli, Italy;
| | - Sandro Sironi
- School of Medicine and Post Graduate School of Diagnostic Radiology, University of Milano-Bicocca, 20126 Milan, Italy;
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
25
|
Maurovich-Horvat P, Simon J. Tube Voltage or Luminal Attenuation?: Different Sides of the Same Coin. JACC Cardiovasc Imaging 2021; 14:2441-2442. [PMID: 34886996 DOI: 10.1016/j.jcmg.2021.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary; Medical Imaging Center, Semmelweis University, Budapest, Hungary.
| | - Judit Simon
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary; Medical Imaging Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|