1
|
Shen MQ, Guo Q, Li W, Qian ZM. Apolipoprotein E deficiency leads to the polarization of splenic macrophages towards M1 phenotype by increasing iron content. Genes Immun 2024; 25:381-388. [PMID: 39103538 DOI: 10.1038/s41435-024-00290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Apolipoprotein E (ApoE) plays a crucial role in iron homeostasis in the body, while macrophages are the principal cells responsible for handling iron in mammals. However, it is unknown whether ApoE can affect the functional subtypes and the iron handling capacity of splenic macrophages (SM). Here, we investigated the effects of ApoE deficiency (ApoE-/-) on the polarization and iron content of SM and its potential mechanisms. ApoE-/- was found to induce a significant increase in the expressions of M1 marker genes CD86, IL-1β, IL-6, IL-12, TNF-α and iNOS and a reduction in M2 marker genes CD206, Arg-1, IL-10 and Ym-1 in SM of mice aged 28 weeks, Meanwhile, ApoE-/- caused a significant increase in iron content and expression of ferritin, transferrin receptor 1 (TfR1), iron regulatory protein 1 (IRP1) and heme oxygenase-1 (HO-1) and a reduction in ferroportin1 (Fpn1) in spleen and/or SM of mice aged 28 weeks. It was concluded that ApoE-/- can increase iron content through increased iron uptake mediated by TfR/ IRPs and decreased iron release mediated by Fpn1, leading to polarization of the SM to M1 phenotype.
Collapse
Affiliation(s)
- Meng-Qi Shen
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China
- School of Health Medicine, Nantong Polytechnic College, Nantong, China
| | - Qian Guo
- School of Medicine, Shanghai University, Shanghai, China.
| | - Wei Li
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Panyard DJ, McKetney J, Deming YK, Morrow AR, Ennis GE, Jonaitis EM, Van Hulle CA, Yang C, Sung YJ, Ali M, Kollmorgen G, Suridjan I, Bayfield A, Bendlin BB, Zetterberg H, Blennow K, Cruchaga C, Carlsson CM, Johnson SC, Asthana S, Coon JJ, Engelman CD. Large-scale proteome and metabolome analysis of CSF implicates altered glucose and carbon metabolism and succinylcarnitine in Alzheimer's disease. Alzheimers Dement 2023; 19:5447-5470. [PMID: 37218097 PMCID: PMC10663389 DOI: 10.1002/alz.13130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION A hallmark of Alzheimer's disease (AD) is the aggregation of proteins (amyloid beta [A] and hyperphosphorylated tau [T]) in the brain, making cerebrospinal fluid (CSF) proteins of particular interest. METHODS We conducted a CSF proteome-wide analysis among participants of varying AT pathology (n = 137 participants; 915 proteins) with nine CSF biomarkers of neurodegeneration and neuroinflammation. RESULTS We identified 61 proteins significantly associated with the AT category (P < 5.46 × 10-5 ) and 636 significant protein-biomarker associations (P < 6.07 × 10-6 ). Proteins from glucose and carbon metabolism pathways were enriched among amyloid- and tau-associated proteins, including malate dehydrogenase and aldolase A, whose associations with tau were replicated in an independent cohort (n = 717). CSF metabolomics identified and replicated an association of succinylcarnitine with phosphorylated tau and other biomarkers. DISCUSSION These results implicate glucose and carbon metabolic dysregulation and increased CSF succinylcarnitine levels with amyloid and tau pathology in AD. HIGHLIGHTS Cerebrospinal fluid (CSF) proteome enriched for extracellular, neuronal, immune, and protein processing. Glucose/carbon metabolic pathways enriched among amyloid/tau-associated proteins. Key glucose/carbon metabolism protein associations independently replicated. CSF proteome outperformed other omics data in predicting amyloid/tau positivity. CSF metabolomics identified and replicated a succinylcarnitine-phosphorylated tau association.
Collapse
Affiliation(s)
- Daniel J. Panyard
- Department of Population Health Sciences, University of Wisconsin-Madison; 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
| | - Justin McKetney
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison; Madison, WI 53706, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison; Madison, WI 53506, United States of America
| | - Yuetiva K. Deming
- Department of Population Health Sciences, University of Wisconsin-Madison; 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison; 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
| | - Autumn R. Morrow
- Department of Population Health Sciences, University of Wisconsin-Madison; 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
| | - Gilda E. Ennis
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
| | - Erin M. Jonaitis
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison; 610 Walnut Street, 9 Floor, Madison, WI 53726, United States of America
| | - Carol A. Van Hulle
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison; 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
| | - Chengran Yang
- Department of Psychiatry, Washington University School of Medicine; St Louis, MO 63110, United States of America
- NeuroGenomics and Informatics Center, Washington University School of Medicine; St Louis, MO 63110, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine; St Louis, MO 63110, United States of America
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine; St Louis, MO 63110, United States of America
- NeuroGenomics and Informatics Center, Washington University School of Medicine; St Louis, MO 63110, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine; St Louis, MO 63110, United States of America
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine; St Louis, MO 63110, United States of America
- NeuroGenomics and Informatics Center, Washington University School of Medicine; St Louis, MO 63110, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine; St Louis, MO 63110, United States of America
| | | | | | | | - Barbara B. Bendlin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison; 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison; 610 Walnut Street, 9 Floor, Madison, WI 53726, United States of America
- William S. Middleton Memorial Veterans Hospital; 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital; Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology; London, UK
- UK Dementia Research Institute at UCL; London, UK
- Hong Kong Center for Neurodegenerative Diseases; Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital; Mölndal, Sweden
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine; St Louis, MO 63110, United States of America
- NeuroGenomics and Informatics Center, Washington University School of Medicine; St Louis, MO 63110, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine; St Louis, MO 63110, United States of America
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison; 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison; 610 Walnut Street, 9 Floor, Madison, WI 53726, United States of America
- William S. Middleton Memorial Veterans Hospital; 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison; 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison; 610 Walnut Street, 9 Floor, Madison, WI 53726, United States of America
- William S. Middleton Memorial Veterans Hospital; 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison; 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- William S. Middleton Memorial Veterans Hospital; 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison; Madison, WI 53706, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison; Madison, WI 53506, United States of America
- Morgridge Institute for Research; Madison, WI 53706, United States of America
- Department of Chemistry, University of Wisconsin-Madison; Madison, WI 53506, United States of America
| | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin-Madison; 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
| |
Collapse
|
3
|
Fernandez M, Lokan J, Leung C, Grigg A. A critical evaluation of the role of iron overload in fatty liver disease. J Gastroenterol Hepatol 2022; 37:1873-1883. [PMID: 35906772 DOI: 10.1111/jgh.15971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 12/09/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been associated with a condition known as the dysmetabolic iron overload syndrome, but the frequency and severity of iron overload in NAFLD is not well described. There is emerging evidence that mild to moderate excess hepatic iron can aggravate the risk of progression of NAFLD to nonalcoholic steatohepatitis and eventually cirrhosis. Mechanisms are postulated to be via reactive oxygen species, inflammatory cytokines, lipid oxidation, and oxidative stress. The aim of this review is to assess the evidence for true hepatic iron overload in NAFLD, to discuss the pathogenesis by which excess iron may be toxic, and to critically evaluate the studies designed to deplete iron by regular venesection. In brief, the studies are inconclusive due to heterogeneity in eligibility criteria, sample size, randomization, hepatic iron measurement, serial histological endpoints, target ferritin levels, length of venesection, and degree of confounding lifestyle intervention. We propose a trial designed to overcome the limitations of these studies.
Collapse
Affiliation(s)
- Monique Fernandez
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Julie Lokan
- Department of Anatomical Pathology, Austin Health, Heidelberg, Victoria, Australia
| | - Christopher Leung
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia.,Departments of Gastroenterology and Hepatology, Austin Health, Heidelberg, Victoria, Australia
| | - Andrew Grigg
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia.,Department of Clinical Haematology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
4
|
Vinchi F. Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxid Redox Signal 2021; 35:387-414. [PMID: 33554718 PMCID: PMC8328045 DOI: 10.1089/ars.2020.8167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Significance: While atherosclerosis is an almost inevitable consequence of aging, food preferences, lack of exercise, and other aspects of the lifestyle in many countries, the identification of new risk factors is of increasing importance to tackle a disease, which has become a major health burden for billions of people. Iron has long been suspected to promote the development of atherosclerosis, but data have been conflicting, and the contribution of iron is still debated controversially. Recent Advances: Several experimental and clinical studies have been recently published about this longstanding controversial problem, highlighting the critical need to unravel the complexity behind this topic. Critical Issues: The aim of the current review is to provide an overview of the current knowledge about the proatherosclerotic impact of iron, and discuss the emerging role of non-transferrin-bound iron (NTBI) as driver of vasculotoxicity and atherosclerosis. Finally, I will provide detailed mechanistic insights on the cellular processes and molecular pathways underlying iron-exacerbated atherosclerosis. Overall, this review highlights a complex framework where NTBI acts at multiple levels in atherosclerosis by altering the serum and vascular microenvironment in a proatherogenic and proinflammatory manner, affecting the functionality and survival of vascular cells, promoting foam cell formation and inducing angiogenesis, calcification, and plaque destabilization. Future Directions: The use of additional iron markers (e.g., NTBI) may help adequately predict predisposition to cardiovascular disease. Clinical studies are needed in the aging population to address the atherogenic role of iron fluctuations within physiological limits and the therapeutic value of iron restriction approaches. Antioxid. Redox Signal. 35, 387-414.
Collapse
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), New York Blood Center (NYBC), New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
5
|
Inder WJ, Mohamed A, Keshvari S, Barclay JL, Ruelcke JE, Stoll T, Nolan BJ, Cesana-Nigro N, Hill MM. Ex vivo glucocorticoid-induced secreted proteome approach for discovery of glucocorticoid-responsive proteins in human serum. Proteomics Clin Appl 2021; 15:e2000078. [PMID: 33641263 DOI: 10.1002/prca.202000078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To identify glucocorticoid-responsive proteins measurable in human serum that may have clinical utility in therapeutic drug monitoring and the diagnosis of cortisol excess or deficiency. EXPERIMENTAL DESIGN A phased biomarker discovery strategy was conducted in two cohorts. Secretome from peripheral blood mononuclear cells (PBMC) isolated from six volunteers after ex vivo incubation ± dexamethasone (DEX) 100 ng/mL for 4 h and 24 h was used for candidate discovery and qualification using untargeted proteomics and a custom multiple reaction monitoring mass spectrometry (MRM-MS) assay, respectively. For validation, five candidates were measured by immunoassay in serum from an independent cohort (n = 20), sampled at 1200 h before and after 4 mg oral DEX. RESULTS The discovery secretome proteomics data generated a shortlist of 45 candidates, with 43 measured in the final MRM-MS assay. Differential analysis revealed 16 proteins that were significant in at least one of two time points. In the validation cohort, 3/5 serum proteins were DEX-responsive, two significantly decreased: lysozyme C (p < 0.0001) and nucleophosmin-1 (p < 0.01), while high mobility group box 2 significantly increased (p < 0.01). CONCLUSIONS AND CLINICAL RELEVANCE Using an ex vivo proteomic approach in PBMC, we have identified circulating glucocorticoid-responsive proteins which may have potential as serum biomarkers of glucocorticoid activity.
Collapse
Affiliation(s)
- Warrick J Inder
- Faculty of Medicine, the University of Queensland, Brisbane, Queensland, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Johanna L Barclay
- Mater Research Institute, the University of Queensland, Brisbane, Queensland, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- University of NSW, Sydney, New South Wales, Australia
| | - Jayde E Ruelcke
- Faculty of Medicine, University of Queensland Diamantina Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Brendan J Nolan
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Nicole Cesana-Nigro
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of NSW, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Ma J, Qian C, Bao Y, Liu MY, Ma HM, Shen MQ, Li W, Wang JJ, Bao YX, Liu Y, Ke Y, Qian ZM. Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice. Redox Biol 2021; 40:101865. [PMID: 33493903 PMCID: PMC7823209 DOI: 10.1016/j.redox.2021.101865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 12/21/2022] Open
Abstract
Association of both iron/hepcidin and apolipoprotein E (ApoE) with development of Alzheimer disease (AD) and atherosclerosis led us to hypothesize that ApoE might be required for body iron homeostasis. Here, we demonstrated that ApoE knock-out (KO) induced a progressive accumulation of iron with age in the liver and spleen of mice. Subsequent investigations showed that the increased iron in the liver and spleen was due to phosphorylated extracellular regulated protein kinases (pERK) mediated up-regulation of transferrin receptor 1 (TfR1), and nuclear factor erythroid 2-related factor-2 (Nrf2)-dependent down-regulation of ferroportin 1. Furthermore, replenishment of ApoE could partially reverse the iron-related phenotype in ApoE KO mice. The findings imply that ApoE may be essential for body iron homeostasis and also suggest that clinical late-onset diseases with unexplained iron abnormality may partly be related to deficiency or reduced expression of ApoE. Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice. ApoE−/− induced a progressive accumulation of iron with age in the liver and spleen of mice. The increased iron was due to upregulation of TfR1 and downregulation of Fpn1. Replenishment of ApoE could partially reverse the iron-related phenotype in ApoE KO mice. ApoE may be essential for body iron homeostasis.
Collapse
Affiliation(s)
- Juan Ma
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Yong Bao
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Meng-Yue Liu
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Hui-Min Ma
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Meng-Qi Shen
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Wei Li
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Jiao-Jiao Wang
- Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China; Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yong Liu
- Department of Pain and Rehabilitation, The Second Affiliated Hospital, The Army Medical University, Chongqing, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
7
|
Lojk J, Babič L, Sušjan P, Bregar VB, Pavlin M, Hafner-Bratkovič I, Veranič P. Analysis of the Direct and Indirect Effects of Nanoparticle Exposure on Microglial and Neuronal Cells In Vitro. Int J Mol Sci 2020; 21:E7030. [PMID: 32987760 PMCID: PMC7582992 DOI: 10.3390/ijms21197030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022] Open
Abstract
Environmental or biomedical exposure to nanoparticles (NPs) can results in translocation and accumulation of NPs in the brain, which can lead to health-related problems. NPs have been shown to induce toxicity to neuronal cells through several direct mechanisms, but only a few studies have also explored the indirect effects of NPs, through consequences due to the exposure of neighboring cells to NPs. In this study, we analysed possible direct and indirect effects of NPs (polyacrylic acid (PAA) coated cobalt ferrite NP, TiO2 P25 and maghemite NPs) on immortalized mouse microglial cells and differentiated CAD mouse neuronal cells in monoculture (direct toxicity) or in transwell co-culture system (indirect toxicity). We showed that although the low NP concentrations (2-25 µg/mL) did not induce changes in cell viability, cytokine secretion or NF-κB activation of microglial cells, even low NP concentrations of 10 µg/mL can affect the cells and change their secretion of protein stress mediators. These can in turn influence neuronal cells in indirect exposure model. Indirect toxicity of NPs is an important and not adequately assessed mechanism of NP toxicity, since it not only affects cells on the exposure sites, but through secretion of signaling mediators, can also affect cells that do not come in direct contact with NPs.
Collapse
Affiliation(s)
- Jasna Lojk
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (L.B.); (V.B.B.); (M.P.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Lea Babič
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (L.B.); (V.B.B.); (M.P.)
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia; (P.S.); (I.H.-B.)
| | - Petra Sušjan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia; (P.S.); (I.H.-B.)
| | - Vladimir Boštjan Bregar
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (L.B.); (V.B.B.); (M.P.)
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (L.B.); (V.B.B.); (M.P.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia; (P.S.); (I.H.-B.)
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| |
Collapse
|
8
|
Abdelhamid M, Jung CG, Zhou C, Abdullah M, Nakano M, Wakabayashi H, Abe F, Michikawa M. Dietary Lactoferrin Supplementation Prevents Memory Impairment and Reduces Amyloid-β Generation in J20 Mice. J Alzheimers Dis 2020; 74:245-259. [DOI: 10.3233/jad-191181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| | - Cha-Gyun Jung
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| | - Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| | - Mohammad Abdullah
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| | - Manabu Nakano
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co, Ltd. Zama, Kanagawa, Japan
| | - Hiroyuki Wakabayashi
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co, Ltd. Zama, Kanagawa, Japan
| | - Fumiaki Abe
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co, Ltd. Zama, Kanagawa, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Links Between Iron and Lipids: Implications in Some Major Human Diseases. Pharmaceuticals (Basel) 2018; 11:ph11040113. [PMID: 30360386 PMCID: PMC6315991 DOI: 10.3390/ph11040113] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Maintenance of iron homeostasis is critical to cellular health as both its excess and insufficiency are detrimental. Likewise, lipids, which are essential components of cellular membranes and signaling mediators, must also be tightly regulated to hinder disease progression. Recent research, using a myriad of model organisms, as well as data from clinical studies, has revealed links between these two metabolic pathways, but the mechanisms behind these interactions and the role these have in the progression of human diseases remains unclear. In this review, we summarize literature describing cross-talk between iron and lipid pathways, including alterations in cholesterol, sphingolipid, and lipid droplet metabolism in response to changes in iron levels. We discuss human diseases correlating with both iron and lipid alterations, including neurodegenerative disorders, and the available evidence regarding the potential mechanisms underlying how iron may promote disease pathogenesis. Finally, we review research regarding iron reduction techniques and their therapeutic potential in treating patients with these debilitating conditions. We propose that iron-mediated alterations in lipid metabolic pathways are involved in the progression of these diseases, but further research is direly needed to elucidate the mechanisms involved.
Collapse
|