1
|
Ghimire J, Collins ME, Snarski P, King AN, Ruiz E, Iftikhar R, Penrose HM, Moroz K, Rorison T, Baddoo M, Naeem MA, Zea AH, Magness ST, Flemington EF, Crawford SE, Savkovic SD. Obesity-Facilitated Colon Cancer Progression Is Mediated by Increased Diacylglycerol O-Acyltransferases 1 and 2 Levels. Gastroenterology 2024:S0016-5085(24)05464-7. [PMID: 39299402 DOI: 10.1053/j.gastro.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND & AIMS The obesity epidemic is associated with increased colon cancer progression. As lipid droplets (LDs) fuel tumor growth, we aimed to determine the significance of diacyltransferases (diacylglycerol o-acyltransferases 1 and 2 [DGAT1/2]), responsible for LDs biogenesis, in obesity-mediated colonic tumorigenesis. METHODS Human colon cancer samples, colon cancer cells, colonospheres, and ApcMin/+ colon cancer mouse model on a high-fat diet were employed. For DGAT1/2 inhibition, enzymatic inhibitors and small interfering RNA were used. Expression, pathways, cell cycle, and growth were assessed. Bioinformatic analyses of CUT&RUN and RNA sequencing data were performed. RESULTS DGAT1/2 levels in human colon cancer tissue are significantly elevated with disease severity and obesity (vs normal). Their levels are increased in human colon cancer cells (vs nontransformed) and further enhanced by fatty acids prevalent in obesity; augmented DGAT2 expression is MYC-dependent. Inhibition of DGAT1/2 improves FOXO3 activity by attenuating PI3K, resulting in reduced MYC-dependent DGAT2 expression and accumulation of LDs, suggesting feedback. This inhibition attenuated growth in colon cancer cells and colonospheres via FOXO3/p27kip1 cell cycle arrest and reduced colonic tumors in ApcMin/+ mice on a high-fat diet. Transcriptomic analysis revealed that DGAT1/2 inhibition targeted metabolic and tumorigenic pathways in human colon cancer and colon cancer crypts, stratifying human colon cancer samples from normal. Further analysis revealed that this inhibition is predictive of advanced disease-free state and survival in patients with colon cancer. CONCLUSIONS This is a novel mechanism of DGAT1/2-dependent metabolic and tumorigenic remodeling in obesity-facilitated colon cancer, providing a platform for future development of effective treatments for patients with colon cancer.
Collapse
Affiliation(s)
- Jenisha Ghimire
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Morgan E Collins
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Patricia Snarski
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Angelle N King
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Emmanuelle Ruiz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Rida Iftikhar
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Harrison M Penrose
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tyler Rorison
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Melody Baddoo
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Muhammad Anas Naeem
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Arnold H Zea
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott T Magness
- Department of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Erik F Flemington
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Susan E Crawford
- Department of Surgery, NorthShore University Research Institute, affiliate of University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
2
|
Snarski P, Ghimire J, Savkovic SD. FOXO3: at the crossroads of metabolic, inflammatory, and tumorigenic remodeling in the colon. Am J Physiol Gastrointest Liver Physiol 2024; 326:G247-G251. [PMID: 38193202 PMCID: PMC11211034 DOI: 10.1152/ajpgi.00201.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
The Forkhead box O3 (FOXO3) transcription factor regulates the expression of genes critical for diverse cellular functions in homeostasis. Diminished FOXO3 activity is associated with human diseases such as obesity, metabolic diseases, inflammatory diseases, and cancer. In the mouse colon, FOXO3 deficiency leads to an inflammatory immune landscape and dysregulated molecular pathways, which, under various insults, exacerbates inflammation and tumor burden, mimicking characteristics of human diseases. This deficiency also results in dysregulated lipid metabolism, and consequently, the accumulation of intracellular lipid droplets (LDs) in colonic epithelial cells and infiltrated immune cells. FOXO3 and LDs form a self-reinforcing negative regulatory loop in colonic epithelial cells, neutrophils, and macrophages, which is associated with inflammatory bowel disease and colon cancer, particularly in the context of obesity.
Collapse
Affiliation(s)
- Patricia Snarski
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Jenisha Ghimire
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
3
|
Khor YS, Wong PF. MicroRNAs-associated with FOXO3 in cellular senescence and other stress responses. Biogerontology 2024; 25:23-51. [PMID: 37646881 DOI: 10.1007/s10522-023-10059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.
Collapse
Affiliation(s)
- Yi-Sheng Khor
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Munday RM, Haque R, Wojcik GL, Korpe P, Nayak U, Kirkpatrick BD, Petri WA, Duggal P. Genome-Wide Association Studies of Diarrhea Frequency and Duration in the First Year of Life in Bangladeshi Infants. J Infect Dis 2023; 228:979-989. [PMID: 36967705 PMCID: PMC11007397 DOI: 10.1093/infdis/jiad068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Diarrhea is the second leading cause of death in children under 5 years old worldwide. Known diarrhea risk factors include sanitation, water sources, and pathogens but do not fully explain the heterogeneity in frequency and duration of diarrhea in young children. We evaluated the role of host genetics in diarrhea. METHODS Using 3 well-characterized birth cohorts from an impoverished area of Dhaka, Bangladesh, we compared infants with no diarrhea in the first year of life to those with an abundance, measured by either frequency or duration. We performed a genome-wide association analysis for each cohort under an additive model and then meta-analyzed across the studies. RESULTS For diarrhea frequency, we identified 2 genome-wide significant loci associated with not having any diarrhea, on chromosome 21 within the noncoding RNA AP000959 (C allele odds ratio [OR] = 0.31, P = 4.01 × 10-8), and on chromosome 8 within SAMD12 (T allele OR = 0.35, P = 4.74 × 10-7). For duration of diarrhea, we identified 2 loci associated with no diarrhea, including the same locus on chromosome 21 (C allele OR = 0.31, P = 1.59 × 10-8) and another locus on chromosome 17 near WSCD1 (C allele OR = 0.35, P = 1.09 × 10-7). CONCLUSIONS These loci are in or near genes involved in enteric nervous system development and intestinal inflammation and may be potential targets for diarrhea therapeutics.
Collapse
Affiliation(s)
- Rebecca M Munday
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Poonum Korpe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Uma Nayak
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - William A Petri
- Department of Medicine, Infectious Diseases, and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Zhou X, Chi K, Zhang C, Liu Q, Yang G. Sialylation: A Cloak for Tumors to Trick the Immune System in the Microenvironment. BIOLOGY 2023; 12:832. [PMID: 37372117 DOI: 10.3390/biology12060832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The tumor microenvironment (TME), where the tumor cells incite the surrounding normal cells to create an immune suppressive environment, reduces the effectiveness of immune responses during cancer development. Sialylation, a type of glycosylation that occurs on cell surface proteins, lipids, and glycoRNAs, is known to accumulate in tumors and acts as a "cloak" to help tumor cells evade immunological surveillance. In the last few years, the role of sialylation in tumor proliferation and metastasis has become increasingly evident. With the advent of single-cell and spatial sequencing technologies, more research is being conducted to understand the effects of sialylation on immunity regulation. This review provides updated insights into recent research on the function of sialylation in tumor biology and summarizes the latest developments in sialylation-targeted tumor therapeutics, including antibody-mediated and metabolic-based sialylation inhibition, as well as interference with sialic acid-Siglec interaction.
Collapse
Affiliation(s)
- Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kaijun Chi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chairui Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Quan Liu
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Ghimire J, Iftikhar R, Penrose HM, Snarski P, Ruiz E, Savkovic SD. FOXO3 Deficiency in Neutrophils Drives Colonic Inflammation and Tumorigenesis. Int J Mol Sci 2023; 24:ijms24119730. [PMID: 37298680 DOI: 10.3390/ijms24119730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel disease (IBD), characterized by infiltration of polymorphonuclear neutrophils (PMNs), increases the risk of colon cancer. PMN activation corresponds to the accumulation of intracellular Lipid Droplets (LDs). As increased LDs are negatively regulated by transcription factor Forkhead Box O3 (FOXO3), we aim to determine the significance of this regulatory network in PMN-mediated IBD and tumorigenesis. Affected tissue of IBD and colon cancer patients, colonic and infiltrated immune cells, have increased LDs' coat protein, PLIN2. Mouse peritoneal PMNs with stimulated LDs and FOXO3 deficiency have elevated transmigratory activity. Transcriptomic analysis of these FOXO3-deficient PMNs showed differentially expressed genes (DEGs; FDR < 0.05) involved in metabolism, inflammation, and tumorigenesis. Upstream regulators of these DEGs, similar to colonic inflammation and dysplasia in mice, were linked to IBD and human colon cancer. Additionally, a transcriptional signature representing FOXO3-deficient PMNs (PMN-FOXO3389) separated transcriptomes of affected tissue in IBD (p = 0.00018) and colon cancer (p = 0.0037) from control. Increased PMN-FOXO3389 presence predicted colon cancer invasion (lymphovascular p = 0.015; vascular p = 0.046; perineural p = 0.03) and poor survival. Validated DEGs from PMN-FOXO3389 (P2RX1, MGLL, MCAM, CDKN1A, RALBP1, CCPG1, PLA2G7) are involved in metabolism, inflammation, and tumorigenesis (p < 0.05). These findings highlight the significance of LDs and FOXO3-mediated PMN functions that promote colonic pathobiology.
Collapse
Affiliation(s)
- Jenisha Ghimire
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rida Iftikhar
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Harrison M Penrose
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Patricia Snarski
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Emmanuelle Ruiz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Rani M, Kumari R, Singh SP, Devi A, Bansal P, Siddiqi A, Alsahli MA, Almatroodi SA, Rahmani AH, Rizvi MMA. MicroRNAs as master regulators of FOXO transcription factors in cancer management. Life Sci 2023; 321:121535. [PMID: 36906255 DOI: 10.1016/j.lfs.2023.121535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
MicroRNAs are critical regulators of the plethora of genes, including FOXO "forkhead" dependent transcription factors, which are bonafide tumour suppressors. The FOXO family members modulate a hub of cellular processes like apoptosis, cell cycle arrest, differentiation, ROS detoxification, and longevity. Aberrant expression of FOXOs in human cancers has been observed due to their down-regulation by diverse microRNAs, which are predominantly involved in tumour initiation, chemo-resistance and tumour progression. Chemo-resistance is a major obstacle in cancer treatment. Over 90% of casualties in cancer patients are reportedly associated with chemo-resistance. Here, we have primarily discussed the structure, functions of FOXO and also their post-translational modifications which influence the activities of these FOXO family members. Further, we have addressed the role of microRNAs in carcinogenesis by regulating the FOXOs at post-transcriptional level. Therefore, microRNAs-FOXO axis can be exploited as a novel cancer therapy. The administration of microRNA-based cancer therapy is likely to be beneficial to curb chemo-resistance in cancers.
Collapse
Affiliation(s)
- Madhu Rani
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rashmi Kumari
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Centre for Pharmacology and Therapeutics, Rosewell Park Comprehensive Care Centre, 665 Elm Street, Buffalo, NY, USA 14203
| | - Annu Devi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Preeti Bansal
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aisha Siddiqi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - M Moshahid Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
8
|
Iftikhar R, Snarski P, King AN, Ghimire J, Ruiz E, Lau F, Savkovic SD. Epiploic Adipose Tissue (EPAT) in Obese Individuals Promotes Colonic Tumorigenesis: A Novel Model for EPAT-Dependent Colorectal Cancer Progression. Cancers (Basel) 2023; 15:cancers15030977. [PMID: 36765934 PMCID: PMC9913240 DOI: 10.3390/cancers15030977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The obesity epidemic is associated with increased colorectal cancer (CRC) risk and progression, the mechanisms of which remain unclear. In obese individuals, hypertrophic epiploic adipose tissue (EPAT), attached to the colon, has unique characteristics compared to other fats. We hypothesized that this understudied fat could serve as a tumor-promoting tissue and developed a novel microphysiological system (MPS) for human EPAT-dependent colorectal cancer (CRC-MPS). In CRC-MPS, obese EPAT, unlike lean EPAT, considerably attracted colon cancer HT29-GFP cells and enhanced their growth. Conditioned media (CM) from the obese CRC-MPS significantly increased the growth and migration of HT29 and HCT116 cells (p < 0.001). In HT29 cells, CM stimulated differential gene expression (hOEC867) linked to cancer, tumor morphology, and metabolism similar to those in the colon of high-fat-diet obese mice. The hOEC867 signature represented pathways found in human colon cancer. In unsupervised clustering, hOEC867 separated transcriptomes of colon cancer samples from normal with high significance (PCA, p = 9.6 × 10-11). These genes, validated in CM-treated HT29 cells (p < 0.05), regulate the cell cycle, cancer stem cells, methylation, and metastasis, and are similarly altered in human colon cancer (TCGA). These findings highlight a tumor-promoting role of EPAT in CRC facilitated with obesity and establishes a platform to explore critical mechanisms and develop effective treatments.
Collapse
Affiliation(s)
- Rida Iftikhar
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Patricia Snarski
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Angelle N. King
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jenisha Ghimire
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Emmanuelle Ruiz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Frank Lau
- Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Suzana D. Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-504-988-1409
| |
Collapse
|
9
|
Nag S, Mandal A, Joshi A, Jain N, Srivastava RS, Singh S, Khattri A. Sialyltransferases and Neuraminidases: Potential Targets for Cancer Treatment. Diseases 2022; 10:diseases10040114. [PMID: 36547200 PMCID: PMC9777960 DOI: 10.3390/diseases10040114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Cancers are the leading cause of death, causing around 10 million deaths annually by 2020. The most common cancers are those affecting the breast, lungs, colon, and rectum. However, it has been noted that cancer metastasis is more lethal than just cancer incidence and accounts for more than 90% of cancer deaths. Thus, early detection and prevention of cancer metastasis have the capability to save millions of lives. Finding novel biomarkers and targets for screening, determination of prognosis, targeted therapies, etc., are ways of doing so. In this review, we propose various sialyltransferases and neuraminidases as potential therapeutic targets for the treatment of the most common cancers, along with a few rare ones, on the basis of existing experimental and in silico data. This compilation of available cancer studies aiming at sialyltransferases and neuraminidases will serve as a guide for scientists and researchers working on possible targets for various cancers and will also provide data about the existing drugs which inhibit the action of these enzymes.
Collapse
Affiliation(s)
- Sagorika Nag
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Abhimanyu Mandal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Aryaman Joshi
- Department of Chemical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravi Shanker Srivastava
- Department of Pharmacology, Career Institute of Medical Sciences & Hospital, Lucknow 226020, India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Arun Khattri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
- Correspondence: ; Tel.: +91-70-6811-1755
| |
Collapse
|
10
|
Wen S, Xu X, Kong J, Luo L, Yue P, Cao W, Zhang Y, Liu M, Fan Y, Chen J, Ma M, Tao L, Peng Y, Wang F, Dong Y, Li B, Luo S, Zhou G, Chen T, Li L, Liu A, Bao F. Comprehensive analyses of transcriptomes induced by Lyme spirochete infection to CNS model system. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105349. [PMID: 35964914 DOI: 10.1016/j.meegid.2022.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/12/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lyme disease is a zoonotic disease caused by infection with Borrelia burgdorferi (Bb), the involvement of the nervous system in Lyme disease is usually referred to as Lyme neuroborreliosis (LNB). LNB has diverse clinical manifestations, most commonly including meningitis, Bell's palsy, and encephalitis. However, the molecular pathogenesis of neuroborreliosis is still poorly understood. Comprehensive transcriptomic analysis following Bb infection could provide new insights into the pathogenesis of LNB and may identify novel biomarkers or therapeutic targets for LNB diagnosis and treatment. METHODS In the present study, we pooled transcriptomic dataset of Macaca mulatta (rhesus) from our laboratory and the human astrocyte dataset GSE85143 from the Gene Expression Omnibus database to screen common differentially expressed genes (DEGs) in the Bb infection group and the control group. Functional and enrichment analyses were applied for the DEGs. Protein-Protein Interaction network, and hub genes were identified using the Search Tool for the Retrieval of Interaction Genes database and the CytoHubba plugin. Finally, mRNA expression of hub genes was validated in vitro and ex vivo from Bb infected models and normal controls by quantitative reverse transcription PCR (qRT-PCR). RESULTS A total of 80 upregulated DEGs and 32 downregulated DEGs were identified. Among them, 11 hub genes were selected. The pathway enrichment analyses on 11 hub genes revealed that the PI3K-Akt signaling pathway was significantly enriched. The mRNA levels of ANGPT1, TLR6, SREBF1, LDLR, TNC, and ITGA2 in U251 cells and/or rhesus brain explants by exposure to Bb were validated by qRT-PCR. CONCLUSION Our study suggested that TLR6, ANGPT1, LDLR, SREBF1, TNC, and ITGA may be candidate mammal biomarkers for LNB, and the TLR6/PI3K-Akt signaling pathway may play an important role in LNB pathogenesis.
Collapse
Affiliation(s)
- Shiyuan Wen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China; Department of Intensive Care Unit, First People's Hospital of Yunnan Province, Kunming 650500, China
| | - Xin Xu
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Jing Kong
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Lisha Luo
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Peng Yue
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Wenjing Cao
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Yu Zhang
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Meixiao Liu
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Yuxin Fan
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Jingjing Chen
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Mingbiao Ma
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China; Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children's Hospital of Kunming, Kunming Medical University, Kunming 650030, China
| | - Lvyan Tao
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China; Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children's Hospital of Kunming, Kunming Medical University, Kunming 650030, China
| | - Yun Peng
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Feng Wang
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Yan Dong
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Bingxue Li
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Suyi Luo
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Guozhong Zhou
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Taigui Chen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Lianbao Li
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Aihua Liu
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China; Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children's Hospital of Kunming, Kunming Medical University, Kunming 650030, China; The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China; Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming 650500, China.
| | - Fukai Bao
- Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China; Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children's Hospital of Kunming, Kunming Medical University, Kunming 650030, China; The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China; Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming 650500, China.
| |
Collapse
|
11
|
Aberrant Sialylation in Cancer: Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14174248. [PMID: 36077781 PMCID: PMC9454432 DOI: 10.3390/cancers14174248] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a key interface with the extracellular environment. Cancer cells have a different ‘glycan coat’ to healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and Selectins, and discuss opportunities for the future.
Collapse
|
12
|
Liu Y, Wang Y, Li X, Jia Y, Wang J, Ao X. FOXO3a in cancer drug resistance. Cancer Lett 2022; 540:215724. [DOI: 10.1016/j.canlet.2022.215724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
|
13
|
Iftikhar R, Penrose HM, King AN, Kim Y, Ruiz E, Kandil E, Machado HL, Savkovic SD. FOXO3 Expression in Macrophages Is Lowered by a High-Fat Diet and Regulates Colonic Inflammation and Tumorigenesis. Metabolites 2022; 12:250. [PMID: 35323693 PMCID: PMC8949544 DOI: 10.3390/metabo12030250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity, characterized by augmented inflammation and tumorigenesis, is linked to genetic predispositions, such as FOXO3 polymorphisms. As obesity is associated with aberrant macrophages infiltrating different tissues, including the colon, we aimed to identify FOXO3-dependent transcriptomic changes in macrophages that drive obesity-mediated colonic inflammation and tumorigenesis. We found that in mouse colon, high-fat-diet-(HFD)-related obesity led to diminished FOXO3 levels and increased macrophages. Transcriptomic analysis of mouse peritoneal FOXO3-deficient macrophages showed significant differentially expressed genes (DEGs; FDR < 0.05) similar to HFD obese colons. These DEG-related pathways, linked to mouse colonic inflammation and tumorigenesis, were similar to those in inflammatory bowel disease (IBD) and human colon cancer. Additionally, we identified a specific transcriptional signature for the macrophage-FOXO3 axis (MAC-FOXO382), which separated the transcriptome of affected tissue from control in both IBD (p = 5.2 × 10−8 and colon cancer (p = 1.9 × 10−11), revealing its significance in human colonic pathobiologies. Further, we identified (heatmap) and validated (qPCR) DEGs specific to FOXO3-deficient macrophages with established roles both in IBD and colon cancer (IL-1B, CXCR2, S100A8, S100A9, and TREM1) and those with unexamined roles in these colonic pathobiologies (STRA6, SERPINH1, LAMB1, NFE2L3, OLR1, DNAJC28 and VSIG10). These findings establish an important understanding of how HFD obesity and related metabolites promote colonic pathobiologies.
Collapse
Affiliation(s)
- Rida Iftikhar
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| | - Harrison M. Penrose
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| | - Angelle N. King
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| | - Yunah Kim
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| | - Emmanuelle Ruiz
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA 70012, USA; (E.R.); (E.K.)
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA 70012, USA; (E.R.); (E.K.)
| | - Heather L. Machado
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70012, USA;
| | - Suzana D. Savkovic
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70012, USA; (R.I.); (H.M.P.); (A.N.K.); (Y.K.)
| |
Collapse
|
14
|
Cho YW, Kwon YH. Regulation of gene expression in the development of colitis-associated colon cancer in mice fed a high-fat diet. Biochem Biophys Res Commun 2022; 592:81-86. [PMID: 35033870 DOI: 10.1016/j.bbrc.2022.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Studies have shown that the higher prevalence of colorectal cancers among patients with inflammatory bowel disease. Thus, proinflammatory stimulus due to a high-fat diet may impose a higher risk on the development of colorectal cancer. In the present study, we applied a transcriptomic approach to characterize the molecular mechanism(s) by which high-fat feeding aggravates colitis-associated colorectal cancer (CAC). A high-fat diet was supplied in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mouse model for 10 weeks and then the severity of CAC and global gene expression in colon were assessed. Although consumption of high-fat diet did not significantly aggravate CAC, it substantially changed gene expression profile in colon. In AOM/DSS treated mice (AD group) and AD mice fed a high-fat diet (AD + HF group), 34 and 54 DEGs were enriched in 'pathways in cancer', respectively. Notably, high-fat diet upregulated the expression of genes associated with spliceosome and ribosome biogenesis, and downregulated the expression of genes associated with lipid catabolism in mice treated with AOM/DSS. In addition, we identified that DEGs between the AD and AD + HF groups, were enriched in 'metabolic pathways', especially amino acid and nucleotide metabolism. Taken together, this study provides the molecular mechanism in understanding the high-fat diet-mediated CAC development.
Collapse
Affiliation(s)
- Young Woo Cho
- Department of Food and Nutrition, Seoul National University, Republic of Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Republic of Korea.
| |
Collapse
|
15
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Audesse AJ, Karashchuk G, Gardell ZA, Lakis NS, Maybury-Lewis SY, Brown AK, Leeman DS, Teo YV, Neretti N, Anthony DC, Brodsky AS, Webb AE. FOXO3 regulates a common genomic program in aging and glioblastoma stem cells. AGING AND CANCER 2021; 2:137-159. [PMID: 36303712 PMCID: PMC9601604 DOI: 10.1002/aac2.12043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/14/2021] [Indexed: 01/14/2023]
Abstract
Background Glioblastoma (GBM) is an aggressive, age-associated malignant glioma that contains populations of cancer stem cells. These glioma stem cells (GSCs) evade therapeutic interventions and repopulate tumors due to their existence in a slowly cycling quiescent state. Although aging is well known to increase cancer initiation, the extent to which the mechanisms supporting GSC tumorigenicity are related to physiological aging remains unknown. Aims Here, we investigate the transcriptional mechanisms by which Forkhead Box O3 (FOXO3), a transcriptional regulator that promotes healthy aging, affects GSC function and the extent to which FOXO3 transcriptional networks are dysregulated in aging and GBM. Methods and results We performed transcriptome analysis of clinical GBM tumors and observed that high FOXO3 activity is associated with gene expression signatures of stem cell quiescence, reduced oxidative metabolism, and improved patient outcomes. Consistent with these findings, we show that elevated FOXO3 activity significantly reduces the proliferation of GBM-derived GSCs. Using RNA-seq, we find that functional ablation of FOXO3 in GSCs rewires the transcriptional circuitry associated with metabolism, epigenetic stability, quiescence, and differentiation. Since FOXO3 has been implicated in healthy aging, we then investigated the extent to which it regulates common transcriptional programs in aging neural stem cells (NSCs) and GSCs. We uncover a shared transcriptional program and, most strikingly, find that FOXO3-regulated pathways are associated with altered mitochondrial functions in both aging and GBM. Conclusions This work identifies a FOXO-associated transcriptional program that correlates between GSCs and aging NSCs and is enriched for metabolic and stemness pathways connected with GBM and aging.
Collapse
Affiliation(s)
- Amanda J. Audesse
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Galina Karashchuk
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Zachary A. Gardell
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Nelli S. Lakis
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sun Y. Maybury-Lewis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Abigail K. Brown
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Dena S. Leeman
- Department of Discovery Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Yee Voan Teo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
| | - Douglas C. Anthony
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
- Department of Neurology, Brown University, Providence, Rhode Island, USA
| | - Alexander S. Brodsky
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
17
|
Elevated ATGL in colon cancer cells and cancer stem cells promotes metabolic and tumorigenic reprogramming reinforced by obesity. Oncogenesis 2021; 10:82. [PMID: 34845203 PMCID: PMC8630180 DOI: 10.1038/s41389-021-00373-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is a worldwide epidemic associated with increased risk and progression of colon cancer. Here, we aimed to determine the role of adipose triglyceride lipase (ATGL), responsible for intracellular lipid droplet (LD) utilization, in obesity-driven colonic tumorigenesis. In local colon cancer patients, significantly increased ATGL levels in tumor tissue, compared to controls, were augmented in obese individuals. Elevated ATGL levels in human colon cancer cells (CCC) relative to non-transformed were augmented by an obesity mediator, oleic acid (OA). In CCC and colonospheres, enriched in colon cancer stem cells (CCSC), inhibition of ATGL prevented LDs utilization and inhibited OA-stimulated growth through retinoblastoma-mediated cell cycle arrest. Further, transcriptomic analysis of CCC, with inhibited ATGL, revealed targeted pathways driving tumorigenesis, and high-fat-diet obesity facilitated tumorigenic pathways. Inhibition of ATGL in colonospheres revealed targeted pathways in human colonic tumor crypt base cells (enriched in CCSC) derived from colon cancer patients. In CCC and colonospheres, we validated selected transcripts targeted by ATGL inhibition, some with emerging roles in colonic tumorigeneses (ATG2B, PCK2, PGAM1, SPTLC2, IGFBP1, and ABCC3) and others with established roles (MYC and MUC2). These findings demonstrate obesity-promoted, ATGL-mediated colonic tumorigenesis and establish the therapeutic significance of ATGL in obesity-reinforced colon cancer progression.
Collapse
|
18
|
Du S, Zheng H. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases. Cell Biosci 2021; 11:188. [PMID: 34727995 PMCID: PMC8561869 DOI: 10.1186/s13578-021-00700-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Aging happens to all of us as we live. Thanks to the improved living standard and discovery of life-saving medicines, our life expectancy has increased substantially across the world in the past century. However, the rise in lifespan leads to unprecedented increases in both the number and the percentage of individuals 65 years and older, accompanied by the increased incidences of age-related diseases such as type 2 diabetes mellitus and Alzheimer’s disease. FoxO transcription factors are evolutionarily conserved molecules that play critical roles in diverse biological processes, in particular aging and metabolism. Their dysfunction is often found in the pathogenesis of many age-related diseases. Here, we summarize the signaling pathways and cellular functions of FoxO proteins. We also review the complex role of FoxO in aging and age-related diseases, with focus on type 2 diabetes and Alzheimer’s disease and discuss the possibility of FoxO as a molecular link between aging and disease risks.
Collapse
Affiliation(s)
- Shuqi Du
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
19
|
Lee PS, Nagabhushanam K, Ho CT, Pan MH. Inhibitory Effect of Garcinol on Obesity-Exacerbated, Colitis-Mediated Colon Carcinogenesis. Mol Nutr Food Res 2021; 65:e2100410. [PMID: 34245224 DOI: 10.1002/mnfr.202100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Indexed: 12/24/2022]
Abstract
SCOPE Epidemiological studies show a consistent and compelling association between the risk of colorectal cancer development and obesity, but its mechanisms remain poorly understood. Evidence is mounting that colorectal cancer can be prevented by nutritional supplements, such as phytochemicals. Garcinol, a polyisoprenylated benzophenone derivative, is widely present in Garcinia plants. This study investigates the potential role of garcinol supplementation in ameliorating obesity-induced colon cancer development. METHODS AND RESULTS An animal model to investigate the effect of high-fat-diet (HFD)-induced obesity on promoting colitis-associated colon cancer (AOM (azoxymethane)/DSS (dextran sodium sulfate)-induced) is designed. The results show that HFD can promote colitis-associated colon cancer as compared to an AOM/DSS group without the intervention of obesity, and supplementing with 0.05% garcinol in the diet can significantly ameliorate obesity-promoted colon carcinogenesis. The results also reveals that the microbiota composition of each group is significantly different and clustered. The most representative genera are Alistipes, Romboutsia, and Ruminococcus. The RNA-sequencing results show that the administration of garcinol can regulate genes and improve obesity-promoting colitis-associated colon carcinogenesis. CONCLUSION The study results suggest that garcinol can prevent obesity-promoted colorectal cancer, and these findings provide important niches for the future development of garcinol as functional foods or adjuvant therapeutic agents.
Collapse
Affiliation(s)
- Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
20
|
Pan C, Wu J, Zheng S, Sun H, Fang Y, Huang Z, Shi M, Liang L, Bin J, Liao Y, Chen J, Liao W. Depression accelerates gastric cancer invasion and metastasis by inducing a neuroendocrine phenotype via the catecholamine/β 2 -AR/MACC1 axis. Cancer Commun (Lond) 2021; 41:1049-1070. [PMID: 34288568 PMCID: PMC8504143 DOI: 10.1002/cac2.12198] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/11/2021] [Indexed: 01/07/2023] Open
Abstract
Background Depression is a common, easily ignored, accompanied disease of gastric cancer (GC) patients and is often observed with elevated plasma catecholamine levels. Depression frequently promotes GC progression and leads to poor clinical outcomes; however, the molecular mechanisms underlying depression‐induced GC progression remain poorly understood. We aimed to study the effects of depression on GC progression and explore possible mechanisms mediating the action of depression‐associated catecholamines on GC. Methods Depression states of GC patients were graded using the Patient Health Questionnaire‐9, and plasma catecholamine levels were examined by high performance liquid chromatography coupled with tandem mass spectrometry. Migrative and invasive GC cells were examined using transwell assays, and metastatic GC niches were imaged using bioluminescence technology in a depression mouse model established with chronic unpredictable mild stress. Mouse depression‐like behaviors were assessed through sucrose preference, forced swimming, and tail suspension tests. Characteristics of the neuroendocrine phenotype were observed via RT‐PCR, Western blotting, flow cytometry, and transmission electron microscopy. Results Fifty‐one GC patients (age: 53.61 ± 1.79 years; cancer duration: 3.71 ± 0.33 months; depression duration: 2.37 ± 0.38 months; male‐to‐female ratio: 1.55:1) were enrolled in the study. Depression grade was significantly higher in GC patients showing higher plasma levels of catecholamines (epinephrine: P = 0.018; noradrenaline: P = 0.009), higher oncogene metastasis‐associated in colon cancer‐1 (MACC1) level (P = 0.018), and metastasis (P < 0.001). Further, depression‐associated catecholamine specifically bound to the beta‐2 adrenergic receptor (β2‐AR) and upregulated MACC1 expression, and thus promoting neuroendocrine phenotypic transformation through direct binding between MACC1 and synaptophysin. Eventually, the neuroendocrine phenotypic transformation accelerated GC invasion in vitro and metastasis in vivo. However, β2‐AR antagonist ICI‐118,551 or MACC1 silencing effectively blocked the catecholamine‐induced neuroendocrine phenotypic transformation and eliminated depression‐enhanced GC migration and invasion. Moreover, β2‐AR blocking or MACC1 silencing prevented GC metastasis attributed to a neuroendocrine phenotype in a depression mouse model. Conclusions Catecholamine‐induced neuroendocrine phenotypes of GC cells led to depression‐accelerated GC invasion and metastasis via the β2‐AR/MACC1 axis, while β2‐AR antagonist or MACC1 silencing could reverse it, showing promising potential therapeutic strategies for improving the outcome of GC patients with comorbid depression.
Collapse
Affiliation(s)
- Changqie Pan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Siting Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yisheng Fang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhenhua Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Sout4hern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Sout4hern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jinzhang Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
21
|
S1P Lyase Regulates Intestinal Stem Cell Quiescence via Ki-67 and FOXO3. Int J Mol Sci 2021; 22:ijms22115682. [PMID: 34073605 PMCID: PMC8198365 DOI: 10.3390/ijms22115682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Reduction of the Sphingosine-1-phosphate (S1P) degrading enzyme S1P lyase 1 (SGPL1) initiates colorectal cancer progression with parallel loss of colon function in mice. We aimed to investigate the effect of SGPL1 knockout on the stem cell niche in these mice. Methods: We performed immunohistochemical and multi-fluorescence imaging on tissue sections of wildtype and SGPL1 knockout colons under disease conditions. Furthermore, we generated SGPL1 knockout DLD-1 cells (SGPL1−/−M.Ex1) using CRISPR/Cas9 and characterized cell cycle and AKT signaling pathway via Western blot, immunofluorescence, and FACS analysis. Results: SGPL1 knockout mice were absent of anti-Ki-67 staining in the stem cell niche under disease conditions. This was accompanied by an increase of the negative cell cycle regulator FOXO3 and attenuation of CDK2 activity. SGPL1−/−M.Ex1 cells show a similar FOXO3 increase but no arrest of proliferation, although we found a suppression of the PDK1/AKT signaling pathway, a prolonged G1-phase, and reduced stem cell markers. Conclusions: While already established colon cancer cells find escape mechanisms from cell cycle arrest, in vivo SGPL1 knockout in the colon stem cell niche during progression of colorectal cancer can contribute to cell cycle quiescence. Thus, we propose a new function of the S1P lyase 1 in stemness.
Collapse
|
22
|
Hartwig J, Loebel M, Steiner S, Bauer S, Karadeniz Z, Roeger C, Skurk C, Scheibenbogen C, Sotzny F. Metformin Attenuates ROS via FOXO3 Activation in Immune Cells. Front Immunol 2021; 12:581799. [PMID: 33953705 PMCID: PMC8089390 DOI: 10.3389/fimmu.2021.581799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Forkhead box O 3 (FOXO3) is a transcription factor involved in cell metabolism, inflammation and longevity. Here, we investigated if metformin can activate FOXO3 in human immune cells and affects the subsequent level of reactive oxygen/nitrogen species (ROS/RNS) in immune cells. AMP-activated protein kinase (AMPK) and FOXO3 activation were investigated by immunoblot or flow cytometry (FC) analysis, respectively. FOXO3 target gene expression was quantified by real-time PCR. ROS/RNS measurement using dichlorodihydrofluorescein diacetate (DCFH-DA) dye was investigated by FC. The role of the FOXO3 single nucleotide polymorphisms (SNPs) rs12212067, rs2802292 and rs12206094 on ROS/RNS production was studied using allelic discrimination PCR. Metformin induced activation of AMPK (pT172) and FOXO3 (pS413). ROS/RNS level was reduced in immune cells after metformin stimulation accompanied by induction of the FOXO3 targets mitochondrial superoxide dismutase and cytochrome c. Studies in Foxo3 deficient (Foxo3-/- ) mouse splenocytes confirmed that metformin mediates its effects via Foxo3 as it attenuates ROS/RNS in myeloid cells of wildtype (WT) but not of Foxo3-/- mice. Our results suggest that FOXO3 can be activated by metformin leading to reduced ROS/RNS level in immune cells. This may add to the beneficial clinical effects of metformin observed in large cohort studies on longevity, cardiovascular and cancer risk.
Collapse
Affiliation(s)
- Jelka Hartwig
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität (FU) Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Madlen Loebel
- Science Center, Carl-Thiem-Klinikum Cottbus, Cottbus, Germany
| | - Sophie Steiner
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität (FU) Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sandra Bauer
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität (FU) Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Zehra Karadeniz
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Roeger
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität (FU) Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität (FU) Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
23
|
Emerging nanotaxanes for cancer therapy. Biomaterials 2021; 272:120790. [PMID: 33836293 DOI: 10.1016/j.biomaterials.2021.120790] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
The clinical application of taxane (including paclitaxel, docetaxel, and cabazitaxel)-based formulations is significantly impeded by their off-target distribution, unsatisfactory release, and acquired resistance/metastasis. Recent decades have witnessed a dramatic progress in the development of high-efficiency, low-toxicity nanotaxanes via the use of novel biomaterials and nanoparticulate drug delivery systems (nano-DDSs). Thus, in this review, the achievements of nanotaxanes-targeted delivery and stimuli-responsive nano-DDSs-in preclinical or clinical trials have been outlined. Then, emerging nanotherapeutics against tumor resistance and metastasis have been overviewed, with a particular emphasis on synergistic therapy strategies (e.g., combination with surgery, chemotherapy, radiotherapy, biotherapy, immunotherapy, gas therapy, phototherapy, and multitherapy). Finally, the latest oral nanotaxanes have been briefly discussed.
Collapse
|
24
|
Tsuji T, Maeda Y, Kita K, Murakami K, Saya H, Takemura H, Inaki N, Oshima M, Oshima H. FOXO3 is a latent tumor suppressor for FOXO3-positive and cytoplasmic-type gastric cancer cells. Oncogene 2021; 40:3072-3086. [PMID: 33795838 PMCID: PMC8084732 DOI: 10.1038/s41388-021-01757-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
FOXO3 is a member of the FOXO transcription factors thought to play a tumor-suppressor role in gastrointestinal cancer, while tumor-promoting function of FOXO3 has also been reported. These results suggest a context-dependent function of FOXO3 in tumor development. However, the relationship between the FOXO3 expression pattern and its role in tumorigenesis has not been elucidated. We examined the FOXO3 expression in 65 human primary gastric cancer and patient-derived xenograft tissues by immunohistochemistry and identified three subtypes according to subcellular localization: FOXO3-nuclear accumulated (FOXO3-Nuc), FOXO3-nuclear/cytoplasmic or cytoplasmic distributed (FOXO3-Cyt), and FOXO3-negative. In the FOXO3-Cyt gastric cancer cells, the expression of the constitutive active mutant FOXO3 (Act-ER FOXO3) induced the nuclear accumulation of FOXO3 and significantly suppressed colony formation and proliferation. The inhibition of the PI3K-AKT pathway by inhibitor treatment also suppressed the proliferation of FOXO3-Cyt gastric cancer cells, which was associated with the nuclear accumulation of endogenous FOXO3. Furthermore, the expression of Act-ER FOXO3 by an endogenous promoter significantly suppressed gastric tumorigenesis in Gan mice, a model of gastric cancer. Finally, treatment of FOXO3-Cyt human gastric cancer-derived organoids with an AKT inhibitor significantly suppressed the survival and proliferation. These results indicate that FOXO3 is a latent tumor suppressor for FOXO3-Cyt-type gastric cancer cells and that activation of the PI3K-AKT pathway protects this type of gastric cancer cell from FOXO3-mediated growth suppression via constitutive nuclear export. Thus, the inhibition of the PI3K-AKT pathway and nuclear translocation of endogenous FOXO3 may have therapeutic applications in the treatment of FOXO3-positive and cytoplasmic-type gastric cancer.
Collapse
Affiliation(s)
- Toshikatsu Tsuji
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Department of Thoracic, Cardiovascular and General Surgery, Kanazawa University, Kanazawa, Japan
- Department of Gastroenterological Surgery, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Yusuke Maeda
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| | - Kenji Kita
- Central Research Resource Branch, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Murakami
- Division of Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Takemura
- Department of Thoracic, Cardiovascular and General Surgery, Kanazawa University, Kanazawa, Japan
| | - Noriyuki Inaki
- Department of Gastroenterological Surgery, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
25
|
Sprouty2 limits intestinal tuft and goblet cell numbers through GSK3β-mediated restriction of epithelial IL-33. Nat Commun 2021; 12:836. [PMID: 33547321 PMCID: PMC7864916 DOI: 10.1038/s41467-021-21113-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Dynamic regulation of intestinal cell differentiation is crucial for both homeostasis and the response to injury or inflammation. Sprouty2, an intracellular signaling regulator, controls pathways including PI3K and MAPKs that are implicated in differentiation and are dysregulated in inflammatory bowel disease. Here, we ask whether Sprouty2 controls secretory cell differentiation and the response to colitis. We report that colonic epithelial Sprouty2 deletion leads to expanded tuft and goblet cell populations. Sprouty2 loss induces PI3K/Akt signaling, leading to GSK3β inhibition and epithelial interleukin (IL)-33 expression. In vivo, this results in increased stromal IL-13+ cells. IL-13 in turn induces tuft and goblet cell expansion in vitro and in vivo. Sprouty2 is downregulated by acute inflammation; this appears to be a protective response, as VillinCre;Sprouty2F/F mice are resistant to DSS colitis. In contrast, Sprouty2 is elevated in chronic colitis and in colons of inflammatory bowel disease patients, suggesting that this protective epithelial-stromal signaling mechanism is lost in disease. Dynamic regulation of colonic secretory cell numbers is a critical component of the response to intestinal injury and inflammation. Here, the authors show that loss of the intracellular signalling regulator Sprouty2 in the intestinal epithelial cells is a protective response to injury that leads to increased secretory cell numbers, thus limiting colitis severity.
Collapse
|
26
|
Mandhair HK, Arambasic M, Novak U, Radpour R. Molecular modulation of autophagy: New venture to target resistant cancer stem cells. World J Stem Cells 2020; 12:303-322. [PMID: 32547680 PMCID: PMC7280868 DOI: 10.4252/wjsc.v12.i5.303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a highly regulated catabolic process in which superfluous, damaged organelles and other cytoplasmic constituents are delivered to the lysosome for clearance and the generation of macromolecule substrates during basal or stressed conditions. Autophagy is a bimodal process with a context dependent role in the initiation and the development of cancers. For instance, autophagy provides an adaptive response to cancer stem cells to survive metabolic stresses, by influencing disease propagation via modulation of essential signaling pathways or by promoting resistance to chemotherapeutics. Autophagy has been implicated in a cross talk with apoptosis. Understanding the complex interactions provides an opportunity to improve cancer therapy and the clinical outcome for the cancer patients. In this review, we provide a comprehensive view on the current knowledge on autophagy and its role in cancer cells with a particular focus on cancer stem cell homeostasis.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Miroslav Arambasic
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland.
| |
Collapse
|
27
|
Kotlo K, Anbazhagan AN, Priyamvada S, Jayawardena D, Kumar A, Chen Y, Xia Y, Finn PW, Perkins DL, Dudeja PK, Layden BT. The olfactory G protein-coupled receptor (Olfr-78/OR51E2) modulates the intestinal response to colitis. Am J Physiol Cell Physiol 2020; 318:C502-C513. [PMID: 31913697 PMCID: PMC7099522 DOI: 10.1152/ajpcell.00454.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022]
Abstract
Olfactory receptor-78 (Olfr-78) is a recently identified G protein-coupled receptor activated by short-chain fatty acids acetate and propionate. A suggested role for this receptor exists in the prostate where it may influence chronic inflammatory response leading to intraepithelial neoplasia. Olfr-78 has also been shown to be expressed in mouse colon. Short-chain fatty acids and their receptors are well known to modulate inflammation in the gut. Considering this possibility, we first explored if colitis regulated Olfr-78 expression in the gut, where we observed a significant reduction in the expression of Olfr-78 transcript in mouse models of dextran sodium sulfate (DSS)- and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. To more directly test this, mice deficient in Olfr-78 were administered with DSS in water for 7 days and were found to have increased expression of IL-1β and inflammatory signs in colon compared with control mice. Next, we explored the expression of its human counterpart olfactory receptor family 51, subfamily E, member 2 (OR51E2) in human intestinal samples and observed that it was in fact also expressed in human colon samples. RNA sequence analysis revealed significant changes in the genes involved in infection, immunity, inflammation, and colorectal cancer between wild-type and Olfr-78 knockout mice. Collectively, our findings show that Olfr-78 is highly expressed in colon and downregulated in DSS- and TNBS-induced colitis, and DSS-treated Olfr-78 null mice had increased colonic expression of cytokine RNA levels, suggesting a potential role for this receptor in intestinal inflammation. Future investigations are needed to understand how Olfr-78/OR51E2 in both mouse and human intestine modulates gastrointestinal pathophysiology.
Collapse
Affiliation(s)
- Kumar Kotlo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Arivarasu N Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dulari Jayawardena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yang Chen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Patricia W Finn
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Microbiology/Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - David L Perkins
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Pradeep K Dudeja
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinoi
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Brian T Layden
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinoi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
28
|
Hu J, Tian J, Zhang F, Wang H, Yin J. Pxr- and Nrf2- mediated induction of ABC transporters by heavy metal ions in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113329. [PMID: 31600704 DOI: 10.1016/j.envpol.2019.113329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/27/2019] [Accepted: 09/29/2019] [Indexed: 05/13/2023]
Abstract
Transcription factors including pregnane X receptor (Pxr) and nuclear factor-erythroid 2-related factor-2 (Nrf2) are important modulators of Adenosine triphosphate-binding cassette (ABC) transporters in mammalian cells. However, whether such modulation is conserved in zebrafish embryos remains largely unknown. In this manuscript, pxr- and nrf2-deficient models were constructed with CRISPR/Cas9 system, to evaluate the individual function of Pxr and Nrf2 in the regulation of ABC transporters and detoxification of heavy metal ions like Cd2+ and Ag+. As a result, both Cd2+ and Ag+ conferred extensive interactions with ABC transporters in wild type (WT) embryos: their accumulation and toxicity were affected by the activity of ABC transporters, and they significantly induced the mRNA expressions of ABC transporters. These induction effects were reduced by the mutation of pxr and nrf2, but elevations in the basal expression of ABC transporters compensated for the loss of their inducibility. This could be an explanation for remaining transporter function in both mutant models as well as the unaltered toxicity of metal ions in pxr-deficient embryos. However, mutation of nrf2 disrupted the production of glutathione (GSH), resulting in the enhanced toxicity of Cd2+/Ag+ in zebrafish embryos. In addition, elevated expressions of other transcription factors like aryl hydrocarbon receptor (ahr) 1b, peroxisome proliferator-activated receptor (ppar)-β, and nrf2 were found in pxr-deficient models without any treatment, while enhanced induction of ahr1b, ppar-β and pxr could only be seen in nrf2-deficient embryos after the treatment of metal ions, indicating different compensation phenomena for the absence of transcription factors. After all, pxr-deficient and nrf2-deficient zebrafish embryos are useful tools in the functional investigation of Pxr and Nrf2 in the early life stages of aquatic organisms. However, the compensatory mechanisms should be taken into consideration when interpreting the results and need in-depth investigations.
Collapse
Affiliation(s)
- Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China
| | - Feng Zhang
- Suzhou GCL Photovoltaic Technology Co., Ltd, Suzhou, Jiangsu 215163, PR China
| | - Han Wang
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Shandong Guo Ke Medical Technology Development Co., Ltd, PR China.
| |
Collapse
|
29
|
Parsons MJ, Keely S. FOXO3 Loss Drives Inflammation-Associated CRC: The Consequences of Being (Knock)Out-FOX'd. Cell Mol Gastroenterol Hepatol 2018; 7:295-296. [PMID: 30529280 PMCID: PMC6357886 DOI: 10.1016/j.jcmgh.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/10/2022]
Affiliation(s)
| | - Simon Keely
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|