1
|
Yao T, Wu Y, Fu L, Lv J, Lv L, Li L. Christensenellaceae minuta modulates epithelial healing via PI3K-AKT pathway and macrophage differentiation in the colitis. Microbiol Res 2024; 289:127927. [PMID: 39393129 DOI: 10.1016/j.micres.2024.127927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disorder with an unsatisfactory cure rate and mucosal healing is a key treatment objective. Christensenellaceae minuta (C. minuta) has emerged as a next-generation of probiotic for maintaining intestinal health. We investigated the therapeutic efficacy of C. minuta in dextran sulfate sodium (DSS)-induced colitis, focusing on mucosal healing and the underlying mechanisms. C. minuta effectively alleviated colitis and promoted the regeneration of intestinal epithelial cells (IECs). Using 16S rRNA sequencing and metabolomics, we found that C. minuta administration increased beneficial bacteria, decreased pathogenic bacteria, and significantly elevated propionic acid levels. Additionally, C. minuta activated the PI3K-AKT pathway by upregulating systemic and local IGF-1 expression. Inhibiting the PI3K-AKT pathway reduced the therapeutic effects of C. minuta and impaired IEC regeneration. Furthermore, C. minuta promoted macrophage differentiation into the M2 phenotype and decreased proinflammatory factors. We propose that C. minuta alleviates colitis by regulating the gut microbiota, modulating macrophage differentiation, and enhancing mucosal healing by activating the PI3K-AKT pathway via IGF-1 secretion induced by short-chain fatty acids. Our findings provide evidence from animal experiments to support future clinical trials and the therapeutic translation of C. minuta.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Liyun Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Jiawen Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| |
Collapse
|
2
|
Viragova S, Li D, Klein OD. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31:949-960. [PMID: 38971147 PMCID: PMC11235077 DOI: 10.1016/j.stem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.
Collapse
Affiliation(s)
- Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Li
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Bansal S, Li Y, Bansal S, Klotzbier W, Singh B, Jayatilake M, Sridharan V, Fernández JA, Griffin JH, Weiler H, Boerma M, Cheema AK. Genetic Upregulation of Activated Protein C Mitigates Delayed Effects of Acute Radiation Exposure in the Mouse Plasma. Metabolites 2024; 14:245. [PMID: 38786722 PMCID: PMC11122730 DOI: 10.3390/metabo14050245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Exposure to ionizing radiation, accidental or intentional, may lead to delayed effects of acute radiation exposure (DEARE) that manifest as injury to organ systems, including the kidney, heart, and brain. This study examines the role of activated protein C (APC), a known mitigator of radiation-induced early toxicity, in long-term plasma metabolite and lipid panels that may be associated with DEARE in APCHi mice. The APCHi mouse model used in the study was developed in a C57BL/6N background, expressing the D168F/N173K mouse analog of the hyper-activatable human D167F/D172K protein C variant. This modification enables increased circulating APC levels throughout the mouse's lifetime. Male and female cohorts of C57BL/6N wild-type and APCHi transgenic mice were exposed to 9.5 Gy γ-rays with their hind legs shielded to allow long-term survival that is necessary to monitor DEARE, and plasma was collected at 6 months for LC-MS-based metabolomics and lipidomics. We observed significant dyslipidemia, indicative of inflammatory phenotype, upon radiation exposure. Additionally, observance of several other metabolic dysregulations was suggestive of gut damage, perturbations in TriCarboxylic Acid (TCA) and urea cycles, and arginine metabolism. We also observed gender- and genotype-modulated metabolic perturbations post radiation exposure. The APCHi mice showed near-normal abundance for several lipids. Moreover, restoration of plasma levels of some metabolites, including amino acids, citric acid, and hypoxanthine, in APCHi mice is indicative of APC-mediated protection from radiation injuries. With the help of these findings, the role of APC in plasma molecular events after acute γ-radiation exposure in a gender-specific manner can be established for the first time.
Collapse
Affiliation(s)
- Shivani Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.B.); (S.B.); (W.K.); (B.S.); (M.J.)
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.B.); (S.B.); (W.K.); (B.S.); (M.J.)
| | - Sunil Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.B.); (S.B.); (W.K.); (B.S.); (M.J.)
| | - William Klotzbier
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.B.); (S.B.); (W.K.); (B.S.); (M.J.)
| | - Baldev Singh
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.B.); (S.B.); (W.K.); (B.S.); (M.J.)
| | - Meth Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.B.); (S.B.); (W.K.); (B.S.); (M.J.)
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (V.S.); (M.B.)
| | - José A. Fernández
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA; (J.A.F.); (J.H.G.)
| | - John H. Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA; (J.A.F.); (J.H.G.)
| | - Hartmut Weiler
- Versiti Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53233, USA;
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (V.S.); (M.B.)
| | - Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.B.); (S.B.); (W.K.); (B.S.); (M.J.)
- Departments of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
4
|
Huang W, Das NK, Radyk MD, Keeley T, Quiros M, Jain C, El-Derany MO, Swaminathan T, Dziechciarz S, Greenson JK, Nusrat A, Samuelson LC, Shah YM. Dietary Iron Is Necessary to Support Proliferative Regeneration after Intestinal Injury. J Nutr 2024; 154:1153-1164. [PMID: 38246358 PMCID: PMC11181351 DOI: 10.1016/j.tjnut.2024.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Tissue repair and regeneration in the gastrointestinal system are crucial for maintaining homeostasis, with the process relying on intricate cellular interactions and affected by micro- and macro-nutrients. Iron, essential for various biological functions, plays a dual role in tissue healing by potentially causing oxidative damage and participating in anti-inflammatory mechanisms, underscoring its complex relationship with inflammation and tissue repair. OBJECTIVE The study aimed to elucidate the role of low dietary iron in gastrointestinal tissue repair. METHODS We utilized quantitative iron measurements to assess iron levels in inflamed regions of patients with ulcerative colitis and Crohn's disease. In addition, 3 mouse models of gastrointestinal injury/repair (dextran sulfate sodium-induced colitis, radiation injury, and wound biopsy) were used to assess the effects of low dietary iron on tissue repair. RESULTS We found that levels of iron in inflamed regions of both patients with ulcerative colitis and Crohn's disease are elevated. Similarly, during gastrointestinal repair, iron levels were found to be heightened, specifically in intestinal epithelial cells across the 3 injury/repair models. Mice on a low-iron diet showed compromised tissue repair with reduced proliferation. In standard diet, epithelial cells and the stem cell compartment maintain adequate iron stores. However, during a period of iron deficiency, epithelial cells exhaust their iron reserves, whereas the stem cell compartments maintain their iron pools. During injury, when the stem compartment is disrupted, low iron levels impair proliferation and compromise repair mechanisms. CONCLUSIONS Low dietary iron impairs intestinal repair through compromising the ability of epithelial cells to aid in intestinal proliferation.
Collapse
Affiliation(s)
- Wesley Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Megan D Radyk
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Theresa Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Chesta Jain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Thaarini Swaminathan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Sofia Dziechciarz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Joel K Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
5
|
Selvakumar B, Sekar P, Samsudin AR. Intestinal macrophages in pathogenesis and treatment of gut leakage: current strategies and future perspectives. J Leukoc Biol 2024; 115:607-619. [PMID: 38198217 DOI: 10.1093/jleuko/qiad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Macrophages play key roles in tissue homeostasis, defense, disease, and repair. Macrophages are highly plastic and exhibit distinct functional phenotypes based on micro-environmental stimuli. In spite of several advancements in understanding macrophage biology and their different functional phenotypes in various physiological and pathological conditions, currently available treatment strategies targeting macrophages are limited. Macrophages' high plasticity and diverse functional roles-including tissue injury and wound healing mechanisms-mark them as potential targets to mine for efficient therapeutics to treat diseases. Despite mounting evidence on association of gut leakage with several extraintestinal diseases, there is no targeted standard therapy to treat gut leakage. Therefore, there is an urgent need to develop therapeutic strategies to treat this condition. Macrophages are the cells that play the largest role in interacting with the gut microbiota in the intestinal compartment and exert their intended functions in injury and repair mechanisms. In this review, we have summarized the current knowledge on the origins and phenotypes of macrophages. The specific role of macrophages in intestinal barrier function, their role in tissue repair mechanisms, and their association with gut microbiota are discussed. In addition, currently available therapies and the putative tissue repair mediators of macrophages for treating microbiota dysbiosis induced gut leakage are also discussed. The overall aim of this review is to convey the intense need to screen for microbiota induced macrophage-released prorepair mediators, which could lead to the identification of potential candidates that could be developed for treating the leaky gut and associated diseases.
Collapse
Affiliation(s)
- Balachandar Selvakumar
- Department of Microbiota, Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Priyadharshini Sekar
- Department of Microbiota, Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - A Rani Samsudin
- Department of Microbiota, Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
6
|
Ma Y, Lang X, Yang Q, Han Y, Kang X, Long R, Du J, Zhao M, Liu L, Li P, Liu J. Paeoniflorin promotes intestinal stem cell-mediated epithelial regeneration and repair via PI3K-AKT-mTOR signalling in ulcerative colitis. Int Immunopharmacol 2023; 119:110247. [PMID: 37159966 DOI: 10.1016/j.intimp.2023.110247] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Ulcerative colitis (UC) is a chronic and immune-mediated inflammatory disorder characterized by abdominal pain, diarrhoea, and haematochezia. The goal of clinical therapy for UC is mucosal healing, accomplished by regenerating and repairing the intestinal epithelium. Paeoniflorin (PF) is a natural ingredient extracted from Paeonia lactiflora that has significant anti-inflammatory and immunoregulatory efficacy. In this study, we investigated how PF could regulate the renewal and differentiation of intestinal stem cells (ISCs) to improve the regeneration and repair of the intestinal epithelium in UC. Our experimental results showed that PF significantly alleviated colitis induced by dextran sulfate sodium (DSS) and ameliorated intestinal mucosal injury by regulating the renewal and differentiation of ISCs. The mechanism by which PF regulates ISCs was confirmed to be through PI3K-AKT-mTOR signalling. In vitro, we found that PF not only improved the growth of TNF-α-induced colon organoids but also increased the expression of genes and proteins related to the differentiation and regeneration of ISCs. Furthermore, PF promoted the repair ability of lipopolysaccharide (LPS)-induced IEC-6 cells. The mechanism by which PF regulates ISCs was further confirmed and was consistent with the in vivo results. Overall, these findings demonstrate that PF accelerates epithelial regeneration and repair by promoting the renewal and differentiation of ISCs, suggesting that PF treatment may be beneficial to mucosal healing in UC patients.
Collapse
Affiliation(s)
- Yujing Ma
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China; Hebei University of Chinese Medicine, China
| | - Xiaomeng Lang
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China
| | - Qian Yang
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China
| | - Yan Han
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China
| | - Xin Kang
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China
| | - Run Long
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China
| | | | | | | | - Peitong Li
- Hebei University of Chinese Medicine, China
| | - Jianping Liu
- The First Affiliated Hospital of Hebei University of Chinese Medicine, China.
| |
Collapse
|
7
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
8
|
Cui Y, Wu H, Liu Z, Ma T, Liang W, Zeng Q, Chen D, Qin Q, Huang B, Wang MH, Huang X, He Y, Kuang Y, Sugimoto S, Sato T, Wang L. CXCL16 inhibits epithelial regeneration and promotes fibrosis during the progression of radiation enteritis. J Pathol 2023; 259:180-193. [PMID: 36373877 DOI: 10.1002/path.6031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Radiation enteritis (RE) is a prevalent complication of radiotherapy for pelvic malignant tumors, characterized by severe intestinal epithelial destruction and progressive submucosal fibrosis. However, little is known about the pathogenesis of this disease, and so far, there is no specific targeted therapy. Here, we report that CXCL16 is upregulated in the injured intestinal tissues of RE patients and in a mouse model. Genetic deletion of Cxcl16 mitigates fibrosis and promotes intestinal stem cell-mediated epithelial regeneration after radiation injury in mice. Mechanistically, CXCL16 functions on myofibroblasts through its receptor CXCR6 and activates JAK3/STAT3 signaling to promote fibrosis and, at the same time, to transcriptionally modulate the levels of BMP4 and hepatocyte growth factor (HGF) in myofibroblasts. Moreover, we find that CXCL16 and CXCR6 auto- and cross-regulate themselves in positive feedback loops. Treatment with CXCL16 neutralizing monoclonal antibody attenuates fibrosis and improves the epithelial repair in RE mouse model. Our findings emphasize the important role of CXCL16 in the progression of RE and suggest that CXCL16 signaling could be a potential therapeutic target for RE. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yanmei Cui
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Haiyong Wu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zhihang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Tenghui Ma
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Wenfeng Liang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Qingzhi Zeng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Daici Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Qiyuan Qin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Binjie Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Michael Hu Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaoyan Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yanjiong He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yingyi Kuang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shinya Sugimoto
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
9
|
Orzechowska-Licari EJ, LaComb JF, Giarrizzo M, Yang VW, Bialkowska AB. Intestinal Epithelial Regeneration in Response to Ionizing Irradiation. J Vis Exp 2022:10.3791/64028. [PMID: 35969101 PMCID: PMC9631267 DOI: 10.3791/64028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
The intestinal epithelium consists of a single layer of cells yet contains multiple types of terminally differentiated cells, which are generated by the active proliferation of intestinal stem cells located at the bottom of intestinal crypts. However, during events of acute intestinal injury, these active intestinal stem cells undergo cell death. Gamma irradiation is a widely used colorectal cancer treatment, which, while therapeutically efficacious, has the side effect of depleting the active stem cell pool. Indeed, patients frequently experience gastrointestinal radiation syndrome while undergoing radiotherapy, in part due to active stem cell depletion. The loss of active intestinal stem cells in intestinal crypts activates a pool of typically quiescent reserve intestinal stem cells and induces dedifferentiation of secretory and enterocyte precursor cells. If not for these cells, the intestinal epithelium would lack the ability to recover from radiotherapy and other such major tissue insults. New advances in lineage-tracing technologies allow tracking of the activation, differentiation, and migration of cells during regeneration and have been successfully employed for studying this in the gut. This study aims to depict a method for the analysis of cells within the mouse intestinal epithelium following radiation injury.
Collapse
Affiliation(s)
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University
| | - Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University; Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University
| | | |
Collapse
|
10
|
Pejchal J, Tichy A, Kmochova A, Fikejzlova L, Kubelkova K, Milanova M, Lierova A, Filipova A, Muckova L, Cizkova J. Mitigation of Ionizing Radiation-Induced Gastrointestinal Damage by Insulin-Like Growth Factor-1 in Mice. Front Pharmacol 2022; 13:663855. [PMID: 35847048 PMCID: PMC9277384 DOI: 10.3389/fphar.2022.663855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Insulin-like growth factor-1 (IGF-1) stimulates epithelial regeneration but may also induce life-threatening hypoglycemia. In our study, we first assessed its safety. Subsequently, we examined the effect of IGF-1 administered in different dose regimens on gastrointestinal damage induced by high doses of gamma radiation. Material and methods: First, fasting C57BL/6 mice were injected subcutaneously with IGF-1 at a single dose of 0, 0.2, 1, and 2 mg/kg to determine the maximum tolerated dose (MTD). The glycemic effect of MTD (1 mg/kg) was additionally tested in non-fasting animals. Subsequently, a survival experiment was performed. Animals were irradiated (60Co; 14, 14.5, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously at 1 mg/kg 1, 24, and 48 h after irradiation. Simultaneously, mice were irradiated (60Co; 12, 14, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously under the same regimen. Jejunum and lung damage were assessed 84 h after irradiation. Finally, we evaluated the effect of six different IGF-1 dosage regimens administered subcutaneously on gastrointestinal damage and peripheral blood changes in mice 6 days after irradiation (60Co; 12 and 14 Gy; shielded head). The regimens differed in the number of doses (one to five doses) and the onset of administration (starting at 1 [five regimens] or 24 h [one regimen] after irradiation). Results: MTD was established at 1 mg/kg. MTD mitigated lethality induced by 14 Gy and reduced jejunum and lung damage caused by 12 and 14 Gy. However, different dosing regimens showed different efficacy, with three and four doses (administered 1, 24, and 48 h and 1, 24, 48, and 72 h after irradiation, respectively) being the most effective. The three-dose regimens supported intestinal regeneration even if the administration started at 24 h after irradiation, but its potency decreased. Conclusion: IGF-1 seems promising in the mitigation of high-dose irradiation damage. However, the selected dosage regimen affects its efficacy.
Collapse
Affiliation(s)
- Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Ales Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Adela Kmochova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Lenka Fikejzlova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Marcela Milanova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Alzbeta Filipova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Lubica Muckova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Jana Cizkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| |
Collapse
|
11
|
Zeng Q, Cheng J, Wu H, Liang W, Cui Y. The dynamic cellular and molecular features during the development of radiation proctitis revealed by transcriptomic profiling in mice. BMC Genomics 2022; 23:431. [PMID: 35681125 PMCID: PMC9178886 DOI: 10.1186/s12864-022-08668-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radiation proctitis (RP) is the most common complication of radiotherapy for pelvic tumor. Currently there is a lack of effective clinical treatment and its underlying mechanism is poorly understood. In this study, we aimed to dynamically reveal the mechanism of RP progression from the perspective of RNomics using a mouse model, so as to help develop reasonable therapeutic strategies for RP. RESULTS Mice were delivered a single dose of 25 Gy rectal irradiation, and the rectal tissues were removed at 4 h, 1 day, 3 days, 2 weeks and 8 weeks post-irradiation (PI) for both histopathological assessment and RNA-seq analysis. According to the histopathological characteristics, we divided the development process of our RP animal model into three stages: acute (4 h, 1 day and 3 days PI), subacute (2 weeks PI) and chronic (8 weeks PI), which could recapitulate the features of different stages of human RP. Bioinformatics analysis of the RNA-seq data showed that in the acute injury period after radiation, the altered genes were mainly enriched in DNA damage response, p53 signaling pathway and metabolic changes; while in the subacute and chronic stages of tissue reconstruction, genes involved in the biological processes of vessel development, extracellular matrix organization, inflammatory and immune responses were dysregulated. We further identified the hub genes in the most significant biological process at each time point using protein-protein interaction analysis and verified the differential expression of these genes by quantitative real-time-PCR analysis. CONCLUSIONS Our study reveals the molecular events sequentially occurred during the course of RP development and might provide molecular basis for designing drugs targeting different stages of RP development.
Collapse
Affiliation(s)
- Qingzhi Zeng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Jingyang Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Haiyong Wu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Wenfeng Liang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yanmei Cui
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
12
|
Lepr + mesenchymal cells sense diet to modulate intestinal stem/progenitor cells via Leptin-Igf1 axis. Cell Res 2022; 32:670-686. [PMID: 35296796 DOI: 10.1038/s41422-022-00643-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Diet can impact on gut health and disease by modulating intestinal stem cells (ISCs). However, it is largely unknown if and how the ISC niche responds to diet and influences ISC function. Here, we demonstrate that Lepr+ mesenchymal cells (MCs) surrounding intestinal crypts sense diet change and provide a novel niche signal to maintain ISC and progenitor cell proliferation. The abundance of these MCs increases upon administration of a high-fat diet (HFD) but dramatically decreases upon fasting. Depletion of Lepr+ MCs resulted in fewer intestinal stem/progenitor cells, compromised the architecture of crypt-villus axis and impaired intestinal regeneration. Furthermore, we showed that IGF1 secreted by Lepr+ MCs is an important effector that promotes proliferation of ISCs and progenitor cells in the intestinal crypt. We conclude that Lepr+ MCs sense diet alterations and, in turn, modulate intestinal stem/progenitor cell function via a stromal IGF1-epithelial IGF1R axis. These findings reveal that Lepr+ MCs are important mediators linking systemic diet changes to local ISC function and might serve as a novel therapeutic target for gut diseases.
Collapse
|
13
|
Chen ME, Naeini SM, Srikrishnaraj A, Drucker DJ, Fesler Z, Brubaker PL. Glucagon-Like Peptide-2 Stimulates S-Phase Entry of Intestinal Lgr5+ Stem Cells. Cell Mol Gastroenterol Hepatol 2022; 13:1829-1842. [PMID: 35218981 PMCID: PMC9123588 DOI: 10.1016/j.jcmgh.2022.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Leucine-rich repeat-containing G-protein-coupled receptor-5 (Lgr5)+/olfactomedin-4 (Olfm4)+ intestinal stem cells (ISCs) in the crypt base are crucial for homeostatic maintenance of the epithelium. The gut hormone, glucagon-like peptide-21-33 (GLP-2), stimulates intestinal proliferation and growth; however, the actions of GLP-2 on the Lgr5+ ISCs remain unclear. The aim of this study was to determine whether and how GLP-2 regulates Lgr5+ ISC cell-cycle dynamics and numbers. METHODS Lgr5-Enhanced green-fluorescent protein - internal ribosome entry site - Cre recombinase - estrogen receptor T2 (eGFP-IRES-creERT2) mice were acutely administered human Glycine2 (Gly2)-GLP-2, or the GLP-2-receptor antagonist, GLP-23-33. Intestinal epithelial insulin-like growth factor-1-receptor knockout and control mice were treated chronically with human Gly2 (hGly2)-GLP-2. Cell-cycle parameters were determined by 5-Ethynyl-2'-deoxyuridine (EdU), bromodeoxyuridine, antibody #Ki67, and phospho-histone 3 labeling and cell-cycle gene expression. RESULTS Acute hGly2-GLP-2 treatment increased the proportion of eGFP+EdU+/OLFM4+EdU+ cells by 11% to 22% (P < .05), without affecting other cell-cycle markers. hGly2-GLP-2 treatment also increased the ratio of eGFP+ cells in early to late S-phase by 97% (P < .001), and increased the proportion of eGFP+ cells entering S-phase by 218% (P < .001). hGly2-GLP-2 treatment induced jejunal expression of genes involved in cell-cycle regulation (P < .05), and increased expression of Mcm3 in the Lgr5-expressing cells by 122% (P < .05). Conversely, GLP-23-33 reduced the proportion of eGFP+EdU+ cells by 27% (P < .05), as well as the expression of jejunal cell-cycle genes (P < .05). Finally, chronic hGly2-GLP-2 treatment increased the number of OLFM4+ cells/crypt (P < .05), in an intestinal epithelial insulin-like growth factor-1-receptor-dependent manner. CONCLUSIONS These findings expand the actions of GLP-2 to encompass acute stimulation of Lgr5+ ISC S-phase entry through the GLP-2R, and chronic induction of Lgr5+ ISC expansion through downstream intestinal insulin-like growth factor-1 signaling.
Collapse
Affiliation(s)
| | | | | | - Daniel J. Drucker
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zivit Fesler
- Department of Physiology, Toronto, Ontario, Canada
| | - Patricia L. Brubaker
- Department of Physiology, Toronto, Ontario, Canada,Department of Medicine, University of Toronto, Toronto, Ontario, Canada,Correspondence Address correspondence to: Patricia L. Brubaker, PhD, Medical Sciences Building, Room 3366, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada. fax: 1 (416) 978-4940.
| |
Collapse
|
14
|
Abstract
Complex multicellular organisms have evolved specific mechanisms to replenish cells in homeostasis and during repair. Here, we discuss how emerging technologies (e.g., single-cell RNA sequencing) challenge the concept that tissue renewal is fueled by unidirectional differentiation from a resident stem cell. We now understand that cell plasticity, i.e., cells adaptively changing differentiation state or identity, is a central tissue renewal mechanism. For example, mature cells can access an evolutionarily conserved program (paligenosis) to reenter the cell cycle and regenerate damaged tissue. Most tissues lack dedicated stem cells and rely on plasticity to regenerate lost cells. Plasticity benefits multicellular organisms, yet it also carries risks. For one, when long-lived cells undergo paligenotic, cyclical proliferation and redif-ferentiation, they can accumulate and propagate acquired mutations that activate oncogenes and increase the potential for developing cancer. Lastly, we propose a new framework for classifying patterns of cell proliferation in homeostasis and regeneration, with stem cells representing just one of the diverse methods that adult tissues employ.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Charles J. Cho
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA,Departments of Pathology and Immunology and Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Departments of Medicine, Pathology and Immunology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Horita N, Keeley TM, Hibdon ES, Delgado E, Lafkas D, Siebel CW, Samuelson LC. Delta-like 1-Expressing Cells at the Gland Base Promote Proliferation of Gastric Antral Stem Cells in Mouse. Cell Mol Gastroenterol Hepatol 2021; 13:275-287. [PMID: 34438113 PMCID: PMC8599166 DOI: 10.1016/j.jcmgh.2021.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Notch pathway signaling maintains gastric epithelial cell homeostasis by regulating stem cell proliferation and differentiation. We previously identified NOTCH1 and NOTCH2 as the key Notch receptors controlling gastric stem cell function. Here, we identify the niche cells and critical Notch ligand responsible for regulating stem cell proliferation in the distal mouse stomach. METHODS Expression of Notch ligands in the gastric antrum was determined by quantitative reverse-transcriptase polymerase chain reaction and cellular localization was determined by in situ hybridization and immunostaining. The contribution of specific Notch ligands to regulate epithelial cell proliferation in adult mice was determined by inducible gene deletion, or by pharmacologic inhibition using antibodies directed against specific Notch ligands. Mouse gastric organoid cultures were used to confirm that Notch ligand signaling was epithelial specific. RESULTS Delta-like 1 (DLL1) and Jagged 1 (JAG1) were the most abundantly expressed Notch ligands in the adult mouse stomach, with DLL1 restricted to the antral gland base and JAG1 localized to the upper gland region. Inhibition of DLL1 alone or in combination with other Notch ligands significantly reduced epithelial cell proliferation and the growth of gastric antral organoids, while inhibition of the other Notch ligands, DLL4, JAG1, and JAG2, did not affect proliferation or organoid growth. Similarly, DLL1, and not DLL4, regulated proliferation of LGR5+ antral stem cells, which express the NOTCH1 receptor. CONCLUSIONS DLL1 is the key Notch ligand regulating epithelial cell proliferation in the gastric antrum. We propose that DLL1-expressing cells at the gland base are Notch niche cells that signal to adjacent LGR5+ antral stem cells to regulate stem cell proliferation and epithelial homeostasis.
Collapse
Affiliation(s)
- Nobukatsu Horita
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Theresa M Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Elise S Hibdon
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Elizabeth Delgado
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Daniel Lafkas
- Department of Discovery Oncology, Genentech, San Francisco, California
| | | | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
16
|
Bone marrow stromal cell therapy improves survival after radiation injury but does not restore endogenous hematopoiesis. Sci Rep 2020; 10:22211. [PMID: 33335275 PMCID: PMC7747726 DOI: 10.1038/s41598-020-79278-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
The only available option to treat radiation-induced hematopoietic syndrome is allogeneic hematopoietic cell transplantation, a therapy unavailable to many patients undergoing treatment for malignancy, which would also be infeasible in a radiological disaster. Stromal cells serve as critical components of the hematopoietic stem cell niche and are thought to protect hematopoietic cells under stress. Prior studies that have transplanted mesenchymal stromal cells (MSCs) without co-administration of a hematopoietic graft have shown underwhelming rescue of endogenous hematopoiesis and have delivered the cells within 24 h of radiation exposure. Herein, we examine the efficacy of a human bone marrow-derived MSC therapy delivered at 3 h or 30 h in ameliorating radiation-induced hematopoietic syndrome and show that pancytopenia persists despite MSC therapy. Animals exposed to radiation had poorer survival and experienced loss of leukocytes, platelets, and red blood cells. Importantly, mice that received a therapeutic dose of MSCs were significantly less likely to die but experienced equivalent collapse of the hematopoietic system. The cause of the improved survival was unclear, as complete blood counts, splenic and marrow cellularity, numbers and function of hematopoietic stem and progenitor cells, and frequency of niche cells were not significantly improved by MSC therapy. Moreover, human MSCs were not detected in the bone marrow. MSC therapy reduced crypt dropout in the small intestine and promoted elevated expression of growth factors with established roles in gut development and regeneration, including PDGF-A, IGFBP-3, IGFBP-2, and IGF-1. We conclude that MSC therapy improves survival not through overt hematopoietic rescue but by positive impact on other radiosensitive tissues, such as the intestinal mucosa. Collectively, these data reveal that MSCs could be an effective countermeasure in cancer patients and victims of nuclear accidents but that MSCs alone do not significantly accelerate or contribute to recovery of the blood system.
Collapse
|
17
|
Lengner CJ. MTorc1 at the Crossroads of Facultative Intestinal Stem Cell Activation. Cell Mol Gastroenterol Hepatol 2020; 10:857-858. [PMID: 32791156 PMCID: PMC7573664 DOI: 10.1016/j.jcmgh.2020.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/10/2022]
Affiliation(s)
- Christopher J. Lengner
- Correspondence Address correspondence to: Christopher J. Lengner, PhD, Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of Pennsylvania, 3800 Spruce Street, Room 309EA, Philadelphia, Pennsylvania 19104. fax: (215) 573-6810.
| |
Collapse
|