1
|
Baskaran D, Dhamodharan D, Behera US, Byun HS. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds. ENVIRONMENTAL RESEARCH 2024; 251:118472. [PMID: 38452912 DOI: 10.1016/j.envres.2024.118472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Volatile organic compounds (VOCs) are harmful pollutants emitted from industrial processes. They pose a risk to human health and ecosystems, even at low concentrations. Controlling VOCs is crucial for good air quality. This review aims to provide a comprehensive understanding of the various methods used for controlling VOC abatement. The advancement of mono-functional treatment techniques, including recovery such as absorption, adsorption, condensation, and membrane separation, and destruction-based methods such as natural degradation methods, advanced oxidation processes, and reduction methods were discussed. Among these methods, advanced oxidation processes are considered the most effective for removing toxic VOCs, despite some drawbacks such as costly chemicals, rigorous reaction conditions, and the formation of secondary chemicals. Standalone technologies are generally not sufficient and do not perform satisfactorily for the removal of hazardous air pollutants due to the generation of innocuous end products. However, every integration technique complements superiority and overcomes the challenges of standalone technologies. For instance, by using catalytic oxidation, catalytic ozonation, non-thermal plasma, and photocatalysis pretreatments, the amount of bioaerosols released from the bioreactor can be significantly reduced, leading to effective conversion rates for non-polar compounds, and opening new perspectives towards promising techniques with countless benefits. Interestingly, the three-stage processes have shown efficient decomposition performance for polar VOCs, excellent recoverability for nonpolar VOCs, and promising potential applications in atmospheric purification. Furthermore, the review also reports on the evolution of mathematical and artificial neural network modeling for VOC removal performance. The article critically analyzes the synergistic effects and advantages of integration. The authors hope that this article will be helpful in deciding on the appropriate strategy for controlling interested VOCs.
Collapse
Affiliation(s)
- Divya Baskaran
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai-600077, India
| | - Duraisami Dhamodharan
- Interdisciplinary Research Centre for Refining and Advanced Chemicals, King Fahd, University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Uma Sankar Behera
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea.
| |
Collapse
|
2
|
Trueba-Santiso A, Torrentó C, Soder-Walz JM, Fernández-Verdejo D, Rosell M, Marco-Urrea E. Dual C-Cl isotope fractionation offers potential to assess biodegradation of 1,2-dichloropropane and 1,2,3-trichloropropane by Dehalogenimonas cultures. CHEMOSPHERE 2024; 358:142170. [PMID: 38679177 DOI: 10.1016/j.chemosphere.2024.142170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/25/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
1,2-dichloropropane (1,2-DCP) and 1,2,3-trichloropropane (1,2,3-TCP) are hazardous chemicals frequently detected in groundwater near agricultural zones due to their historical use in chlorinated fumigant formulations. In this study, we show that the organohalide-respiring bacterium Dehalogenimonas alkenigignens strain BRE15 M can grow during the dihaloelimination of 1,2-DCP and 1,2,3-TCP to propene and allyl chloride, respectively. Our work also provides the first application of dual isotope approach to investigate the anaerobic reductive dechlorination of 1,2-DCP and 1,2,3-TCP. Stable carbon and chlorine isotope fractionation values for 1,2-DCP (ƐC = -13.6 ± 1.4 ‰ and ƐCl = -27.4 ± 5.2 ‰) and 1,2,3-TCP (ƐC = -3.8 ± 0.6 ‰ and ƐCl = -0.8 ± 0.5 ‰) were obtained resulting in distinct dual isotope slopes (Λ12DCP = 0.5 ± 0.1, Λ123TCP = 4 ± 2). However direct comparison of ΛC-Cl among different substrates is not possible and investigation of the C and Cl apparent kinetic isotope effects lead to the hypothesis that concerted dichloroelimination mechanism is more likely for both compounds. In fact, whole cell activity assays using cells suspensions of the Dehalogenimonas-containing culture grown with 1,2-DCP and methyl viologen as electron donor suggest that the same set of reductive dehalogenases was involved in the transformation of 1,2-DCP and 1,2,3-TCP. This study opens the door to the application of isotope techniques for evaluating biodegradation of 1,2-DCP and 1,2,3-TCP, which often co-occur in groundwaters near agricultural fields.
Collapse
Affiliation(s)
- Alba Trueba-Santiso
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - Clara Torrentó
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Jesica M Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - David Fernández-Verdejo
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - Mònica Rosell
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain.
| |
Collapse
|
3
|
Wang B, Luo Q, Pan Y, Mei Z, Sun T, Zhong Z, He F, Liang L, Wang Z, Xing B. Enhanced Biogenic Sulfidation of Zero-Valent Iron in Columns: Implications for Promoting Dechlorination in Permeable Reactive Barriers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20951-20961. [PMID: 38009568 DOI: 10.1021/acs.est.3c06976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Biogenic sulfidation of zero-valent iron (ZVI) using sulfate reducing bacteria (SRB) has shown enhanced dechlorination rates comparable to those produced by chemical sulfidation. However, controlling and sustaining biogenic sulfidation to enhance in situ dechlorination are poorly understood. Detailed interactions between SRB and ZVI were examined for 4 months in column experiments under enhanced biogenic sulfidation conditions. SRB proliferation and changes in ZVI surface properties were characterized along the flow paths. The results show that ZVI can stimulate SRB activity by removing excessive free sulfide (S2-), in addition to lowering reduction potential. ZVI also hinders downgradient movement of SRB via electrostatic repulsion, restricting SRB presence near the upgradient interface. Dissolved organic carbon (e.g., >2.2 mM) was essential for intense biogenic sulfidation in ZVI columns. The presence of SRB in the upgradient zone appeared to promote the formation of iron polysulfides. Biogenic FeSx deposition increased the S content on ZVI surfaces ∼3-fold, corresponding to 3-fold and 2-fold improvements in the trichloroethylene degradation rate and electron efficiency in batch tests. Elucidation of SRB and ZVI interactions enhances sustained sulfidation in ZVI permeable reactive barrier.
Collapse
Affiliation(s)
- Binbin Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qin Luo
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yujia Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zihan Mei
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Taoyu Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhong Zhong
- Eco-Environmental Science & Research Institute of Zhejiang Province, Hangzhou, Zhejiang 310007, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Liyuan Liang
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Qian L, Li H, Wei Z, Liang C, Dong X, Lin D, Chen M. Enhanced removal of cis-1,2-dichloroethene and vinyl chloride in groundwater using ball-milled sulfur- and biochar-modified zero-valent iron: From the laboratory to the field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122424. [PMID: 37604391 DOI: 10.1016/j.envpol.2023.122424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Sulfidated zero-valent iron (ZVI) and biochar-supported ZVI have received increasing attention for their potential to dechlorinate trichloroethylene. However, minimal data are available regarding the combined effect of sulfur and biochar ZVI on trichloroethylene byproducts. The primary aim of the current study is to determine whether sulfur- and biochar-modified ZVI (ZVI-BC-S) enhances the removal of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) from groundwater. Results show that biochar and sulfur facilitated the milling of ZVI-BC-S into micro- and nanoscale particles and increased FeS formation. Moreover, the rates of cDCE and VC removal by ZVI-S increased by 30.1% and 30.2%, respectively, compared to those obtained with ZVI, owing to enhanced dechlorination via β-elimination by sulfur. Meanwhile, treatment with ZVI-BC-S harnessed the benefits of biochar and sulfur to enhance the cDCE and VC removal rates by 62.0% and 67.7%, respectively. Mechanistically, biochar enhanced the corrosion of ZVI-S to increase FeS production and enhance the electron transfer, β-elimination, and hydrogenolysis involved in cDCE and VC dechlorination. The effectiveness of ZVI-BC-S was confirmed in a field demonstration, during which cDCE and VC concentrations significantly decreased within 10 days following injection. The findings of this study can help inform the rational design of ZVI for in-situ remediation of chlorinated hydrocarbons in groundwater.
Collapse
Affiliation(s)
- Linbo Qian
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hangyu Li
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zifei Wei
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China; Xinan Technology University, Mianyang, 621010, Sichuan Province, China
| | - Cong Liang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinzhu Dong
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daohui Lin
- Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Mengfang Chen
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Puigserver D, Herrero J, Carmona JM. Mobilization pilot test of PCE sources in the transition zone to aquitards by combining mZVI and biostimulation with lactic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162751. [PMID: 36921871 DOI: 10.1016/j.scitotenv.2023.162751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/05/2023] [Accepted: 03/05/2023] [Indexed: 05/06/2023]
Abstract
The potential toxic and carcinogenic effects of chlorinated solvents in groundwater on human health and aquatic ecosystems require very effective remediation strategies of contaminated groundwater to achieve the low legal cleanup targets required. The transition zones between aquifers and bottom aquitards occur mainly in prograding alluvial fan geological contexts. Hence, they are very frequent from a hydrogeological point of view. The transition zone consists of numerous thin layers of fine to coarse-grained clastic fragments (e.g., medium sands and gravels), which alternate with fine-grained materials (clays and silts). When the transition zones are affected by DNAPL spills, free-phase pools accumulate on the less conductive layers. Owing to the low overall conductivity of this zone, the pools are very recalcitrant. Little field research has been done on transition zone remediation techniques. Injection of iron microparticles has the disadvantage of the limited accessibility of this reagent to reach the entire source of contamination. Biostimulation of indigenous microorganisms in the medium has the disadvantage that few of the microorganisms are capable of complete biodegradation to total mineralization of the parent contaminant and metabolites. A field pilot test was conducted at a site where a transition zone existed in which DNAPL pools of PCE had accumulated. In particular, the interface with the bottom aquitard was where PCE concentrations were the highest. In this pilot test, a combined strategy using ZVI in microparticles and biostimulation with lactate in the form of lactic acid was conducted. Throughout the test it was found that the interdependence of the coupled biotic and abiotic processes generated synergies between these processes. This resulted in a greater degradation of the PCE and its transformation products. With the combination of the two techniques, the mobilization of the contaminant source of PCE was extremely effective.
Collapse
Affiliation(s)
- Diana Puigserver
- Department of Mineralogy, Petrology and Applied Geology. Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), Serra Húnter Tenure-elegible Lecturer, C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| | - Jofre Herrero
- Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| | - José M Carmona
- Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| |
Collapse
|
6
|
Mohana Rangan S, Rao S, Robles A, Mouti A, LaPat-Polasko L, Lowry GV, Krajmalnik-Brown R, Delgado AG. Decoupling Fe 0 Application and Bioaugmentation in Space and Time Enables Microbial Reductive Dechlorination of Trichloroethene to Ethene: Evidence from Soil Columns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4167-4179. [PMID: 36866930 PMCID: PMC10018760 DOI: 10.1021/acs.est.2c06433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 06/06/2023]
Abstract
Fe0 is a powerful chemical reductant with applications for remediation of chlorinated solvents, including tetrachloroethene and trichloroethene. Its utilization efficiency at contaminated sites is limited because most of the electrons from Fe0 are channeled to the reduction of water to H2 rather than to the reduction of the contaminants. Coupling Fe0 with H2-utilizing organohalide-respiring bacteria (i.e., Dehalococcoides mccartyi) could enhance trichloroethene conversion to ethene while maximizing Fe0 utilization efficiency. Columns packed with aquifer materials have been used to assess the efficacy of a treatment combining in space and time Fe0 and aD. mccartyi-containing culture (bioaugmentation). To date, most column studies documented only partial conversion of the solvents to chlorinated byproducts, calling into question the feasibility of Fe0 to promote complete microbial reductive dechlorination. In this study, we decoupled the application of Fe0 in space and time from the addition of organic substrates andD. mccartyi-containing cultures. We used a column containing soil and Fe0 (at 15 g L-1 in porewater) and fed it with groundwater as a proxy for an upstream Fe0 injection zone dominated by abiotic reactions and biostimulated/bioaugmented soil columns (Bio-columns) as proxies for downstream microbiological zones. Results showed that Bio-columns receiving reduced groundwater from the Fe0-column supported microbial reductive dechlorination, yielding up to 98% trichloroethene conversion to ethene. The microbial community in the Bio-columns established with Fe0-reduced groundwater also sustained trichloroethene reduction to ethene (up to 100%) when challenged with aerobic groundwater. This study supports a conceptual model where decoupling the application of Fe0 and biostimulation/bioaugmentation in space and/or time could augment microbial trichloroethene reductive dechlorination, particularly under oxic conditions.
Collapse
Affiliation(s)
- Srivatsan Mohana Rangan
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Bio-Mediated and Bio-Inspired Geotechnics (CBBG), Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Center for Health Through Microbiomes, Arizona
State University, Tempe, Arizona 85287, United States
| | - Shefali Rao
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Bio-Mediated and Bio-Inspired Geotechnics (CBBG), Arizona State University, Tempe, Arizona 85281, United States
| | - Aide Robles
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Bio-Mediated and Bio-Inspired Geotechnics (CBBG), Arizona State University, Tempe, Arizona 85281, United States
| | - Aatikah Mouti
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Gregory V. Lowry
- Center
for Environmental Implications of Nanotechnology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rosa Krajmalnik-Brown
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Bio-Mediated and Bio-Inspired Geotechnics (CBBG), Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Center for Health Through Microbiomes, Arizona
State University, Tempe, Arizona 85287, United States
| | - Anca G. Delgado
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Bio-Mediated and Bio-Inspired Geotechnics (CBBG), Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
7
|
Guo C, Qi L, Bai Y, Yin L, Li L, Zhang W. Geochemical stability of zero-valent iron modified raw wheat straw innovatively applicated to in situ permeable reactive barrier: N 2 selectivity and long-term denitrification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112649. [PMID: 34425538 DOI: 10.1016/j.ecoenv.2021.112649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The zero-valent iron (ZVI) modified wheat straw materials are widely used for treating groundwater by permeable reactive barrier (PRB). We report the performance of a field-scale PRB filled with ZVI modified wheat straw materials for nitrate (NO3-)-contaminated groundwater. In lab-scale PRB filled with ZVI modified wheat straw material, NO3- concentration entering the PRB was varied (27.80-59.86 mg L-1) according to the in situ NO3- contamination. A stable NO3- removal rate of 90% was achieved at a controlled hydraulic retention time of 22 days, together with a proportion of denitrifying bacteria up to 34.37%. The field-scale PRB filled with ZVI modified wheat straw material was successful at removing NO3- from groundwater (removal percentages ≥60%) at a groundwater flow rate of 0.01 m3 d-1. Monitoring of groundwater within this PRB provided evidences that the nitrogen gas (N2) selectivity increased with lower ammonia (NH4+) generated from ZVI reduction of NO3-, and few emission of NO2- present due to denitrification capacity in this PRB. The results are finally compared with the few others reported existing PRBs for nitrate-contaminated groundwater worldwide, and demonstrated that the ZVI modified wheat straw material would be an effective fillings for field PRB to remediate groundwater.
Collapse
Affiliation(s)
- Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Liang Qi
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Ying Bai
- School of Earth Science and Engineering, Nanjing University, 210023 Nanjing, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, 210023 Nanjing, China
| | - Lin Yin
- School of Earth Science and Engineering, Nanjing University, 210023 Nanjing, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, 210023 Nanjing, China
| | - Ling Li
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Wen Zhang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
8
|
Shi K, Liang B, Guo Q, Zhao Y, Sharif HMA, Li Z, Chen E, Wang A. Accelerated bioremediation of a complexly contaminated river sediment through ZVI-electrode combined stimulation. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125392. [PMID: 33609875 DOI: 10.1016/j.jhazmat.2021.125392] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Complexly contaminated river sediment caused by reducible and oxidizable organic pollutants is a growing global concern due to the adverse influence on ecosystem safety and planetary health. How to strengthen indigenous microbial metabolic activity to enhance biodegradation and mineralization efficiency of refractory composite pollutants is critical but poorly understood in environmental biotechnology. Here, a synergetic biostimulation coupling electrode with zero-valent iron (ZVI) was investigated for the bioremediation of river sediments contaminated by 2,4,6-tribromophenol (TBP, reducible pollutant) and hydrocarbons (oxidizable pollutants). The bioremediation efficiency of ZVI based biostimulation coupling electrode against TBP debromination and hydrocarbons degradation were 1.1-3 times higher than the electrode used solely, which was attributed to the shape of distinctive microbial communities and the enrichment of potential dehalogenators (like Desulfovibrio, Desulfomicrobium etc.). The sediment microbial communities were significantly positively correlated with the enhanced degradation efficiencies of TBP and hydrocarbons (P < 0.05). Moreover, the coupled system predominately increased positive microbial interactions in the ecological networks. The possible mutual relationship between microbes i.e., Thiobacillus (iron-oxidizing bacteria) and Desulfovibrio (dehalogenator) as well as Pseudomonas (electroactive bacteria) and Clostridium (hydrocarbons degraders) were revealed. This study proposed a promising approach for efficient bioremediation of complexly contaminated river sediments.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Qiu Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Youkang Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - E Chen
- The Environmental Monitoring Center of Gansu Province, Lanzhou 730020, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Ebrahimbabaie P, Pichtel J. Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7710-7741. [PMID: 33403642 DOI: 10.1007/s11356-020-11598-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Chlorinated volatile organic compounds (CVOCs) are persistent organic pollutants which are harmful to public health and the environment. Many CVOCs occur in substantial quantities in groundwater and soil, even though their use has been more carefully managed and restricted in recent years. This review summarizes recent data on several innovative treatment solutions for CVOC-affected media including bioremediation, phytoremediation, nanoscale zero-valent iron (nZVI)-based reductive dehalogenation, and photooxidation. There is no optimally developed single technology; therefore, the possibility of using combined technologies for CVOC remediation, for example bioremediation integrated with reduction by nZVI, is presented. Some methods are still in the development stage. Advantages and disadvantages of each treatment strategy are provided. It is hoped that this paper can provide a basic framework for selection of successful CVOC remediation strategies.
Collapse
Affiliation(s)
- Parisa Ebrahimbabaie
- Department of Environment, Geology, and Natural Resources, Ball State University, Muncie, IN, 47306, USA
| | - John Pichtel
- Department of Environment, Geology, and Natural Resources, Ball State University, Muncie, IN, 47306, USA.
| |
Collapse
|
10
|
Rosell M, Palau J, Mortan SH, Caminal G, Soler A, Shouakar-Stash O, Marco-Urrea E. Dual carbon - chlorine isotope fractionation during dichloroelimination of 1,1,2-trichloroethane by an enrichment culture containing Dehalogenimonas sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:422-429. [PMID: 30121041 DOI: 10.1016/j.scitotenv.2018.08.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Chlorinated ethanes are frequent groundwater contaminants but compound specific isotope analysis (CSIA) has been scarcely applied to investigate their degradation pathways. In this study, dual carbon and chlorine isotope fractionation was used to investigate for the first time the anoxic biodegradation of 1,1,2-trichloroethane (1,1,2-TCA) using a Dehalogenimonas-containing culture. The isotopic fractionation values obtained for the biodegradation of 1,1,2-TCA were ɛC = -6.9 ± 0.4‰ and ɛCl = -2.7 ± 0.3‰. The detection of vinyl chloride (VC) as unique byproduct and a closed carbon isotopic mass balance corroborated that dichloroelimination was the degradation pathway used by this strain. Combining the values of δ13C and δ37Cl resulted in a dual element C-Cl isotope slope of Λ = 2.5 ± 0.2‰. Investigation of the apparent kinetic isotope effects (AKIEs) expected for cleavage of a CCl bond showed an important masking of the intrinsic isotope fractionation. Theoretical calculation of Λ suggested that dichloroelimination of 1,1,2-TCA was taking place via simultaneous cleavage of two CCl bonds (concerted reaction mechanism). The isotope data obtained in this study can be useful to monitor natural attenuation of 1,1,2-TCA via dichloroelimination and provide insights into the source and fate of VC in contaminated groundwaters.
Collapse
Affiliation(s)
- Mònica Rosell
- Grup MAiMA, Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| | - Jordi Palau
- Grup MAiMA, Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Hydrogeology Group (UPC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Siti Hatijah Mortan
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| | - Gloria Caminal
- Institut de Química Avançada de Catalunya (IQAC), CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Albert Soler
- Grup MAiMA, Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| | - Orfan Shouakar-Stash
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Isotope Tracer Technologies Inc., Waterloo, Ontario N2 V 1Z5, Canada
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
11
|
Gunawardana B, Swedlund PJ, Singhal N, Nieuwoudt MK. Pentachlorophenol dechlorination with zero valent iron: a Raman and GCMS study of the complex role of surficial iron oxides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17797-17806. [PMID: 29675820 DOI: 10.1007/s11356-018-2003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
The dechlorination of chlorinated organic pollutants by zero valent iron (ZVI) is an important water treatment process with a complex dependence on many variables. This complexity means that there are reported inconsistencies in terms of dechlorination with ZVI and the effect of ZVI acid treatment, which are significant and are as yet unexplained. This study aims to decipher some of this complexity by combining Raman spectroscopy with gas chromatography-mass spectrometry (GC-MS) to investigate the influence of the mineralogy of the iron oxide phases on the surface of ZVI on the reductive dechlorination of pentachlorophenol (PCP). Two electrolytic iron samples (ZVI-T and ZVI-H) were found to have quite different PCP dechlorination reactivity in batch reactors under anoxic conditions. Raman analysis of the "as-received" ZVI-T indicated the iron was mainly covered with the ferrous oxide (FeO) wustite, which is non-conducting and led to a low rate of PCP dechlorination. In contrast, the dominant oxide on the "as-received" ZVI-H was magnetite which is conducting and, compared to ZVI-T, the ZVI-H rate of PCP dechlorination was four times faster. Treating the ZVI-H sample with 1 N H2SO4 made small change to the composition of the oxide layers and also minute change to the rate of PCP dechlorination. However, treating the ZVI-T sample with H2SO4 led to the loss of wustite so that magnetite became the dominant oxide and the rate of PCP dechlorination increased to that of the ZVI-H material. In conclusion, this study clearly shows that iron oxide mineralogy can be a contributing factor to apparent inconsistencies in the literature related to ZVI performance towards dechlorination and the effect of acid treatment on ZVI reactivity.
Collapse
Affiliation(s)
- Buddhika Gunawardana
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand.
- Department of Civil Engineering, University of Moratuwa, Moratuwa, Sri Lanka.
| | - Peter J Swedlund
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Michel K Nieuwoudt
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Yang J, Meng L, Guo L. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5051-5062. [PMID: 28819708 DOI: 10.1007/s11356-017-9903-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Chlorinated solvents in groundwater pose threats to human health and the environment due to their carcinogenesis and bioaccumulation. These problems are often more severe in developing countries such as China. Thus, methods for chlorinated solvent-contaminated groundwater remediation are urgently needed. This study presents a technique of in situ remediation via the direct-push amendment injection that enhances the reductive dechlorination of chlorinated solvents in groundwater in the low-permeability aquifer. A field-based pilot test and a following real-world, full-scale application were conducted at an active manufacturing facility in Shanghai, China. The chlorinated solvents found at the clay till site included 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC), and chloroethane (CA). A commercially available amendment (EHC®, Peroxychem, Philadelphia, PA) combining zero-valent iron and organic carbon was used to treat the above pollutants. Pilot test results showed that direct-push EHC injection efficiently facilitated the in situ reductive remediation of groundwater contaminated with chlorinated solvents. The mean removal rates of 1,1,1-TCA, 1,1-DCA, and 1,1-DCE at 270 days post-injection were 99.6, 99.3, and 73.3%, respectively, which were obviously higher than those of VC and CA (42.3 and 37.1%, respectively). Clear decreases in oxidation-reduction potential and dissolved oxygen concentration, and increases in Fe2+ and total organic carbon concentration, were also observed during the monitoring period. These indicate that EHC promotes the anaerobic degradation of chlorinated hydrocarbons primarily via long-term biological reductive dechlorination, with instant chemical reductive dechlorination acting as a secondary pathway. The optimal effective time of EHC injection was 0-90 days, and its radius of influence was 1.5 m. In full-scale application, the maximum concentrations of 1,1,1-TCA and 1,1-DCA in the contaminate plume fell below the relevant Dutch Intervention Values at 180 days post-injection. Moreover, the dynamics of the target pollutant concentrations mirrored those of the pilot test. Thus, we have demonstrated that the direct-push injection of EHC successfully leads to the remediation of chlorinated solvent-contaminated groundwater in a real-world scenario. The parameters determined by this study (e.g., effectiveness, injection amount, injection depth, injection pressures, and radius of influence) are applicable to other low-permeability contaminated sites where in situ remediation by enhanced reductive dechlorination is required.
Collapse
Affiliation(s)
- Jie Yang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, People's Republic of China
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai, 200233, People's Republic of China
| | - Liang Meng
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, People's Republic of China.
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai, 200233, People's Republic of China.
| | - Lin Guo
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, People's Republic of China
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai, 200233, People's Republic of China
| |
Collapse
|
13
|
Kim HJ, Leitch M, Naknakorn B, Tilton RD, Lowry GV. Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:136-144. [PMID: 27250869 DOI: 10.1016/j.jhazmat.2016.04.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/09/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW=12K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7×10-4Lhr-1m-2) and hydrogen evolution rate constant (1.4 nanomolLhr-1m-2) were independent of nZVI concentration above 10g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H2 evolution was explained by differences in pH and Eh at each nZVI mass loading; PCE reactivity increased when solution Eh decreased, and the H2 evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA; Chemical Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Megan Leitch
- Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA; Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA
| | - Bhanuphong Naknakorn
- Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA
| | - Robert D Tilton
- Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA; Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA; Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA
| | - Gregory V Lowry
- Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA; Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA; Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA.
| |
Collapse
|
14
|
Wang S, Chen S, Wang Y, Low A, Lu Q, Qiu R. Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants? Biotechnol Adv 2016; 34:1384-1395. [DOI: 10.1016/j.biotechadv.2016.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/18/2016] [Accepted: 10/15/2016] [Indexed: 12/19/2022]
|