1
|
Aher J, Jadhav V, Bhagare A, Lokhande D. Honey bee venom loaded nanomaterials: A promising avenue for therapeutic delivery. NANO-STRUCTURES & NANO-OBJECTS 2024; 39:101310. [DOI: 10.1016/j.nanoso.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
2
|
Sadek KM, Shib NA, Taher ES, Rashed F, Shukry M, Atia GA, Taymour N, El-Nablaway M, Ibrahim AM, Ramadan MM, Abdelkader A, Abdo M, Imbrea I, Pet E, Ali LS, Abdeen A. Harnessing the power of bee venom for therapeutic and regenerative medical applications: an updated review. Front Pharmacol 2024; 15:1412245. [PMID: 39092234 PMCID: PMC11291246 DOI: 10.3389/fphar.2024.1412245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only. After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
- Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Naira A. Shib
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said, Egypt
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ilinca Imbrea
- Department of Forestry, Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Elena Pet
- Department of Management and Rural Development, Faculty of Management and Rural Tourism, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
3
|
Binaymotlagh R, Hajareh Haghighi F, Chronopoulou L, Palocci C. Liposome-Hydrogel Composites for Controlled Drug Delivery Applications. Gels 2024; 10:284. [PMID: 38667703 PMCID: PMC11048854 DOI: 10.3390/gels10040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Various controlled delivery systems (CDSs) have been developed to overcome the shortcomings of traditional drug formulations (tablets, capsules, syrups, ointments, etc.). Among innovative CDSs, hydrogels and liposomes have shown great promise for clinical applications thanks to their cost-effectiveness, well-known chemistry and synthetic feasibility, biodegradability, biocompatibility and responsiveness to external stimuli. To date, several liposomal- and hydrogel-based products have been approved to treat cancer, as well as fungal and viral infections, hence the integration of liposomes into hydrogels has attracted increasing attention because of the benefit from both of them into a single platform, resulting in a multifunctional drug formulation, which is essential to develop efficient CDSs. This short review aims to present an updated report on the advancements of liposome-hydrogel systems for drug delivery purposes.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Barros YVR, de Andrade AO, da Silva LPD, Pedroza LAL, Bezerra IC, Cavalcanti IDL, de Britto Lira Nogueira MC, Mousinho KC, Antoniolli AR, Alves LC, de Lima Filho JL, Moura AV, Rosini Silva ÁA, de Melo Porcari A, Gubert P. Bee Venom Toxic Effect on MDA-MB-231 Breast Cancer Cells and Caenorhabditis Elegans. Anticancer Agents Med Chem 2024; 24:798-811. [PMID: 38500290 DOI: 10.2174/0118715206291634240312062957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Bee venom has therapeutics and pharmacological properties. Further toxicological studies on animal models are necessary due to the severe allergic reactions caused by this product. METHOD Here, Caenorhabditis elegans was used as an in vivo toxicity model, while breast cancer cells were used to evaluate the pharmacological benefits. The bee venom utilized in this research was collected from Apis mellifera species found in Northeast Brazil. The cytotoxicity caused by bee venom was measured by MTT assay on MDA-MB-231 and J774 A.1 cells during 24 - 72 hours of exposure. C. elegans at the L4 larval stage were exposed for three hours to M9 buffer or bee venom. Survival, behavioral parameters, reproduction, DAF-16 transcription factor translocation, the expression of superoxide dismutase (SOD), and metabolomics were analyzed. Bee venom suppressed the growth of MDA-MB-231 cancer cells and exhibited cytotoxic effects on macrophages. Also, decreased C. elegans survival impacted its behaviors by decreasing C. elegans feeding behavior, movement, and reproduction. RESULTS Bee venom did not increase the expression of SOD-3, but it enhanced DAF-16 translocation from the cytoplasm to the nucleus. C. elegans metabolites differed after bee venom exposure, primarily related to aminoacyl- tRNA biosynthesis, glycine, serine and threonine metabolism, and sphingolipid and purine metabolic pathways. Our findings indicate that exposure to bee venom resulted in harmful effects on the cells and animal models examined. CONCLUSION Thus, due to its potential toxic effect and induction of allergic reactions, using bee venom as a therapeutic approach has been limited. The development of controlled-release drug strategies to improve this natural product's efficacy and safety should be intensified.
Collapse
Affiliation(s)
| | | | | | | | | | - Iago Dillion Lima Cavalcanti
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Pernambuco, Recife, Brazil
| | - Mariane Cajuba de Britto Lira Nogueira
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Academic Center of Vitória, Federal University of Pernambuco, Pernambuco, Brazil
| | | | | | - Luiz Carlos Alves
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Pernambuco, Recife, Brazil
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology and Experimental Therapy, Recife, Brazil.cr
| | - José Luiz de Lima Filho
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Pernambuco, Recife, Brazil
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Alexandre Varão Moura
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Álex Aparecido Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Andréia de Melo Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Priscila Gubert
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Department of Biochemistry, Federal University of Pernambuco, Pernambuco, Recife, Brazil
| |
Collapse
|
5
|
Kopp KT, Saerens L, Voorspoels J, Van den Mooter G. Solidification and oral delivery of biologics to the colon- A review. Eur J Pharm Sci 2023; 190:106523. [PMID: 37429482 DOI: 10.1016/j.ejps.2023.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
The oral delivery of biologics such as therapeutic proteins, peptides and oligonucleotides for the treatment of colon related diseases has been the focus of increasing attention over the last years. However, the major disadvantage of these macromolecules is their degradation propensity in liquid state which can lead to the undesirable and complete loss of function. Therefore, to increase the stability of the biologic and reduce their degradation propensity, formulation techniques such as solidification can be performed to obtain a stable solid dosage form for oral administration. Due to their fragility, stress exerted on the biologic during solidification has to be reduced with the incorporation of stabilizing excipients into the formulation. This review focuses on the state-of-the-art solidification techniques required to obtain a solid dosage form for the oral delivery of biologics to the colon and the use of suitable excipients for adequate stabilization upon solidification. The solidifying processes discussed within this review are spray drying, freeze drying, bead coating and also other techniques such as spray freeze drying, electro spraying, vacuum- and supercritical fluid drying. Further, the colon as site of absorption in both healthy and diseased state is critically reviewed and possible oral delivery systems for biologics are discussed.
Collapse
Affiliation(s)
- Katharina Tatjana Kopp
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium; Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium
| | - Lien Saerens
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | - Jody Voorspoels
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
6
|
El Naggar HM, Anwar MM, Khayyal AE, Abdelhameed RM, Barakat AM, Sadek SAS, Elashkar AM. Application of honeybee venom loaded nanoparticles for the treatment of chronic toxoplasmosis: parasitological, histopathological, and immunohistochemical studies. J Parasit Dis 2023; 47:591-607. [PMID: 37520202 PMCID: PMC10382463 DOI: 10.1007/s12639-023-01602-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/27/2023] [Indexed: 08/01/2023] Open
Abstract
Toxoplasma gondii is an opportunistic intracellular protozoon which may cause severe disease in the immunocompromised patients. Unfortunately, the majority of treatments on the market work against tachyzoites in the acute infection but can't affect tissue cysts in the chronic phase. So, this study aimed to evaluate the effect of bee venom (BV) loaded metal organic frameworks (MOFs) nanoparticles (NPs) for the treatment of chronic murine toxoplasmosis. Ninety laboratory Swiss Albino mice were divided into 9 groups (10 mice each); GI (negative control), GII (infected control), GIII-GXI (infected with Me49 strain of Toxoplasma and treated); GIII (MOFs-NPs), GIV and GV (BV alone and loaded on MOFs-NPs), GVI and GVII (spiramycin alone and loaded on MOFs-NPs), GVIII and GIX (ciprofloxacin alone and loaded on MOFs-NPs). Parasitological examination of brain cyst count, histopathological study of brain, retina, liver, and kidney tissue sections and immunohistochemical (IHC) evaluation of liver was performed. Counting of Toxoplasma brain cysts showed high statistically significant difference between the infected treated groups and GII. GV showed the least count of brain cysts; mean ± SD (281 ± 29.5). Histopathological examination revealed a marked ameliorative effect of BV administration when used alone or loaded MOFs-NPs. It significantly reduced tissue inflammation, degeneration, and fibrosis. IHC examination of liver sections revealed high density CD8+ infiltration in GII, low density CD8+ infiltration in GIII, GVI, GVII, GVIII, and GIX while GIV and GV showed intermediate density CD8+ infiltration. BV is a promising Apitherapy against chronic toxoplasmosis. This effect is markedly enhanced by MOFs-NPs. Graphical abstract
Collapse
Affiliation(s)
- Heba M. El Naggar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona M Anwar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amira E. Khayyal
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reda M Abdelhameed
- Department of Applied Organic Chemistry, Chemical Industries Research Division, National Research Centre, Giza, Egypt
| | - Ashraf M. Barakat
- Department of Zoonotic Diseases, National Research Centre, Giza, Egypt
| | - Sabry A. S. Sadek
- Department of Zoonotic Diseases, National Research Centre, Giza, Egypt
| | - Ayman M. Elashkar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha, KSA Saudi Arabia
| |
Collapse
|
7
|
Wu P, Chen L, Chen M, Chiou BS, Xu F, Liu F, Zhong F. Use of sodium alginate coatings to improve bioavailability of liposomes containing DPP-IV inhibitory collagen peptides. Food Chem 2023; 414:135685. [PMID: 36809726 DOI: 10.1016/j.foodchem.2023.135685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Sodium alginate (SA) was used to coat liposomes containing DPP-IV inhibitory collagen peptides to improve their stability and in vitro absorption for intra-oral delivery. The liposome structure as well as entrapment efficiency and DPP-IV inhibitory activity was characterized. The liposome stability was determined by measuring in vitro release rates and their gastrointestinal stability. Transcellular permeability of liposomes was further tested to characterize their permeability in small intestinal epithelial cells. The results showed that the 0.3% SA coating increased the diameter (166.7 nm to 249.9 nm), absolute value of zeta potential (30.2 mV to 40.1 mV) and entrapment efficiency (61.52% to 70.99%) of liposomes. The SA-coated liposomes containing collagen peptides showed enhanced storage stability within one month, gastrointestinal stability increased by 50% in bioavailability, transcellular permeability increased by 18% in transmission percentage, and in vitro release rates reduced by 34%, compared to uncoated liposomes. SA coating liposomes are promising carriers for transporting hydrophilic molecules, may be beneficial for improving nutrient absorption and can protect bioactive compounds from being inactivated in the gastrointestinal tract.
Collapse
Affiliation(s)
- Peihan Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Ling Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, United States
| | - Feifei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Swastha D, Varsha N, Aravind S, Samyuktha KB, Yokesh MM, Balde A, Ayilya BL, Benjakul S, Kim SK, Nazeer RA. Alginate-based drug carrier systems to target inflammatory bowel disease: A review. Int J Biol Macromol 2023:125472. [PMID: 37336375 DOI: 10.1016/j.ijbiomac.2023.125472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder that affects the gastrointestinal tract. IBD has become an increasingly common condition in both developed and developing nations over the last few decades, owing to a variety of factors like a rising population and diets packed with processed and junk foods. While the root pathophysiology of IBD is unknown, treatments are focused on medications aimed to mitigate symptoms. Alginate (AG), a marine-derived polysaccharide, is extensively studied for its biocompatibility, pH sensitivity, and crosslinking nature. This polymer is thoroughly researched in drug delivery systems for IBD treatment, as it is naturally available, non-toxic, cost effective, and can be easily and safely cross-linked with other polymers to form an interconnected network, which helps in controlling the release of drugs over an extended period. There are various types of drug delivery systems developed from AG to deliver therapeutic agents; among them, nanotechnology-based systems and hydrogels are popular due to their ability to facilitate targeted drug delivery, reduce dosage, and increase the therapeutic efficiency. AG-based carrier systems are not only used for the sustained release of drug, but also used in the delivery of siRNA, interleukins, and stem cells for site directed drug delivery and tissue regenerating ability respectively. This review is focussed on pathogenesis and currently studied medications for IBD, AG-based drug delivery systems and their properties for the alleviation of IBD. Moreover, future challenges are also be discoursed to improve the research of AG in the field of biopharmaceuticals and drug delivery.
Collapse
Affiliation(s)
- Dinakar Swastha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Nambolan Varsha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Suresh Aravind
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Kavassery Balasubramanian Samyuktha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Muruganandam Mohaneswari Yokesh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Bakthavatchalam Loganathan Ayilya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India.
| |
Collapse
|
9
|
Vambhurkar G, Amulya E, Sikder A, Shah S, Famta P, Khatri DK, Singh SB, Srivastava S. Nanomedicine based potentially transformative strategies for colon targeting of peptides: State-of-the-art. Colloids Surf B Biointerfaces 2022; 219:112816. [PMID: 36108367 DOI: 10.1016/j.colsurfb.2022.112816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022]
Abstract
Recently, peptides have attracted tremendous attention among researchers attributed to their high target specificity and efficacy compared to conventional therapeutics. The ease of self-administration and non-invasiveness confers oral as the most desirable route. However, numerous challenges associated with peptide delivery through the oral route like harsh gastrointestinal environment, enzymatic degradation, and absorption barriers hinder its clinical translation. Protease activity is more pronounced in the proximal segments of the gastrointestinal tract (GIT). Distal segments like the colon possess lower proteolytic activity, enhanced retention time, etc. which could facilitate easy absorption. However, traversing of the upper segments to reach the colon requires the circumvention of the pitfalls of the GIT. The advent of nanomedicine strategies could help in overcoming the said challenges associated with oral delivery, colon-specific targeting, and improving stability and bioavailability at the active site. Furthermore, the classification of peptides and various nanomedicine strategies for oral delivery of peptides to the colon has been conveyed. Regulatory hurdles and ways to accomplish clinical translation have been addressed.
Collapse
Affiliation(s)
- Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
10
|
Recent Advances in Oral Peptide or Protein-Based Drug Liposomes. Pharmaceuticals (Basel) 2022; 15:ph15091072. [PMID: 36145293 PMCID: PMC9501131 DOI: 10.3390/ph15091072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The high physiology and low toxicity of therapeutic peptides and proteins have made them a hot spot for drug development in recent years. However, their poor oral bioavailability and unstable metabolism make their clinical application difficult. The bilayer membrane of liposomes provides protection for the drug within the compartment, and their high biocompatibility makes the drug more easily absorbed by the body. However, phospholipids—which form the membranes—are subjected to various digestive enzymes and mucosal adhesion in the digestive tract and disintegrate before absorption. Improvements in the composition of liposomes or modifying their surface can enhance the stability of the liposomes in the gastrointestinal tract. This article reviews the basic strategies for liposome preparation and surface modification that promote the oral administration of therapeutic polypeptides.
Collapse
|
11
|
Goh KY, Ching YC, Ng MH, Chuah CH, Julaihi SBJ. Microfibrillated cellulose-reinforced alginate microbeads for delivery of palm-based vitamin E: Characterizations and in vitro evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Al-Hatamleh MAI, Alshaer W, Hatmal MM, Lambuk L, Ahmed N, Mustafa MZ, Low SC, Jaafar J, Ferji K, Six JL, Uskoković V, Mohamud R. Applications of Alginate-Based Nanomaterials in Enhancing the Therapeutic Effects of Bee Products. Front Mol Biosci 2022; 9:865833. [PMID: 35480890 PMCID: PMC9035631 DOI: 10.3389/fmolb.2022.865833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Since the ancient times, bee products (i.e., honey, propolis, pollen, bee venom, bee bread, and royal jelly) have been considered as natural remedies with therapeutic effects against a number of diseases. The therapeutic pleiotropy of bee products is due to their diverse composition and chemical properties, which is independent on the bee species. This has encouraged researchers to extensively study the therapeutic potentials of these products, especially honey. On the other hand, amid the unprecedented growth in nanotechnology research and applications, nanomaterials with various characteristics have been utilized to improve the therapeutic efficiency of these products. Towards keeping the bee products as natural and non-toxic therapeutics, the green synthesis of nanocarriers loaded with these products or their extracts has received a special attention. Alginate is a naturally produced biopolymer derived from brown algae, the desirable properties of which include biodegradability, biocompatibility, non-toxicity and non-immunogenicity. This review presents an overview of alginates, including their properties, nanoformulations, and pharmaceutical applications, placing a particular emphasis on their applications for the enhancement of the therapeutic effects of bee products. Despite the paucity of studies on fabrication of alginate-based nanomaterials loaded with bee products or their extracts, recent advances in the area of utilizing alginate-based nanomaterials and other types of materials to enhance the therapeutic potentials of bee products are summarized in this work. As the most widespread and well-studied bee products, honey and propolis have garnered a special interest; combining them with alginate-based nanomaterials has led to promising findings, especially for wound healing and skin tissue engineering. Furthermore, future directions are proposed and discussed to encourage researchers to develop alginate-based stingless bee product nanomedicines, and to help in selecting suitable methods for devising nanoformulations based on multi-criteria decision making models. Also, the commercialization prospects of nanocomposites based on alginates and bee products are discussed. In conclusion, preserving original characteristics of the bee products is a critical challenge in developing nano-carrier systems. Alginate-based nanomaterials are well suited for this task because they can be fabricated without the use of harsh conditions, such as shear force and freeze-drying, which are often used for other nano-carriers. Further, conjunction of alginates with natural polymers such as honey does not only combine the medicinal properties of alginates and honey, but it could also enhance the mechanical properties and cell adhesion capacity of alginates.
Collapse
Affiliation(s)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Khalid Ferji
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | - Jean-Luc Six
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- *Correspondence: Rohimah Mohamud,
| |
Collapse
|
13
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
14
|
Yassin HA, Ibrahim MA, Abou-Taleb HA. Aceclofenac-Loaded Microspheres Prepared by Vesicular Ionotropic Gelation to Minimize Drug-induced Gastric Ulcers in Rats. Curr Drug Metab 2022; 23:329-338. [PMID: 35319360 DOI: 10.2174/1389200223666220321111214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aceclofenac is a non-steroidal anti-inflammatory drug and a potent analgesic. However, its oral ingestion may cause gastrointestinal problems, including dyspepsia, abnormal pain, nausea, diarrhea, and ulcerative colitis. OBJECTIVE Preparation of vesicular-based enteric microspheres containing aceclofenac by ionotropic gelation technique to minimize gastric irritation in rats. METHODS The micron-size vesicles were prepared by the ionic-orifice gelation method. Three types of vesicular-based microcapsules containing aceclofenac were prepared by employing sodium alginate as the coating material in combination with Eudragit L100, Eudragit S100, and polyvinylpyrrolidone PVP K90. The drug to sodium alginate to polymer ratios were 1:0.5:0.5, 1:1:1, and 1:1.5:1.5, respectively. Gelation of sodium alginate was induced by the dropwise addition of calcium chloride solution (10% w/v). Aceclofenac-loaded microspheres were evaluated in terms of aceclofenac content and in vitro drug release, and FTIR, DSC, and XRD were used for physicochemical evaluation of some selected formulae. The effects of microencapsulation on aceclofenac-induced ulcerative activity in male Wistar rats were also investigated. RESULTS The results indicated no interaction between aceclofenac and microcapsules forming polymers. In addition, microcapsules formulations M1, M4, and M7 gave maximal protection in acidic pH and optimal release in alkaline pH. The histopathological studies revealed that the reduction of ulceration is evident from the macroscopic and microscopic studies, which showed complete protection of the tissue morphology with no ulcers, indicating the effectiveness of the microcapsules system against aceclofenac-induced gastric ulceration in rats again. CONCLUSION Ionotropic gelation seems to be a simple, efficient technique to prepare aceclofenac-loaded microspheres with a reduced risk of gastric ulceration. It is possible to overcome the problem of gastric damage while utilizing aceclofenac by avoiding the exposure of the drug to the ulcer-prone area of the gastrointestinal tract.
Collapse
Affiliation(s)
- Heba A Yassin
- Department of Pharmaceutics, Faculty of Pharmacy, Alsalam University, Cairo 82817, Egypt
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University (MUE), Sohag, Egypt
| |
Collapse
|
15
|
Bee Venom Within Liposomes Synergistically Inhibit Atopic Dermatitis in Mice. JOURNAL OF ACUPUNCTURE RESEARCH 2022. [DOI: 10.13045/jar.2021.00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: This study was performed to determine the effects of liposome-encapsulated bee venom (BV) treatment of inflammatory factors in atopic dermatitis (AD) compared with BV treatment.Methods: AD was induced by phthalic anhydride in mice and the effects of BV liposomes were measured. Using Leica Application Suite, thickened epidermis and dermis were measured after BV liposome treatment (0.05 and 0.1 μg/mL). The number of stained mast cells and the concentration of immunoglobulin (Ig)E were measured. Serum IgE concentration was analyzed using an enzyme-linked immunosorbent assay. The serum concentrations of interleukin (IL)-1, IL-4, and IL-6 inflammatory cytokines were measured. The levels of messenger ribonucleic acid expression of proinflammatory cytokines and chemokines were measured using reverse transcription polymerase chain reaction. Inhibition of mitogen-activated protein kinase activation, was analyzed on western blot. To measure the transcriptional activity (NF-κB inhibition by BV liposomes), western blots (p65, p-IκB, p50, and IκB) were also performed.Results: The weight of lymph nodes, serum IgE concentrations, morphological changes in the skins from the backs of the mice, and mast cell numbers in inflamed tissues were noticeably lower in the BV liposome treatment group compared with the BV treatment group. The concentrations of pro-inflammatory cytokines (IL-1, IL-4, IL-6) and chemokines (TSLP, CCL22) were also reduced. Activation of mitogen-activated protein kinase (p-ERK and p-p38), and transcriptional activity (p65, p-IκB, p50, and IκB) was strongly suppressed in the BV liposome group.Conclusion: BV liposomes may have a better therapeutic effect than BV for the treatment of AD.
Collapse
|
16
|
Wang G, Yang Y, Yi D, Yuan L, Yin PH, Ke X, Jun-Jie W, Tao MF. Eudragit S100 prepared pH-responsive liposomes-loaded betulinic acid against colorectal cancer in vitro and in vivo. J Liposome Res 2021; 32:250-264. [PMID: 34895013 DOI: 10.1080/08982104.2021.1999974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study aimed to develop polymer Eudragit S100 for preparing pH-responsive liposomes-loaded betulinic acid (pH-BA-LP) to improve the therapeutic index of chemotherapy for colorectal cancer. BA-loaded liposomes were coated with Eudragit S100 by a thin film dispersion and easily scalable pH-driven method. The prepared liposomes were evaluated for size, surface morphology, entrapment efficiency, stability, in vitro drug release, and antitumor activity. In particular, pH-BA-LP showed advantages such as lower size (<100 nm), encapsulation efficiency of 90%, high stability, and stably cumulative release. By detecting the antitumor effects of pH-BA-LP in vivo, it showed that the tumor proliferation and cell migration were significantly inhibited in colorectal cancer. The pH-BA-LP also inhibited tumor growth via the regulation of Akt/TLR-mediated signalling and significantly down-regulated the expression of NFAT1 and NFAT4 proteins. It was found that pH-BA-LP can increase NK cells and CD3+ cells in tumor tissues, and the proportion of CD8+ cells in CD3+ cells was also increased, which proved that pH-BA-LP can play an antitumor effect by enhancing the autoimmunity level in tumor-bearing mice. The positive infiltration rates of CD8 and CD68 were increased and CD163 was relatively decreased by using pH-BA-LP, which proved that pH-BA-LP can regulate the immune infiltration levels in tumor-bearing mice. Therefore, the present work provides an effective method to prepare pH-responsive polymer-coated liposomes for colonic delivery with biologically active compounds.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yu Yang
- Jiangsu University School of Pharmacy, Zhenjiang City, China
| | - Du Yi
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Lu Yuan
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Pei-Hao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Ke
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Jun-Jie
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Min-Fang Tao
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| |
Collapse
|
17
|
Khalil A, Elesawy BH, Ali TM, Ahmed OM. Bee Venom: From Venom to Drug. Molecules 2021; 26:4941. [PMID: 34443529 PMCID: PMC8400317 DOI: 10.3390/molecules26164941] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Insects of the order Hymenoptera have a defensive substance that contains many biologically active compounds. Specifically, venom from honeybees (Apis mellifera) contains many enzymes and peptides that are effective against various diseases. Different research papers stated the possibility of using bee venom (a direct bee sting or in an injectable form) in treating several complications; either in vivo or in vitro. Other reports used the active fractions of bee venom clinically or at labratory scale. Many reports and publications have stated that bee venom and its constituents have multiple biological activities including anti-microbial, anti-protozoan, anti-cancer, anti-inflammatory, and anti-arthritic properties. The present review aims to refer to the use of bee venom itself or its fractions in treating several diseases and counteracting drug toxicities as an alternative protocol of therapy. The updated molecular mechanisms of actions of bee venom and its components are discussed in light of the previous updated publications. The review also summarizes the potential of venom loaded on nanoparticles as a drug delivery vehicle and its molecular mechanisms. Finally, the products of bee venom available in markets are also demonstrated.
Collapse
Affiliation(s)
- Abdelwahab Khalil
- Entomology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Basem H. Elesawy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
18
|
Suyamud C, Phetdee C, Jaimalai T, Prangkio P. Silk Fibroin-Coated Liposomes as Biomimetic Nanocarrier for Long-Term Release Delivery System in Cancer Therapy. Molecules 2021; 26:4936. [PMID: 34443524 PMCID: PMC8398433 DOI: 10.3390/molecules26164936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite much progress in cancer therapy, conventional chemotherapy can cause poor biodistribution and adverse side-effects on healthy cells. Currently, various strategies are being developed for an effective chemotherapy delivery system. Silk fibroin (SF) is a natural protein used in a wide range of biomedical applications including cancer therapy due to its biocompatibility, biodegradability, and unique mechanical properties. In this study, SF-coated liposomes (SF-LPs) were prepared as a biomimetic drug carrier. Physicochemical properties of SF-LPs were characterized by Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering, zeta potential measurement, and transmission electron microscopy (TEM). In vitro release of SF-LPs loaded with doxorubicin (DOX-SF-LPs) was evaluated over 21 days. Anticancer activity of DOX-SF-LPs was determined against MCF-7 and MDA-MB231 cells using the MTT assay. SF-LPs containing 1% SF exhibited favorable characteristics as a drug carrier. SF coating modified the kinetics of drug release and reduced the cytotoxic effect against L929 fibroblasts as compared to the uncoated liposomes containing cationic lipid. DOX-SF-LPs showed anticancer activity against breast cancer cells after 48 h or 72 h at 20 μM of DOX. This approach provides a potential platform of long-term release that combines biocompatible SF and phospholipids for cancer therapy, achieving efficient drug delivery and reducing side-effects.
Collapse
Affiliation(s)
- Chanon Suyamud
- Master’s Degree Program in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (C.P.); (T.J.)
| | - Chanita Phetdee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (C.P.); (T.J.)
- Doctor of Philosophy Program in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanapak Jaimalai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (C.P.); (T.J.)
| | - Panchika Prangkio
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (C.P.); (T.J.)
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
19
|
Filatova LY, Balabushevich NG, Klyachko NL. A physicochemical, structural, microbiological and kinetic study of hen egg white lysozyme in complexes with alginate and chitosan. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1909001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lyubov Y. Filatova
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Nadezhda G. Balabushevich
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia L. Klyachko
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Xu W, Su W, Xue Z, Pu F, Xie Z, Jin K, Polyakov NE, Dushkin AV, Su W. Research on Preparation of 5-ASA Colon-Specific Hydrogel Delivery System without Crosslinking Agent by Mechanochemical Method. Pharm Res 2021; 38:693-706. [PMID: 33754258 DOI: 10.1007/s11095-021-02993-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aims to overcome the challenges of the current oral targeted drug delivery system, such as the complex preparation process, poor biocompatibility, and delayed drug release. METHODS Here, a non-covalent polymer hydrogel was prepared using the mechanochemical method, and the solid phase loading of 5-amino salicylic acid (5-ASA) was realized. RESULTS The results obtained from the thermodynamics study, particle size analysis, and electron microscopy show that chitosan (CS) and sodium alginate (SA) form a pH-sensitive hydrogel under the mechanochemical force and also maintain good stability in aqueous solution. Fluorescent tracers study showed that the pH-sensitive hydrogel could achieve the targeted drug release in the colon and the retention time was over 12 h. Next, in vivo efficacy studies, change in mice body weight, DAI (disease activity index) score, thymus, and spleen index, and the diseased state of the mice colon revealed that the pH-sensitive hydrogel is an improved drug delivery system over 5-ASA API commercial preparations as observed in the efficacy and toxicological studies. CONCLUSION This method uses an innovative preparation technology that without the need of cross-linking agent to produce an efficient colon-targeted drug delivery system for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wenjing Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhencheng Xue
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Faxiang Pu
- Zhejiang Suichang Limin Pharmaceutical Co. Ltd., Suichang, People's Republic of China
| | - Zhangfu Xie
- Zhejiang Suichang Limin Pharmaceutical Co. Ltd., Suichang, People's Republic of China
| | - Kongliang Jin
- Zhejiang Suichang Limin Pharmaceutical Co. Ltd., Suichang, People's Republic of China
| | | | - Alexander V Dushkin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
21
|
Akbarzadeh I, Shayan M, Bourbour M, Moghtaderi M, Noorbazargan H, Eshrati Yeganeh F, Saffar S, Tahriri M. Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@calcium Alginate Nanocarrier as a New Approach for Breast Cancer Treatment. BIOLOGY 2021; 10:173. [PMID: 33652630 PMCID: PMC7996962 DOI: 10.3390/biology10030173] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Cancer is one of the most common causes of mortality, and its various treatment methods can have many challenges for patients. As one of the most widely used cancer treatments, chemotherapy may result in diverse side effects. The lack of targeted drug delivery to tumor tissues can raise the possibility of damage to healthy tissues, with attendant dysfunction. In the present study, an optimum formulation of curcumin-loaded niosomes with a calcium alginate shell (AL-NioC) was developed and optimized by a three-level Box-Behnken design-in terms of dimension and drug loading efficiency. The niosomes were characterized by transmission electron microscopy, Fourier-transform infrared spectroscopy, and dynamic light scattering. The as-formulated niosomes showed excellent stability for up to 1 month at 4 °C. Additionally, the niosomal formulation demonstrated a pH-dependent release; a slow-release profile in physiological pH (7.4), and a more significant release rate at acidic conditions (pH = 3). Cytotoxicity studies showed high compatibility of AL-NioC toward normal MCF10A cells, while significant toxicity was observed in MDA-MB-231 and SKBR3 breast cancer cells. Gene expression studies of the cancer cells showed downregulation of Bcl2, cyclin D, and cyclin E genes, as well as upregulation of P53, Bax, caspase-3, and caspase-9 genes expression following the designed treatment. Flow cytometry studies confirmed a significant enhancement in the apoptosis rate in the presence of AL-NioC in both MDA-MB-231 and SKBR3 cells as compared to other samples. In general, the results of this study demonstrated that-thanks to its biocompatibility toward normal cells-the AL-NioC formulation can efficiently deliver hydrophobic drugs to target cancer cells while reducing side effects.
Collapse
Affiliation(s)
- Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Mona Shayan
- Core Facility Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (M.S.); (S.S.)
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran;
| | - Maryam Moghtaderi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 141556619, Iran;
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Faten Eshrati Yeganeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Samaneh Saffar
- Core Facility Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (M.S.); (S.S.)
| | | |
Collapse
|
22
|
Andretto V, Rosso A, Briançon S, Lollo G. Nanocomposite systems for precise oral delivery of drugs and biologics. Drug Deliv Transl Res 2021; 11:445-470. [PMID: 33534107 DOI: 10.1007/s13346-021-00905-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Oral delivery is considered the favoured route of administration for both local and systemic delivery of active molecules. Formulation of drugs in conventional systems and nanoparticles has provided opportunities for targeting the gastrointestinal (GI) tract, increasing drug solubility and bioavailability. Despite the achievements of these delivery approaches, the development of a product with the ability of delivering drug molecules at a specific site and according to patients' needs remains a challenging endeavour. The complexity of the physicochemical properties of colloidal systems, their stability in different regions of the gastrointestinal tract, and interaction with the restrictive biological barriers hampered their success for oral precise medicine. To overcome these issues, nanoparticles have been combined with polymers to create hybrid nanosystems, namely nanocomposites. They offer enormous possibilities of structural and mechanical modifications to both nanoparticles and polymeric matrixes to generate systems with new properties, functions, and applications for oral delivery. In this review, nanocomposites' physicochemical and functional properties intended to target specific regions of the GI tract-oral cavity, stomach, small bowel, and colon-are analysed. In parallel, it is provided an insight in the nanocomposite solutions for oral delivery intended for systemic and local absorption, together with a focus on inflammatory bowel diseases (IBDs). Additional difficulties in managing IBD related to the alteration in the physiology of the intestine are described. Finally, future perspectives and opportunities for advancement in this field are discussed.
Collapse
Affiliation(s)
- Valentina Andretto
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Annalisa Rosso
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Stéphanie Briançon
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Giovanna Lollo
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France.
| |
Collapse
|
23
|
Carpena M, Nuñez-Estevez B, Soria-Lopez A, Simal-Gandara J. Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications. Nutrients 2020; 12:nu12113360. [PMID: 33142794 PMCID: PMC7693387 DOI: 10.3390/nu12113360] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bee venom (BV) is usually associated with pain since, when humans are stung by bees, local inflammation and even an allergic reaction can be produced. BV has been traditionally used in ancient medicine and in acupuncture. It consists of a mixture of substances, principally of proteins and peptides, including enzymes as well as other types of molecules in a very low concentration. Melittin and phospholipase A2 (PLA2) are the most abundant and studied compounds of BV. Literature of the main biological activities exerted by BV shows that most studies focuses on the comprehension and test of anti-inflammatory effects and its mechanisms of action. Other properties such as antioxidant, antimicrobial, neuroprotective or antitumor effects have also been assessed, both in vitro and in vivo. Moreover, human trials are necessary to confirm those clinical applications. However, notwithstanding the therapeutic potential of BV, there are certain problems regarding its safety and the possible appearance of adverse effects. On this perspective, new approaches have been developed to avoid these complications. This manuscript is aimed at reviewing the actual knowledge on BV components and its associated biological activities as well as the latest advances on this subject.
Collapse
|
24
|
Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers (Basel) 2020; 12:E2417. [PMID: 33092194 PMCID: PMC7589871 DOI: 10.3390/polym12102417] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used extensively as an additive and ingredient in the food industry, alginate has become an important compound for a wide range of industries and applications, such as the medical, pharmaceutical and cosmetics sectors. In the food industry, alginate has been used to coat fruits and vegetables, as a microbial and viral protection product, and as a gelling, thickening, stabilizing or emulsifying agent. Its biocompatibility, biodegradability, nontoxicity and the possibility of it being used in quantum satis doses prompted scientists to explore new properties for alginate usage. Thus, the use of alginate has been expanded so as to be directed towards the pharmaceutical and biomedical industries, where studies have shown that it can be used successfully as biomaterial for wound, hydrogel, and aerogel dressings, among others. Furthermore, the ability to encapsulate natural substances has led to the possibility of using alginate as a drug coating and drug delivery agent, including the encapsulation of probiotics. This is important considering the fact that, until recently, encapsulation and coating agents used in the pharmaceutical industry were limited to the use of lactose, a potentially allergenic agent or gelatin. Obtained at a relatively low cost from marine brown algae, this hydrocolloid can also be used as a potential tool in the management of diabetes, not only as an insulin delivery agent but also due to its ability to improve insulin resistance, attenuate chronic inflammation and decrease oxidative stress. In addition, alginate has been recognized as a potential weight loss treatment, as alginate supplementation has been used as an adjunct treatment to energy restriction, to enhance satiety and improve weight loss in obese individuals. Thus, alginate holds the promise of an effective product used in the food industry as well as in the management of metabolic disorders such as diabetes and obesity. This review highlights recent research advances on the characteristics of alginate and brings to the forefront the beneficial aspects of using alginate, from the food industry to the biomedical field.
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Andrei Lobiuc
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Mihai Dimian
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
25
|
Rajpoot K, Jain SK. 99mTc-labelled and pH-awakened microbeads entrapping surface-modified lipid nanoparticles for the augmented effect of oxaliplatin in the therapy of colorectal cancer. J Microencapsul 2020; 37:609-623. [PMID: 32985297 DOI: 10.1080/02652048.2020.1829141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM This study was aimed to develop Eudragit S100-coated, pH-awakened microbeads (MBs) encapsulating folic acid (FA)-modified tristearin solid lipid nanoparticles (SLNs) loaded with oxaliplatin (OP). Afterward, these formulations were evaluated (in vitro and in vivo) for their potential against colorectal cancer (CRC). METHODS The SLNs were synthesised by employing the solvent diffusion technique and then they were entrapped in the MBs. The prepared uncoupled and coupled SLNs (SLN-OP and FA-SLN-OP, respectively) were examined for in vitro cytotoxicity effect against COLO-205. Gamma-scintigraphy study was used for determining biodistribution (in vivo) of drug in different organs through MBs. RESULTS Outcomes for FA-SLN-OP revealed more cytotoxicity (50% inhibitory concentration [IC50] = 6.8 µg/ml) against COLO-205 cells (in vitro) than OP solution (IC50 = 8.0 µg/ml) and SLN-OP (IC50= 7.5 µg/ml). MBs were also investigated in vivo using Gamma-scintigraphy study. After 48 h study, 99mTc-EuB-FA-SLN-OP confirmed an elevated level of drug in the colonic tumour, which was found significantly (p< 0.0001) higher than that of 99mTc-EuB-SLN-OP. CONCLUSIONS In conclusion, developed MBs formulation (99mTc-EuB-FA-SLN-OP) suggested promising results against therapy of CRC using dual targeting (i.e. ligand-directed and pH-awakened) approach.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sunil K Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
26
|
Goel H, Razdan K, Singla R, Talegaonkar S, Khurana RK, Tiwary AK, Sinha VR, Singh KK. Engineered Site-specific Vesicular Systems for Colonic Delivery: Trends and Implications. Curr Pharm Des 2020; 26:5441-5455. [PMID: 32787754 DOI: 10.2174/1381612826666200813132301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
Steering drug-loaded, site-specific, coated lipid vesicles to the target receptor sites have the potential of plummeting adverse effects and improving the pharmacological response in diverse pathologies of the large bowel, especially the colon. Colonic delivery via oral route has its own challenges, often governed by several glitches such as drug degradation or absorption in the upper GIT, instability of proteins/peptides due to high molecular weight, and peptidase activity in the stomach. Consequently, colon-specific coated liposomal systems (CSLS) offer a potential alternate for not only site-specificity, but protection from proteolytic activity, and prolonged residence time for greater systemic bioavailability. On the other hand, liposomal delivery via the oral route is also cumbersome owing to several barriers such as instability in GIT, difficulty in crossing membranes, and issues related to production at the pilot scale. New advancements in the field of CSLS have successfully improved the stability and permeability of liposomes for oral delivery via modulating the compositions of lipid bilayers, adding polymers or ligands. Despite this ostensible propitiousness, no commercial oral CSLS has advanced from bench to bedside for targeted delivery to the colon as yet. Nevertheless, CSLS has quite fascinated the manufacturers owing to its potential industrial viability, simplistic and low-cost design. Hence, this review aims to decipher the convolutions involved in the engineering process of industrially viable CSLS for colonic delivery.
Collapse
Affiliation(s)
- Honey Goel
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, India
| | - Karan Razdan
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Richu Singla
- Department of Microbiology, Viral Research Diagnostics Laboratory (VRDL), Guru Gobind Singh Medical College and Hospital, Baba Farid University of Health Sciences, Faridkot, India
| | | | - Rajneet Kaur Khurana
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Vivek Ranjan Sinha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
27
|
Broesder A, Woerdenbag HJ, Prins GH, Nguyen DN, Frijlink HW, Hinrichs WLJ. pH-dependent ileocolonic drug delivery, part I: in vitro and clinical evaluation of novel systems. Drug Discov Today 2020; 25:1362-1373. [PMID: 32554060 DOI: 10.1016/j.drudis.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
After the pH dependency of novel pH-dependent ileocolonic drug delivery systems is confirmed in vitro, their performance should be evaluated in human volunteers.
Collapse
Affiliation(s)
- Annemarie Broesder
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Herman J Woerdenbag
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Grietje H Prins
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Duong N Nguyen
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henderik W Frijlink
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
28
|
Rahamathulla M, H.V G, Veerapu G, Hani U, Alhamhoom Y, Alqahtani A, Moin A. Characterization, Optimization, In Vitro and In Vivo Evaluation of Simvastatin Proliposomes, as a Drug Delivery. AAPS PharmSciTech 2020; 21:129. [PMID: 32405982 DOI: 10.1208/s12249-020-01666-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/21/2020] [Indexed: 11/30/2022] Open
Abstract
Simvastatin a cholesterol-lowering agent used to treat hypercholesterolemia, coronary heart disease, and dyslipidemia. However, simvastatin (SV) has shown low oral bioavailability in GIT. The main purpose of the work was to develop proliposomal formulations to increase the oral bioavailability of SV. Film deposition on the carrier method has been used to prepare the proliposomes. The proliposomes were assessed for morphology, particulate size, entrapment efficacy, drug-polymer compatibility, in vitro and in vivo studies. FTIR and DSC results revealed no drug-polymer interaction. SEM and XRD analysis conform; proliposomes are spherical, amorphous in nature, so that it enhances the solubility of SV between 15.01 ± 0.026 and 57.80 ± 0.015 μg/mL in pH 7.4 phosphate buffer. The optimised formulation (PL6) shows drug release up to 12 h (99.78 ± 0.067%). The pharmacokinetics of pure SV and SV proliposomes (SVP) in rats were Tmax 2 ± 0.5 and 4 ± 0.7 h, Cmax 10.4 ± 2.921 and 21.18 ± 12.321 μg/mL, AUC0-∞ 67.124 ± 0.23 and 179.75 ± 1.541 μg/mL h, respectively. Optimised SVP shows a significant improvement in the rate and absorption of SV. The optimised formulation showed enhanced oral bioavailability of SV in Albino Wister rats and offers a new technique to improve the poor water-soluble drug absorption in the gastrointestinal system.
Collapse
|
29
|
Rajpoot K, Jain SK. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: A dual-targeted approach. Int J Biol Macromol 2020; 151:830-844. [DOI: 10.1016/j.ijbiomac.2020.02.132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
|
30
|
|
31
|
Gui Z, Zhu J, Ye S, Ye J, Chen J, Ling Y, Cai X, Cao P, He Z, Hu C. Prolonged melittin release from polyelectrolyte-based nanocomplexes decreases acute toxicity and improves blood glycemic control in a mouse model of type II diabetes. Int J Pharm 2020; 577:119071. [PMID: 31991184 DOI: 10.1016/j.ijpharm.2020.119071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/11/2020] [Accepted: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Gating modifier toxins (GMTs) from animal venom have shown great potential in controlling blood glucose levels in type II diabetes (T2D), but their high acute toxicity and quick clearance in the body hamper their potential therapeutic use. Inspired by their highly positive charge, we have developed a nanocomplex system based on polyelectrolytes, in which strong interactions form between positively charged GMTs and negatively charged dextran sulfate (DS). Using melittin as a model GMT and adapting flash nanocomplexation (FNC) technology for complex preparation, uniform nanocomplexes (polydispersity index: ~0.1) with high melittin encapsulation efficiency (~100%), high payload capacity (~30%), and tunable release profiles were formulated. In contrast to the high acute liver toxicity and low survival rate (60% after 8 days) observed after a single intraperitoneal (i.p.) injection of 3 mg/kg free melittin, melittin-loaded nanocomplexes displayed improved safety (100% survival after 8 days) due to prolonged melittin release. In a mouse model of T2D, a single i.p. injection of nanocomplexes decreased the blood glucose level to 12 mmol/L within 12 h and maintained it within the therapeutic range (<15 mmol/L) for 48 h. In addition, body weight decreased following treatment. This GMT/DS binary system shows great promise due to its simple components, facile preparation method, and enhanced potential druggability, including a decreased dosing frequency, decreased acute toxicity, and improved pathological indicators.
Collapse
Affiliation(s)
- Zaizhi Gui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jinchang Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Song Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yuanyuan Ling
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiyu He
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
32
|
Karp F, Turino L, Estenoz D, Castro G, Islan G. Encapsulation of florfenicol by in situ crystallization into novel alginate-Eudragit RS® blended matrix for pH modulated release. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Mishra N, Arya M, Gupta KP, Saraf SA. Optimization of Inositol Hexaphosphate Colon Targeted Formulation for Anticarcinogenic Marker Modulation. AAPS PharmSciTech 2019; 20:319. [PMID: 31641892 DOI: 10.1208/s12249-019-1529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer has become the third most frequent reason of cancer death in men and women. Currently, natural compounds are being looked up to, for subversion and deterrence of cancers. Inositol hexaphosphate (IP6) is one such naturally occurring phosphorylated carbohydrate present in most legumes and cereals which acts as a potential antineoplastic agent and can be used effectively to prevent and treat colon carcinomas. Despite the immense potential, due to the prevalence of high charge and ability to form salts and chelates with various divalent metals, it gets excreted out quickly from the body. On reaching the colon in its original form, it can serve as an effective anticancer agent. Therefore, a suitable dosage form that can prevent the drugs from being absorbed from the upper gastrointestinal tract is required to be prepared, to target it to the colon. Thus, microspheres of IP6 using a biodegradable polymer that degrades in the colon were attempted using the solvent evaporation method. The formulation was investigated for percentage yield, encapsulation efficiency, particle size distribution modification, and release rate. Optimized formulation showed particle size of 92 ± 0.76 μm, entrapment efficiency of 67.26% ± 0.75, percent drug loading of 15.74%, and in vitro drug release 82.36 ± 0.51. The results of the in vivo study divulged that IP6 loaded pectin microspheres showed significant positive modulation of biomarker levels and restoration of colonic architecture to almost normal as observed through histopathology and scanning electron microscopy studies in DMH-induced colon tumors in Albino Wistar rats.
Collapse
|
34
|
Tunsirikongkon A, Pyo YC, Kim DH, Lee SE, Park JS. Optimization of Polyarginine-Conjugated PEG Lipid Grafted Proliposome Formulation for Enhanced Cellular Association of a Protein Drug. Pharmaceutics 2019; 11:pharmaceutics11060272. [PMID: 31212607 PMCID: PMC6630419 DOI: 10.3390/pharmaceutics11060272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to develop an oral proliposomal powder of protein using poly-l-arginine-conjugated 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) (PLD) for enhancing cellular association upon reconstitution and to compare its effects with a non-grafted and PEGylated formulation. Cationic proliposome (CATL), PLD-grafted CATL (PLD-CATL), PEGylated CATL (PEG CATL), and PLD grafted-PEG CATL (PLD-PEG CATL) were prepared and compared. Successful conjugation between poly-l-arginine and DSPE-PEG was confirmed by 1H NMR and FT-IR. PLD was successfully grafted onto the proliposomal powder during the slurry process. Although reconstituted liposomal sizes of CATL and PLD-CATL were increased by agglomeration, PEGylation reduced the agglomeration and increased the encapsulation. The viabilities of cells treated with both CATL and PLD-CATL formulations were low but increased following PEGylation. With regard to cellular association, PLD-CATL enhanced cellular association/uptake more rapidly than did CATL. Upon PEGylation, PEG CATL showed a lower level of cellular association/uptake compared with CATL while PLD-PEG CATL did not exhibit the rapid cellular association/uptake as seen with PLD-CATL. However, PLD-PEG CATL still enhanced the higher cellular association/uptake than PEG CATL did without PLD. In conclusion, proliposomes with PLD could accelerate cellular association/uptake but also caused high cellular toxicity. PEGylation reduced cellular toxicity and also changed the cellular association pattern of the PLD formulation.
Collapse
Affiliation(s)
- Amolnat Tunsirikongkon
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Rangsit Center, Pathumthani 12120, Thailand.
| | - Yong-Chul Pyo
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Dong-Hyun Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sang-Eun Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
35
|
Dangre P, Dudhkohar S, Chalikwar S. Development of Alginate- Neusilin US2 (Magnesium alumino-metasilicate) micro-composite hydrogel beads for oral sustained release of cilnidipine: a statistical optimization. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1625391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Pankaj Dangre
- Department of Pharmaceutics and Quality Assurance, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, India
- Department of Pharmaceutics, Kamla Nehru College of Pharmacy, Butibori, Nagpur, India
| | - Swapnil Dudhkohar
- Department of Pharmaceutics, Kamla Nehru College of Pharmacy, Butibori, Nagpur, India
| | - Shailesh Chalikwar
- Department of Pharmaceutics and Quality Assurance, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, India
| |
Collapse
|
36
|
Mohamed WA, Abd-Elhakim YM, Ismail SAA. Involvement of the anti-inflammatory, anti-apoptotic, and anti-secretory activity of bee venom in its therapeutic effects on acetylsalicylic acid-induced gastric ulceration in rats. Toxicology 2019; 419:11-23. [PMID: 30885738 DOI: 10.1016/j.tox.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
Acetylsalicylic acid (ASA) is the most highly consumed pharmaceutical product worldwide. Importantly, gastrointestinal ulceration due to ASA is a major complication. Hence, the present work aimed to examine, for the first time, the healing properties of bee venom (BV) in acute gastric ulceration induced by ASA. Forty adult male Sprague-Dawley rats were divided into four groups that received distilled water only, ASA (500 mg/kg BW) twice daily for 3 days, ASA for 3 days followed by BV (2 mg/kg BW) for 7 days, or ASA for 3 days followed by ranitidine hydrochloride (50 mg/kg BW) for 7 days. Haematological analysis, haemostatic evaluation, and inflammatory marker estimation were performed. Rat stomachs were collected for ulcer scoring, gene expression analysis, oxidative stress assays, histopathological and immunohistochemical examinations, and tissue eosinophil scoring. The results revealed that BV markedly decreased the ulcer index, pro-inflammatory cytokine levels, malondialdehyde levels, BAX distribution, caspase-3 expression, and tissue eosinophil levels. Additionally, significant increases in antioxidant enzymes and heat shock protein 70 localization in gastric tissue were evident following BV treatment after ASA exposure. Also, BV has been found to attenuate the haematological, haemostatic, and histopathological alterations induced by ASA. Our findings collectively indicate that the gastroprotective effect of BV against ASA-induced ulceration in rats is mediated by its antioxidant, anti-inflammatory, anti-apoptotic, and anti-secretory properties.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Shimaa A A Ismail
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
37
|
Wissam Z, Samer H. Encapsulation of flaxseed oil extract in alginate-salep system by ionic gelation. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000200261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Zam Wissam
- Al-Andalus University for Medical University, Syrian Arab Republic
| | - Housheh Samer
- Al-Andalus University for Medical University, Syrian Arab Republic
| |
Collapse
|
38
|
De Leo V, Milano F, Mancini E, Comparelli R, Giotta L, Nacci A, Longobardi F, Garbetta A, Agostiano A, Catucci L. Encapsulation of Curcumin-Loaded Liposomes for Colonic Drug Delivery in a pH-Responsive Polymer Cluster Using a pH-Driven and Organic Solvent-Free Process. Molecules 2018; 23:E739. [PMID: 29570636 PMCID: PMC6017095 DOI: 10.3390/molecules23040739] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to develop and optimize liposome formulation for the colonic delivery of biologically active compounds. A strategy to facilitate such targeting is to formulate liposomes with a polymer coating sensitive to the pH shifts in the gastrointestinal tract. To this end, liposomes encapsulating curcumin-chosen as the biologically active compound model-and coated with the pH-responsive polymer Eudragit S100 were prepared and characterized. Curcumin was encapsulated into small unilamellar vesicles (SUVs) by the micelle-to-vesicle transition method (MVT) in a simple and organic solvent-free way. Curcumin-loaded liposomes were coated with Eudragit S100 by a fast and easily scalable pH-driven method. The prepared liposomes were evaluated for size, surface morphology, entrapment efficiency, stability, in vitro drug release, and curcumin antioxidant activity. In particular, curcumin-loaded liposomes displayed size lower than 100 nm, encapsulation efficiency of 98%, high stability at both 4 °C and 25 °C, high in vitro antioxidant activity, and a cumulative release that was completed within 200 min. A good Eudragit S100 coating which did not alter the properties of the curcumin-loaded liposomes was obtained. The present work therefore provides a fast and solvent-free method to prepare pH-responsive polymer-coated liposomes for the colonic delivery of biologically active compounds.
Collapse
Affiliation(s)
- Vincenzo De Leo
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
- CNR-IPCF Institute for Physical and Chemical Processes, Bari unit, Via Orabona 4, 70126 Bari, Italy.
| | - Francesco Milano
- CNR-IPCF Institute for Physical and Chemical Processes, Bari unit, Via Orabona 4, 70126 Bari, Italy.
| | - Erminia Mancini
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
| | - Roberto Comparelli
- CNR-IPCF Institute for Physical and Chemical Processes, Bari unit, Via Orabona 4, 70126 Bari, Italy.
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, SP Lecce-Monteroni, I-73100 Lecce, Italy.
| | - Angelo Nacci
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
- CNR-ICCOM Institute of chemistry of organometallic compounds, Bari unit, Via E. Orabona, 4, 70126 Bari, Italy.
| | | | - Antonella Garbetta
- CNR-ISPA Institute of Sciences of Food Production, Via G. Amendola 122/O, 70125 Bari, Italy.
| | - Angela Agostiano
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
- CNR-IPCF Institute for Physical and Chemical Processes, Bari unit, Via Orabona 4, 70126 Bari, Italy.
| | - Lucia Catucci
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
- CNR-IPCF Institute for Physical and Chemical Processes, Bari unit, Via Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
39
|
Ko CL, Wu HY, Lin YS, Yang CH, Chen JC, Chen WC. Modulating the release of proteins from a loaded carrier of alginate/gelatin porous spheres immersed in different solutions. Biomed Mater Eng 2017; 28:515-529. [PMID: 28854489 DOI: 10.3233/bme-171690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND A biodegradable porous particle for the controlled biofactor delivery which assembly of pores in scaffolds can improve the permeation and diffusion of drugs or growth factors. OBJECTIVE Porous-spheres in millimeter scale were prepared by mixing sodium alginate and gelatin interpenetrating networks with cross-linkers; interconnected open pores were fabricated through solvent casting and particulate leaching. METHODS Morphological characteristics, degradation, and bovine serum albumin (BSA) release rates of the porous-spheres immersed in three different solutions, namely, deionized distilled water, simulated body fluid (SBF), and phosphate-buffered saline (PBS), were detected. RESULTS Porous-spheres with a large amount of gelatin exhibited an increase in water absorption rates without affecting scaffold strength and no cytotoxicity was elicited. Highly interconnected pores with a diameter of 100-200 µm were uniformly distributed in scaffolds. The weight loss in PBS was faster than that in other solutions; the highest release rate of BSA in SBF was observed for 2 h. The release rates also exhibited linear patterns from 2 h to 24 h in all of the groups. CONCLUSIONS After 1 d of immersion in solutions, BSA release rates in scaffolds logarithmically decreased for 14 d. The degradation of porous-spheres also showed an inverse pattern.
Collapse
Affiliation(s)
- Chia-Ling Ko
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University. Taichung 407, Taiwan.,Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Yu Wu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University. Taichung 407, Taiwan.,Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Sheng Lin
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University. Taichung 407, Taiwan
| | - Chun-Hui Yang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University. Taichung 407, Taiwan
| | - Jian-Chih Chen
- Department of Orthopaedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 80708, Taiwan.,Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University. Taichung 407, Taiwan
| |
Collapse
|
40
|
Moghimipour E, Rezaei M, Kouchak M, Fatahiasl J, Angali KA, Ramezani Z, Amini M, Dorkoosh FA, Handali S. Effects of coating layer and release medium on release profile from coated capsules with Eudragit FS 30D: an in vitro and in vivo study. Drug Dev Ind Pharm 2017; 44:861-867. [PMID: 29235889 DOI: 10.1080/03639045.2017.1415927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the present research was to evaluate the impact of coating layers on release profile from enteric coated dosage forms. Capsules were coated with Eudragit FS 30D using dipping method. The drug profile was evaluated in both phosphate buffer and Hank's solutions. Utilization X-ray imaging, gastrointestinal transmission of enteric coated capsules was traced in rats. According to the results, no release of the drug was found at pH 1.2, and the extent of release drug in pH 6.8 medium was decreased by adding the coating layers. The results indicated single-layer coated capsules in phosphate buffer were significantly higher than that in Hank's solution. However, no significant difference was observed from capsules with three coating layers in two different dissolution media. X-ray imaging showed that enteric coated capsules were intact in the stomach and in the small intestine, while disintegrated in the colon.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- a Nanotechnology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran.,b Cellular and Molecular Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Mohsen Rezaei
- c Department of Toxicology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Maryam Kouchak
- a Nanotechnology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Jafar Fatahiasl
- d Department of Radiographic Technology, Faculty of Paramedicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Kambiz Ahmadi Angali
- e Department of Biostatistics, School of Public Health , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Zahra Ramezani
- a Nanotechnology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Mohsen Amini
- f Department of Medicinal Chemistry, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Farid Abedin Dorkoosh
- g Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran.,h Medical Biomaterial Research Centre (MBRC) , Tehran University of Medical Sciences , Tehran , Iran
| | - Somayeh Handali
- a Nanotechnology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
41
|
Maestrelli F, Mura P, González-Rodríguez ML, Cózar-Bernal MJ, Rabasco AM, Di Cesare Mannelli L, Ghelardini C. Calcium alginate microspheres containing metformin hydrochloride niosomes and chitosomes aimed for oral therapy of type 2 diabetes mellitus. Int J Pharm 2017; 530:430-439. [DOI: 10.1016/j.ijpharm.2017.07.083] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
42
|
A Multiparticulate Delivery System for Potential Colonic Targeting Using Bovine Serum Albumin as a Model Protein : Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li. Pharm Res 2017; 34:2663-2674. [PMID: 28808837 DOI: 10.1007/s11095-017-2237-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE There are many important diseases whose treatment could be improved by delivering a therapeutic protein to the colon, for example, Clostridium difficile infection, ulcerative colitis and Crohn's Disease. The goal of this project was to investigate the feasibility of colonic delivery of proteins using multiparticulate beads. METHODS In this work, bovine serum albumin (BSA) was adopted as a model protein. BSA was spray layered onto beads, followed by coating of an enteric polymer EUDRAGIT® FS 30 D to develop a colonic delivery system. The secondary and tertiary structure change and aggregation of BSA during spray layering process was examined. The BSA layered beads were then challenged in an accelerated stability study using International Council for Harmonization (ICH) conditions. The in vitro release of BSA from enteric coated beads was examined using United States Pharmacopeia (USP) dissolution apparatus 1. RESULTS No significant changes in the secondary and tertiary structure or aggregation profile of BSA were observed after the spray layering process. Degradation of BSA to different extents was detected after storing at 25°C and 40°C for 38 days. Enteric coated BSA beads were intact in acidic media while released BSA in pH 7.4 phosphate buffer. CONCLUSION We showed the feasibility of delivering proteins to colon in vitro using multiparticulate system.
Collapse
|
43
|
Yuan B, Zhao L, Rakariyatham K, Han Y, Gao Z, Muinde Kimatu B, Hu Q, Xiao H. Isolation of a novel bioactive protein from an edible mushroom Pleurotus eryngii and its anti-inflammatory potential. Food Funct 2017; 8:2175-2183. [DOI: 10.1039/c7fo00244k] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel protein with anti-inflammatory effects was isolated from Pleurotus eryngii.
Collapse
Affiliation(s)
- Biao Yuan
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
- Department of Food Science
| | - Liyan Zhao
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
| | | | - Yanhui Han
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Zili Gao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Benard Muinde Kimatu
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
| | - Qiuhui Hu
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
| | - Hang Xiao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| |
Collapse
|
44
|
Yuan B, Ma N, Zhao L, Zhao E, Gao Z, Wang W, Song M, Zhang G, Hu Q, Xiao H. In vitro and in vivo inhibitory effects of a Pleurotus eryngii protein on colon cancer cells. Food Funct 2017; 8:3553-3562. [DOI: 10.1039/c7fo00895c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The inhibitory effects of a protein isolated from Pleurotus eryngii were demonstrated in both cell culture and mouse allograft tumor models.
Collapse
Affiliation(s)
- Biao Yuan
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
- Department of Food Science
| | - Ning Ma
- College of Food Science and Engineering
- Nanjing University of Finance and Economics
- Nanjing
- China
| | - Liyan Zhao
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
| | - Ermin Zhao
- College of Food Science and Engineering
- Nanjing University of Finance and Economics
- Nanjing
- China
| | - Zili Gao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Weicang Wang
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Mingyue Song
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Guodong Zhang
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Qiuhui Hu
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing
- China
| | - Hang Xiao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| |
Collapse
|
45
|
Xie CL, Lee SS, Choung SY, Kang SS, Choi YJ. Preparation and optimisation of liposome-in-alginate beads containing oyster hydrolysate for sustained release. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cheng-liang Xie
- Department of Seafood Science and Technology/Institute of Marine Industry; Gyeongsang National University; Gyeongnam 650-160 Korea
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; School of Medicine; Gyeongsang National University; Gyeongnam 660-751 Korea
| | - Su-Seon Lee
- Department of Seafood Science and Technology/Institute of Marine Industry; Gyeongsang National University; Gyeongnam 650-160 Korea
| | - Se-young Choung
- Department of Preventive Pharmacy & Toxicology; College of Pharmacy; Kyung Hee University; Seoul 130-701 Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; School of Medicine; Gyeongsang National University; Gyeongnam 660-751 Korea
| | - Yeung Joon Choi
- Department of Seafood Science and Technology/Institute of Marine Industry; Gyeongsang National University; Gyeongnam 650-160 Korea
| |
Collapse
|
46
|
Sattarahmady N, Moosavi-Movahedi AA, Bazzi P, Heli H, Pourtakdoust S. Improving Pharmaceutical Characteristics of Curcumin by Alginate/Pectin Microparticles. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1410-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Guo J, Kaletunç G. Dissolution kinetics of pH responsive alginate-pectin hydrogel particles. Food Res Int 2016; 88:129-139. [PMID: 28847392 DOI: 10.1016/j.foodres.2016.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/16/2016] [Accepted: 05/21/2016] [Indexed: 11/18/2022]
Abstract
Encapsulation is used for protection of bioactive compounds during processing, storage, and passage through the upper gastrointestinal (GI) tract and delivery to the small intestine. A number of pH responsive synthetic polymers are approved for drug delivery but are not allowed for food applications. We developed a biopolymer mixture composed of alginate and pectin that can form hydrogel when the pH is below 3.0. We also produced novel disc shaped particles which can potentially enhance the particle adhesion in intestines. As the pH increases, Al-P hydrogels go through a gel-sol transition and the dissolution kinetics of the hydrogel dominates the bioactive compound release. The goals of this study are to investigate the relative effects of factors contributing to the dissolution kinetics of Al-P hydrogel and to develop mathematical models characterizing the degradation behavior of the hydrogels under product storage and lower GI tract conditions. The volume change of spherical and disc shaped particles at pH3.0 showed that the hydrogel particles would be stable in low pH beverages during storage. At pH5.0 and 7.0, hydrogel particle dissolution followed a zero-order kinetic model. The 2.8% TGC 43:57wt% Al-P disc particles had the fastest and the 2.2% TGC 82:18wt% Al-P spherical particles had the slowest volume dissolution rate at pH7.0 and 37°C. Activation energies of hydrogel particles were significantly affected by pH, particle shape and Al to P ratio. Such a biopolymer system which responds to pH provides an opportunity to use food as a vehicle for targeted delivery of bioactive compounds.
Collapse
Affiliation(s)
- Jingxin Guo
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Columbus, OH, United States
| | - Gönül Kaletunç
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
48
|
Grijalvo S, Mayr J, Eritja R, Díaz DD. Biodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of convenience. Biomater Sci 2016; 4:555-74. [DOI: 10.1039/c5bm00481k] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Liposome-encapsulated hydrogels have emerged as an attractive strategy for medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spain
- Biomedical Research Networking Center in Bioengineering
- Biomaterials and Nanomedicine (CIBER BBN)
- Spain
| | - Judith Mayr
- Institute of Organic Chemistry
- University of Regensburg
- D-93040 Regensburg
- Germany
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spain
- Biomedical Research Networking Center in Bioengineering
- Biomaterials and Nanomedicine (CIBER BBN)
- Spain
| | - David Díaz Díaz
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spain
- Institute of Organic Chemistry
- University of Regensburg
- D-93040 Regensburg
| |
Collapse
|
49
|
Bansal D, Gulbake A, Tiwari J, Jain SK. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. Int J Biol Macromol 2016; 82:687-95. [DOI: 10.1016/j.ijbiomac.2015.09.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/16/2015] [Accepted: 09/27/2015] [Indexed: 11/28/2022]
|
50
|
Zhang Z, Zhang R, Chen L, Tong Q, McClements DJ. Designing hydrogel particles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.01.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|