1
|
Arndt T, Chatterjee U, Shilkova O, Francis J, Lundkvist J, Johansson D, Schmuck B, Greco G, Nordberg ÅE, Li Y, Wahlberg LU, Langton M, Johansson J, Götherström C, Rising A. Tuneable Recombinant Spider Silk Protein Hydrogels for Drug Release and 3D Cell Culture. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2303622. [PMID: 39355087 PMCID: PMC11440629 DOI: 10.1002/adfm.202303622] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Indexed: 10/03/2024]
Abstract
Hydrogels are useful drug release systems and tissue engineering scaffolds. However, synthetic hydrogels often require harsh gelation conditions and can contain toxic by-products while naturally derived hydrogels can transmit pathogens and in general have poor mechanical properties. Thus, there is a need for a hydrogel that forms under ambient conditions, is non-toxic, xeno-free, and has good mechanical properties. A recombinant spider silk protein-derived hydrogel that rapidly forms at 37 °C is recently developed. The temperature and gelation times are well-suited for an injectable in situ polymerising hydrogel, as well as a 3D cell culture scaffold. Here, it is shown that the diffusion rate and the mechanical properties can be tuned by changing the protein concentration and that human fetal mesenchymal stem cells encapsulated in the hydrogels show high survival and viability. Furthermore, mixtures of recombinant spider silk proteins and green fluorescent protein (GFP) form gels from which functional GFP is gradually released, indicating that bioactive molecules are easily included in the gels, maintain activity and can diffuse through the gel. Interestingly, encapsulated ARPE-19 cells are viable and continuously produce the growth factor progranulin, which is detected in the cell culture medium over the study period of 31 days.
Collapse
Affiliation(s)
- Tina Arndt
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Urmimala Chatterjee
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Olga Shilkova
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Juanita Francis
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | | | - Daniel Johansson
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsala75007Sweden
| | - Benjamin Schmuck
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Gabriele Greco
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Åsa Ekblad Nordberg
- Department of Clinical ScienceIntervention and TechnologyDivision of Obstetrics and GynecologyKarolinska InstitutetHuddinge14152Sweden
| | - Yan Li
- Department of Clinical ScienceIntervention and TechnologyDivision of Orthopedics and BiotechnologyKarolinska UniversitetssjukhusetHuddinge141 86Sweden
| | | | - Maud Langton
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsala75007Sweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Cecilia Götherström
- Department of Clinical ScienceIntervention and TechnologyDivision of Obstetrics and GynecologyKarolinska InstitutetHuddinge14152Sweden
| | - Anna Rising
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| |
Collapse
|
2
|
Visan AI, Negut I. Development and Applications of PLGA Hydrogels for Sustained Delivery of Therapeutic Agents. Gels 2024; 10:497. [PMID: 39195026 DOI: 10.3390/gels10080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) hydrogels are highly utilized in biomedical research due to their biocompatibility, biodegradability, and other versatile properties. This review comprehensively explores their synthesis, properties, sustained release mechanisms, and applications in drug delivery. The introduction underscores the significance of PLGA hydrogels in addressing challenges like short half-lives and systemic toxicity in conventional drug formulations. Synthesis methods, including emulsion solvent evaporation, solvent casting, electrospinning, thermal gelation, and photopolymerization, are described in detail and their role in tailoring hydrogel properties for specific applications is highlighted. Sustained release mechanisms-such as diffusion-controlled, degradation-controlled, swelling-controlled, and combined systems-are analyzed alongside key kinetic models (zero-order, first-order, Higuchi, and Peppas models) for designing controlled drug delivery systems. Applications of PLGA hydrogels in drug delivery are discussed, highlighting their effectiveness in localized and sustained chemotherapy for cancer, as well as in the delivery of antibiotics and antimicrobials to combat infections. Challenges and future prospects in PLGA hydrogel research are discussed, with a focus on improving drug loading efficiency, improving release control mechanisms, and promoting clinical translation. In summary, PLGA hydrogels provide a promising platform for the sustained delivery of therapeutic agents and meet diverse biomedical requirements. Future advancements in materials science and biomedical engineering are anticipated to further optimize their efficacy and applicability in clinical settings. This review consolidates the current understanding and outlines future research directions for PLGA hydrogels, emphasizing their potential to revolutionize therapeutic delivery and improve patient outcomes.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
3
|
Moutaharrik S, Meroni G, Soggiu A, Foppoli A, Cerea M, Palugan L, Caloni F, Martino PA, Gazzaniga A, Maroni A. Guar gum as a microbially degradable component for an oral colon delivery system based on a combination strategy: formulation and in vitro evaluation. Drug Deliv Transl Res 2024; 14:826-838. [PMID: 37824039 DOI: 10.1007/s13346-023-01439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
Oral colon delivery has widely been pursued exploiting naturally occurring polysaccharides degraded by the resident microbiota. However, their hydrophilicity may hinder the targeting performance. The aim of the present study was to manufacture and evaluate a double-coated delivery system leveraging intestinal microbiota, pH, and transit time for reliable colonic release. This system comprised a tablet core, a hydroxypropyl methylcellulose (HPMC) inner layer and an outer coating based on Eudragit® S and guar gum. The tablets were loaded with paracetamol, selected as a tracer drug because of the well-known analytical profile and lack of major effects on bacterial viability. The HPMC and Eudragit® S layers were applied by film-coating. Tested for in vitro release, the double-coated systems showed gastroresistance in 0.1 N HCl followed by lag phases of consistent duration in phosphate buffer pH 7.4, imparted by the HPMC layer and synergistically extended by the Eudragit® S/guar gum one. In simulated colonic fluid with fecal bacteria from an inflammatory bowel disease patient, release was faster than in the presence of β-mannanase and in control culture medium. The bacteria-containing fluid was obtained by an experimental procedure making multiple tests possible from a single sampling and processing run. Thus, the study conducted proved the feasibility of the delivery system and ability of guar gum to trigger release in the presence of colon bacteria without impairing the barrier properties of the coating. Finally, it allowed an advantageous simulated colonic fluid preparation procedure to be set up, reducing the time, costs, and complexity of testing and enhancing replicability.
Collapse
Affiliation(s)
- Saliha Moutaharrik
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Gabriele Meroni
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, One Health Unit, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Alessio Soggiu
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, One Health Unit, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Anastasia Foppoli
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Matteo Cerea
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Luca Palugan
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy
| | - Piera Anna Martino
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, One Health Unit, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy.
| | - Andrea Gazzaniga
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Alessandra Maroni
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| |
Collapse
|
4
|
Wang C, Guo Z, Liang J, Li N, Song R, Luo L, Ai Y, Li X, Tang S. An oral delivery vehicle based on konjac glucomannan acetate targeting the colon for inflammatory bowel disease therapy. Front Bioeng Biotechnol 2022; 10:1025155. [PMID: 36440435 PMCID: PMC9684466 DOI: 10.3389/fbioe.2022.1025155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Orally administered colon-targeted delivery vehicles are of major importance in the treatment of inflammatory bowel disease (IBD). However, it remains a challenge to maintain the integrity of such delivery vehicles during treatment, particularly in the gastric environment, which may cause untimely drug release before reaching the targeted colon. Herein, an oral colon-targeted drug delivery system (OCDDS) based on acetylated konjac glucomannan (AceKGM) has been developed in this work, which accomplishes colonic localization release and targets local inflammatory macrophages. The AceKGM nanoparticle-loading curcumin (Cur) was successfully fabricated by emulsion solvent evaporation techniques. DLS, AFM, and SEM were used in order to evaluate the nanoparticles’ diameter as well as their in vitro drug release profile, and reactive oxygen species (ROS) scavenging results showed that the OCDDS considerably retained the activity of Cur treated with simulated gastric fluid (SGF) and controllably released in simulated intestinal fluid (SIF). In addition, the adhesion experiment results indicated that the nanoparticle could accumulate on the colonic macrophages. Evaluations in colitis mice showed that the treatment significantly alleviated the symptoms of colitis by decreasing the local level of myeloperoxidase (MPO) and the disease activity index (DAI) score in mice. In summary, the results of our research demonstrate that Cur–AceKGM nanoparticles exhibit significantly improved therapeutic efficacy compared to orally administered free Cur and can be developed as an effective drug delivery vehicle for IBD treatment.
Collapse
Affiliation(s)
- Chuang Wang
- Foshan Stomatology Hospital and School of Medicine, Foshan University, Foshan, China
- Biomedical Engineering Institute, Jinan University, Guangzhou, China
| | - Zhenzhao Guo
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jialuo Liang
- Foshan Stomatology Hospital and School of Medicine, Foshan University, Foshan, China
| | - Na Li
- Foshan Stomatology Hospital and School of Medicine, Foshan University, Foshan, China
| | - Rijian Song
- Biomedical Engineering Institute, Jinan University, Guangzhou, China
| | - Lei Luo
- Biomedical Engineering Institute, Jinan University, Guangzhou, China
| | - Yilong Ai
- Foshan Stomatology Hospital and School of Medicine, Foshan University, Foshan, China
| | - Xia Li
- Foshan Stomatology Hospital and School of Medicine, Foshan University, Foshan, China
| | - Shunqing Tang
- Biomedical Engineering Institute, Jinan University, Guangzhou, China
- *Correspondence: Shunqing Tang,
| |
Collapse
|
5
|
Moud AA. Fluorescence Recovery after Photobleaching in Colloidal Science: Introduction and Application. ACS Biomater Sci Eng 2022; 8:1028-1048. [PMID: 35201752 DOI: 10.1021/acsbiomaterials.1c01422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
FRAP (fluorescence recovery after photo bleaching) is a method for determining diffusion in material science. In industrial applications such as medications, foods, Medtech, hygiene, and textiles, the diffusion process has a substantial influence on the overall qualities of goods. All these complex and heterogeneous systems have diffusion-based processes at the local level. FRAP is a fluorescence-based approach for detecting diffusion; in this method, a high-intensity laser is made for a brief period and then applied to the samples, bleaching the fluorescent chemical inside the region, which is subsequently filled up by natural diffusion. This brief Review will focus on the existing research on employing FRAP to measure colloidal system heterogeneity and explore diffusion into complicated structures. This description of FRAP will be followed by a discussion of how FRAP is intended to be used in colloidal science. When constructing the current Review, the most recent publications were reviewed for this assessment. Because of the large number of FRAP articles in colloidal research, there is currently a dearth of knowledge regarding the growth of FRAP's significance to colloidal science. Colloids make up only 2% of FRAP papers, according to ISI Web of Knowledge.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
6
|
Dufficy MK, Corder RD, Dennis KA, Fedkiw PS, Khan SA. Guar Gel Binders for Silicon Nanoparticle Anodes: Relating Binder Rheology to Electrode Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51403-51413. [PMID: 34664928 DOI: 10.1021/acsami.1c10776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Binding agents are a critical component of Si-based anodes for lithium-ion batteries. Herein, we introduce a composite hydrogel binder consisting of carbon black (CB) and guar, which is chemically cross-linked with glutaraldehyde as a means to reinforce the electrode structure during lithiation and improve electronic conductivity. Dynamic rheological measurements are used to monitor the cross-linking reaction and show that rheology plays a significant role in binder performance. The cross-linking reaction occurs at a faster rate and produces stronger networks in the presence of CB, as evidenced from higher gel elastic modulus in guar + CB gels than guar gels alone. Silicon nanoparticle (SiNP) electrodes that use binders with low cross-link densities (trxn < 2 days) demonstrate discharge capacities ∼1200 mAh g-1 and Coulombic efficiencies >99.8% after 300 cycles at 1-C rate. Low cross-link densities likely increase the capacity of SiNP anodes because of binder-Si hydrogen-bonding interactions that accommodate volume expansions. In addition, the cross-linked binder demonstrates the potential for self-healing, as evidenced by an increased elastic modulus after the gel was mechanically fragmented, which may preserve the electrode microstructure during lithiation and increase capacity retention. The composite hydrogel with integrated conductive additives gives promise to a new type of binder for next-generation lithium-ion batteries.
Collapse
Affiliation(s)
- Martin K Dufficy
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ria D Corder
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kimberly A Dennis
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Peter S Fedkiw
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
7
|
Harada LK, Júnior WB, Silva EC, Oliveira TJ, Moreli FC, Júnior JMO, Tubino M, Vila MMDC, Balcão VM. Bacteriophage-Based Biosensing of Pseudomonas aeruginosa: An Integrated Approach for the Putative Real-Time Detection of Multi-Drug-Resistant Strains. BIOSENSORS-BASEL 2021; 11:bios11040124. [PMID: 33921071 PMCID: PMC8071457 DOI: 10.3390/bios11040124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
During the last decennium, it has become widely accepted that ubiquitous bacterial viruses, or bacteriophages, exert enormous influences on our planet’s biosphere, killing between 4–50% of the daily produced bacteria and constituting the largest genetic diversity pool on our planet. Currently, bacterial infections linked to healthcare services are widespread, which, when associated with the increasing surge of antibiotic-resistant microorganisms, play a major role in patient morbidity and mortality. In this scenario, Pseudomonas aeruginosa alone is responsible for ca. 13–15% of all hospital-acquired infections. The pathogen P. aeruginosa is an opportunistic one, being endowed with metabolic versatility and high (both intrinsic and acquired) resistance to antibiotics. Bacteriophages (or phages) have been recognized as a tool with high potential for the detection of bacterial infections since these metabolically inert entities specifically attach to, and lyse, bacterial host cells, thus, allowing confirmation of the presence of viable cells. In the research effort described herein, three different phages with broad lytic spectrum capable of infecting P. aeruginosa were isolated from environmental sources. The isolated phages were elected on the basis of their ability to form clear and distinctive plaques, which is a hallmark characteristic of virulent phages. Next, their structural and functional stabilization was achieved via entrapment within the matrix of porous alginate, biopolymeric, and bio-reactive, chromogenic hydrogels aiming at their use as sensitive matrices producing both color changes and/or light emissions evolving from a reaction with (released) cytoplasmic moieties, as a bio-detection kit for P. aeruginosa cells. Full physicochemical and biological characterization of the isolated bacteriophages was the subject of a previous research paper.
Collapse
Affiliation(s)
- Liliam K. Harada
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | | | - Erica C. Silva
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - Thais J. Oliveira
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - Fernanda C. Moreli
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - José M. Oliveira Júnior
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - Matthieu Tubino
- Institute of Chemistry, University of Campinas, Campinas, SP 13083-970, Brazil;
| | - Marta M. D. C. Vila
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - Victor M. Balcão
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +55-(15)-2101-7029
| |
Collapse
|
8
|
Rivero Berti I, Islan GA, Castro GR. Enzymes and biopolymers. The opportunity for the smart design of molecular delivery systems. BIORESOURCE TECHNOLOGY 2021; 322:124546. [PMID: 33360273 DOI: 10.1016/j.biortech.2020.124546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Enzymes exhibit a tremendous potential due to the catalytic activity in response to physiological conditions and specific microenvironments. Exploiting these properties in combination with the versatility of biopolymers, a fascinating field for the rational development of a new class of "smart" delivery systems for therapeutic molecules is proposed. Many strategies have been recently developed to produce matrices with the desirable properties of molecular release, and enzymes could be playing a relevant role in modify the chemical composition of the polymers, the porosity and surface area of the matrices and modulate the kinetic of controlled release. Enzyme based computational systems have appeared as a relevant complementary tool to design novel smart bioactive matrices for programmable drug delivery. The present review is reporting the recent advances and projections of smart biopolymeric matrices activated by enzymes for sustained release of therapeutic molecules, highlighting various applications in the area of advanced drug delivery.
Collapse
Affiliation(s)
- Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - German A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| |
Collapse
|
9
|
Barnhouse V, Petrikas N, Crosby C, Zoldan J, Harley B. Perivascular Secretome Influences Hematopoietic Stem Cell Maintenance in a Gelatin Hydrogel. Ann Biomed Eng 2021; 49:780-792. [PMID: 32939609 PMCID: PMC7854499 DOI: 10.1007/s10439-020-02602-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Adult hematopoietic stem cells (HSCs) produce the body's full complement of blood and immune cells. They reside in specialized microenvironments, or niches, within the bone marrow. The perivascular niche near blood vessels is believed to help maintain primitive HSCs in an undifferentiated state but demonstration of this effect is difficult. In vivo studies make it challenging to determine the direct effect of the endosteal and perivascular niches as they can be in close proximity, and two-dimensional in vitro cultures often lack an instructive extracellular matrix environment. We describe a tissue engineering approach to develop and characterize a three-dimensional perivascular tissue model to investigate the influence of the perivascular secretome on HSC behavior. We generate 3D endothelial networks in methacrylamide-functionalized gelatin hydrogels using human umbilical vein endothelial cells (HUVECs) and mesenchymal stromal cells (MSCs). We identify a subset of secreted factors important for HSC function, and examine the response of primary murine HSCs in hydrogels to the perivascular secretome. Within 4 days of culture, perivascular conditioned media promoted maintenance of a greater fraction of hematopoietic stem and progenitor cells. This work represents an important first-generation perivascular model to investigate the role of niche secreted factors on the maintenance of primary HSCs.
Collapse
Affiliation(s)
- Victoria Barnhouse
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nathan Petrikas
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Cody Crosby
- Department of Biomedical Engineering, University of Texas at Austin, Austin, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, USA
| | - Brendan Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Liu C, Lei F, Li P, Jiang J, Wang K. Borax crosslinked fenugreek galactomannan hydrogel as potential water-retaining agent in agriculture. Carbohydr Polym 2020; 236:116100. [PMID: 32172899 DOI: 10.1016/j.carbpol.2020.116100] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/28/2022]
Abstract
In order to explore a novel type of agricultural water-retaining agent, borax crosslinked fenugreek galactomannan-borax hydrogel (FGB) was synthesized. The hydrogel was characterized by thermogravimetric analysis, FT-IR, XRD, and SEM. The largest swelling index of FGB (115) was higher than that of guar gum hydrogel (70) at pH 9. The water absorption capacity of sandy soil was studied by mixing the hydrogel with soil, then FGB was evaluated as a latent water retention agent. Results showed that the swelling index of sandy soil increased from 16.28% to 35.53% with 0.5 wt.% hydrogel added. The water retention time increased from 2 to 11.5 days at 20 °C and 60 % humidity. Furthermore, more than ten cycles of water absorption and water loss of soil-FGB were carried out at 50 °C at a relatively stable water retention capacity. This low-cost, environmentally friendly hydrogel has great application potential in agriculture for soil water conservation.
Collapse
Affiliation(s)
- Chuanjie Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Pengfei Li
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China.
| | - Kun Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, PR China.
| |
Collapse
|
11
|
Pirzada T, Farias BVD, Chu HMA, Khan SA. Fabrication of Guar-Only Electrospun Nanofibers by Exploiting a High- and Low-Molecular Weight Blend. ACS OMEGA 2019; 4:10767-10774. [PMID: 31460174 PMCID: PMC6648985 DOI: 10.1021/acsomega.9b00902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
We present a facile approach to electrospin nanofibers of guar galactomannan by blending high- and low-molecular weights (MWs) of guar. We discover that while neither native high MW guar nor hydrolyzed low MW guar is electrospinnable on its own, their combination leads to synergism in producing defect-free nanofibers. Such an approach of fabricating nanofibers from blending multiple MWs of the same polymer may provide an easy route to produce nanofibers of biopolymers which are typically hard to electrospin. Rheological studies reveal that a limiting amount of native guar is needed for electrospinnability, and for those systems that have the proportionate amount of native guar, there is a critical total concentration above which fibers form. Interestingly, a plot of blend viscosity versus guar concentration reveals two power-law regimes with an inflection point, above which fiber formation can be achieved akin to the behavior observed for pure (i.e., nonblend) polymers.
Collapse
Affiliation(s)
| | | | | | - Saad A. Khan
- E-mail: . Phone: 919-515-4519. Fax: 919-515-3465
| |
Collapse
|
12
|
Sharifzadeh G, Hosseinkhani H. Biomolecule-Responsive Hydrogels in Medicine. Adv Healthc Mater 2017; 6. [PMID: 29057617 DOI: 10.1002/adhm.201700801] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/17/2017] [Indexed: 12/19/2022]
Abstract
Recent advances and applications of biomolecule-responsive hydrogels, namely, glucose-responsive hydrogels, protein-responsive hydrogels, and nucleic-acid-responsive hydrogels are highlighted. However, achieving the ultimate purpose of using biomolecule-responsive hydrogels in preclinical and clinical areas is still at the very early stage and calls for more novel designing concepts and advance ideas. On the way toward the real/clinical application of biomolecule-responsive hydrogels, plenty of factors should be extensively studied and examined under both in vitro and in vivo conditions. For example, biocompatibility, biointegration, and toxicity of biomolecule-responsive hydrogels should be carefully evaluated. From the living body's point of view, biocompatibility is seriously depended on the interactions at the tissue/polymer interface. These interactions are influenced by physical nature, chemical structure, surface properties, and degradation of the materials. In addition, the developments of advanced hydrogels with tunable biological and mechanical properties which cause no/low side effects are of great importance.
Collapse
Affiliation(s)
- Ghorbanali Sharifzadeh
- Department of Polymer Engineering; Faculty of Chemical Engineering; Universiti Teknologi Malaysia; 81310 Johor Malaysia
| | | |
Collapse
|
13
|
McGill M, Coburn JM, Partlow BP, Mu X, Kaplan DL. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design. Acta Biomater 2017; 63:76-84. [PMID: 28919509 DOI: 10.1016/j.actbio.2017.09.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 11/28/2022]
Abstract
Silk fibroin-based hydrogels have exciting applications in tissue engineering and therapeutic molecule delivery; however, their utility is dependent on their diffusive properties. The present study describes a molecular and macro-scale investigation of enzymatically-crosslinked silk fibroin hydrogels, and demonstrates that these systems have tunable crosslink density and diffusivity. We developed a liquid chromatography tandem mass spectroscopy (LC-MS/MS) method to assess the quantity and order of covalent tyrosine crosslinks in the hydrogels. This analysis revealed between 28 and 56% conversion of tyrosine to dityrosine, which was dependent on the silk concentration and reactant concentration. The crosslink density was then correlated with storage modulus, revealing that both crosslinking and protein concentration influenced the mechanical properties of the hydrogels. The diffusive properties of the bulk material were studied by fluorescence recovery after photobleaching (FRAP), which revealed a non-linear relationship between silk concentration and diffusivity. As a result of this work, a model for synthesizing hydrogels with known crosslink densities and diffusive properties has been established, enabling the rational design of silk hydrogels for biomedical applications. STATEMENT OF SIGNIFICANCE Hydrogels from naturally-derived silk polymers offer versitile opportunities in the biomedical field, however, their design has largely been an empirical process. We present a fundamental study of the crosslink density, storage modulus, and diffusion behavior of enzymatically-crosslinked silk hydrogels to better inform scaffold design. These studies revealed unexpected non-linear trends in the crosslink density and diffusivity of silk hydrogels with respect to protein concentration and crosslink reagent concentration. This work demonstrates the tunable diffusivity and crosslinking in silk fibroin hydrogels, and enables the rational design of biomaterials. Further, the characterization methods presented have applications for other materials with dityrosine crosslinks, which are found in nature as post-translational modificaitons, as well as in engineered matrices such as tyramine-substituted hyaluronic acid and recombinant resilin.
Collapse
Affiliation(s)
- Meghan McGill
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Benjamin P Partlow
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
14
|
Zeeb B, McClements DJ, Weiss J. Enzyme-Based Strategies for Structuring Foods for Improved Functionality. Annu Rev Food Sci Technol 2017; 8:21-34. [PMID: 28068492 DOI: 10.1146/annurev-food-030216-025753] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enzyme technologies can be used to create food dispersions with novel functional attributes using structural design principles. Enzymes that utilize food-grade proteins and/or polysaccharides as substrates have gained recent interest among food scientists. The utilization of enzymes for structuring foods is an ecologically and economically viable alternative to the utilization of chemical cross-linking and depolymerization agents. This review highlights recent progress in the use of enzymes to modify food structures, particularly the interfacial and/or bulk properties of food dispersions with special emphasis on commercially available enzymes. Cross-linking enzymes such as transglutaminase and laccase promote the formation of intra- and intermolecular bonds between biopolymers to improve stability and functionality, whereas various degrading enzymes such as proteases alter the native conformation of proteins, leading to self-assembly of hierarchically ordered colloids. Results of this bio-inspired approach show that rational use of structure-affecting enzymes may enable food manufacturers to produce food dispersions with improved physical, functional, textural, and optical properties.
Collapse
Affiliation(s)
- Benjamin Zeeb
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany;
| | | | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
15
|
Challenges for Cartilage Regeneration. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/978-3-662-53574-5_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Safary A, Moniri R, Hamzeh-Mivehroud M, Dastmalchi S. Identification and Molecular Characterization of Genes Coding Pharmaceutically Important Enzymes from Halo-Thermo Tolerant Bacillus. Adv Pharm Bull 2016; 6:551-561. [PMID: 28101462 DOI: 10.15171/apb.2016.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 11/09/2022] Open
Abstract
Purpose: Robust pharmaceutical and industrial enzymes from extremophile microorganisms are main source of enzymes with tremendous stability under harsh conditions which make them potential tools for commercial and biotechnological applications. Methods: The genome of a Gram-positive halo-thermotolerant Bacillus sp. SL1, new isolate from Saline Lake, was investigated for the presence of genes coding for potentially pharmaceutical enzymes. We determined gene sequences for the enzymes laccase (CotA), l-asparaginase (ansA3, ansA1), glutamate-specific endopeptidase (blaSE), l-arabinose isomerase (araA2), endo-1,4-β mannosidase (gmuG), glutaminase (glsA), pectate lyase (pelA), cellulase (bglC1), aldehyde dehydrogenase (ycbD) and allantoinases (pucH) in the genome of Bacillus sp. SL1. Results: Based on the DNA sequence alignment results, six of the studied enzymes of Bacillus sp. SL-1 showed 100% similarity at the nucleotide level to the same genes of B. licheniformis 14580 demonstrating extensive organizational relationship between these two strains. Despite high similarities between the B. licheniformis and Bacillus sp. SL-1 genomes, there are minor differences in the sequences of some enzyme. Approximately 30% of the enzyme sequences revealed more than 99% identity with some variations in nucleotides leading to amino acid substitution in protein sequences. Conclusion: Molecular characterization of this new isolate provides useful information regarding evolutionary relationship between B. subtilis and B. licheniformis species. Since, the most industrial processes are often performed in harsh conditions, enzymes from such halo-thermotolerant bacteria may provide economically and industrially appealing biocatalysts to be used under specific physicochemical situations in medical, pharmaceutical, chemical and other industries.
Collapse
Affiliation(s)
- Azam Safary
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.; Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Shankar BH, Jayaram DT, Ramaiah D. Naphthalene Imide Conjugates: Formation of Supramolecular Assemblies, and the Encapsulation and Release of Dyes through DNA-Mediated Disassembly. Chemistry 2015; 21:17657-63. [PMID: 26490366 DOI: 10.1002/chem.201502955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 01/01/2023]
Abstract
We report the synthesis of two new amphiphilic conjugates 1 and 2 based on naphthalene di- and monoimide chromophores and the investigation of their photophysical, self-assembly and DNA-binding properties. These conjugates showed aqueous good solubility and exhibited strong interactions with DNA and polynucleotides such as poly(dG⋅dC)-poly(dG⋅dC) and poly(dA⋅dT)-poly(dA⋅dT). The interaction of these conjugates with DNA was evaluated by photo- and biophysical techniques. These studies revealed that the conjugates interact with DNA through intercalation with association constants in the order of 5-8×10(4) M(-1) . Of these two conjugates, bolaamphiphile 1 exhibited a supramolecular assembly that formed vesicles with an approximate diameter of 220 nm in the aqueous medium at a critical aggregation concentration of 0.4 mM, which was confirmed by SEM and TEM. These vesicular structures showed a strong affinity for hydrophobic molecules such as Nile red through encapsulation. Uniquely, when exposed to DNA the vesicles disassembled, and therefore this transformation could be utilised for the encapsulation and release of hydrophobic molecules by employing DNA as a stimulus.
Collapse
Affiliation(s)
- Balaraman H Shankar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019 (India)
| | - Dhanya T Jayaram
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019 (India)
| | - Danaboyina Ramaiah
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019 (India). , , .,CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785 006, Assam (India). , ,
| |
Collapse
|
18
|
A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector. J Chromatogr A 2015; 1400:98-106. [DOI: 10.1016/j.chroma.2015.04.054] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/23/2022]
|
19
|
Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.07.010] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Okoniewski SR, Wisniewski D, Frazer NL, Mu W, Arceo A, Rathi P, Ketterson JB. Optorheological thickening under the pulsed laser photocrosslinking of a polymer. J Appl Polym Sci 2014. [DOI: 10.1002/app.40690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - N. Laszlo Frazer
- Department of Physics and Astronomy; Northwestern University; Evanston Illinois 60208
| | - Weiqiang Mu
- Department of Physics and Astronomy; Northwestern University; Evanston Illinois 60208
| | - Andrew Arceo
- Adlai E. Stevenson High School; Lincolnshire Illinois 60069
| | - Pranjali Rathi
- Adlai E. Stevenson High School; Lincolnshire Illinois 60069
| | - J. B. Ketterson
- Department of Physics and Astronomy; Northwestern University; Evanston Illinois 60208
- Department of Electrical Engineering and Computer Science; Northwestern University; Evanston Illinois 60208
| |
Collapse
|
21
|
Guo W, Yang C, Cui L, Lin H, Qu F. An enzyme-responsive controlled release system of mesoporous silica coated with Konjac oligosaccharide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:243-249. [PMID: 24380643 DOI: 10.1021/la403494q] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A simple and green method to fabricate an ingenious enzyme-responsive drug controlled release system was presented. Mesoporous silica material (mSiO2) 100 nm in size was used as the host, and Konjac oligosaccharide (KOGC) was employed to seal the nanopores of mSiO2 to inhibit the drug release. Rhodamine B was used as the model cargo to reveal the release behavior of the system. The KOGC-modified mSiO2 (mSiO2@KOGC) retains the drug until it reaches the colonic environment where bacteria secrete enzymes (β-mannanase) can degrade KOGC and make drug release. The amount of KOGC and enzyme can be used to adjust the release performance. And all the release behaviors fit the two-step Higuchi model, which predominate by KOGC degradation and mesoporous structure, respectively. With well bioactivity and selectivity, the system has potential application as an oral medicine carrier for treating intestinal disease.
Collapse
Affiliation(s)
- Wei Guo
- Department of Photoelectric Band Gap Materials Key Laboratory of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University , Harbin 150025, China
| | | | | | | | | |
Collapse
|
22
|
Balcão VM, Barreira SVP, Nunes TM, Chaud MV, Tubino M, Vila MMDC. Carbohydrate hydrogels with stabilized phage particles for bacterial biosensing: bacterium diffusion studies. Appl Biochem Biotechnol 2013; 172:1194-214. [PMID: 24146368 DOI: 10.1007/s12010-013-0579-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/01/2013] [Indexed: 12/01/2022]
Abstract
Bacteriophage particles have been reported as potentially useful in the development of diagnosis tools for pathogenic bacteria as they specifically recognize and lyse bacterial isolates thus confirming the presence of viable cells. One of the most representative microorganisms associated with health care services is the bacterium Pseudomonas aeruginosa, which alone is responsible for nearly 15% of all nosocomial infections. In this context, structural and functional stabilization of phage particles within biopolymeric hydrogels, aiming at producing cheap (chromogenic) bacterial biosensing devices, has been the goal of a previous research effort. For this, a detailed knowledge of the bacterial diffusion profile into the hydrogel core, where the phage particles lie, is of utmost importance. In the present research effort, the bacterial diffusion process into the biopolymeric hydrogel core was mathematically described and the theoretical simulations duly compared with experimental results, allowing determination of the effective diffusion coefficients of P. aeruginosa in the agar and calcium alginate hydrogels tested.
Collapse
Affiliation(s)
- Victor M Balcão
- Laboratory for the Development and Evaluation of Bioactive Substances, University of Sorocaba, Cidade Universitária, Rod. Raposo Tavares km 92.5, 18023-000, Sorocaba, São Paulo, Brazil,
| | | | | | | | | | | |
Collapse
|
23
|
FRAP in Pharmaceutical Research: Practical Guidelines and Applications in Drug Delivery. Pharm Res 2013; 31:255-70. [DOI: 10.1007/s11095-013-1146-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/09/2013] [Indexed: 01/02/2023]
|
24
|
|
25
|
Lai H, Lin K, Zhang W, Zhang Z, Jie L, Wu Y, He Q. Development of pH- and enzyme-controlled, colon-targeted, pulsed delivery system of a poorly water-soluble drug: preparation and in vitro evaluation. Drug Dev Ind Pharm 2012; 36:81-92. [PMID: 19640246 DOI: 10.3109/03639040903092335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND As conventional pH-controlled colon-targeted system used for oral drug delivery often shows a poor performance, a more effective way to preserve poorly water-soluble drug from releasing in upper gastrointestinal tract should be researched. METHOD The objective of this study was to develop a novel colon-targeted drug delivery system using guar gum and Eudragit as enzyme- and pH-based materials. Lansoprazole, a poorly water-soluble drug was used as model drug. Under three different conditions, the in vitro drug release behaviors of this newly developed system was evaluated, using β-mannanase, rat cecal content, and human fecal media to simulate the pH and enzyme during intestinal transit to the colon. RESULTS The released amount of lansoprazole in simulated small intestine fluid (pH 6.8) after 5 hours was less than 10% from the pH- and enzyme-controlled tablets compared with 80.01±0.3% in rat cecal content medium (pH 7.4).The degradation ability of human fecal slurries on PECCT-PT was independent of human age and gender. β-Mannanase did not have a similar effect on the degradation of polysaccharide as rat cecal enzymes and human fecal enzymes in our study. Scanning electron microscope study indicated that the dissolution mechanism of PECCT-PT should be corrosion. CONCLUSION The above results indicated this system could be served as a potential carrier to deliver poorly water-soluble drug specifically to the colon.
Collapse
Affiliation(s)
- Huiming Lai
- Key Laboratory of Drug Targeting, Ministry of Education, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | |
Collapse
|
26
|
Hagman J, Lorén N, Hermansson AM. Probe diffusion in κ-carrageenan gels determined by fluorescence recovery after photobleaching. Food Hydrocoll 2012. [DOI: 10.1016/j.foodhyd.2012.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Hu J, Zhang G, Liu S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev 2012; 41:5933-49. [PMID: 22695880 DOI: 10.1039/c2cs35103j] [Citation(s) in RCA: 492] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Being responsive and adaptive to external stimuli is an intrinsic feature characteristic of all living organisms and soft matter. Specifically, responsive polymers can exhibit reversible or irreversible changes in chemical structures and/or physical properties in response to a specific signal input such as pH, temperature, ionic strength, light irradiation, mechanical force, electric and magnetic fields, and analyte of interest (e.g., ions, bioactive molecules, etc.) or an integration of them. The past decade has evidenced tremendous growth in the fundamental research of responsive polymers, and accordingly, diverse applications in fields ranging from drug or gene nanocarriers, imaging, diagnostics, smart actuators, adaptive coatings, to self-healing materials have been explored and suggested. Among a variety of external stimuli that have been utilized for the design of novel responsive polymers, enzymes have recently emerged to be a promising triggering motif. Enzyme-catalyzed reactions are highly selective and efficient toward specific substrates under mild conditions. They are involved in all biological and metabolic processes, serving as the prime protagonists in the chemistry of living organisms at a molecular level. The integration of enzyme-catalyzed reactions with responsive polymers can further broaden the design flexibility and scope of applications by endowing the latter with enhanced triggering specificity and selectivity. In this tutorial review, we describe recent developments concerning enzyme-responsive polymeric assemblies, nanoparticles, and hydrogels by highlighting this research area with selected literature reports. Three different types of systems, namely, enzyme-triggered self-assembly and aggregation of synthetic polymers, enzyme-driven disintegration and structural reorganization of polymeric assemblies and nanoparticles, and enzyme-triggered sol-to-gel and gel-to-sol transitions, are described. Their promising applications in drug controlled release, biocatalysis, imaging, sensing, and diagnostics are also discussed.
Collapse
Affiliation(s)
- Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, PR China
| | | | | |
Collapse
|
28
|
Affiliation(s)
- Tina Vermonden
- Department of Pharmaceutics, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
29
|
IM K, Ravi A, Kumar D, Kuttan R, Maliakel B. An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. J Funct Foods 2012. [DOI: 10.1016/j.jff.2012.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
30
|
Mears M, Tarmey DS, Geoghegan M. Single macromolecule diffusion in confined environments. Macromol Rapid Commun 2011; 32:1411-8. [PMID: 21751276 DOI: 10.1002/marc.201100076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Indexed: 11/08/2022]
Abstract
We consider the behaviour of single molecules on surfaces and, more generally, in confined environments. These are loosely split into three sections: single molecules in biology, the physics of single molecules on surfaces and controlled (directed) diffusion. With recent advances in single molecule detection techniques, the importance and mechanisms of single molecule processes such as localised enzyme production and intracellular diffusion across membranes has been highlighted, emphasising the extra information that cannot be obtained with techniques that present average behaviour. Progress has also been made in producing artificial systems that can control the rate and direction of diffusion, and because these are still in their infancy (especially in comparison to complex biological systems), we discuss the new physics revealed by these phenomena.
Collapse
|
31
|
Lai H, Zhu F, Yuan W, He N, Zhang Z, Zhang X, He Q. Development of multiple-unit colon-targeted drug delivery system by using alginate:in vitroandin vivoevaluation. Drug Dev Ind Pharm 2011; 37:1347-56. [DOI: 10.3109/03639045.2011.575163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Shao H, Parquette JR. A π-conjugated hydrogel based on an Fmoc-dipeptide naphthalene diimide semiconductor. Chem Commun (Camb) 2010; 46:4285-7. [DOI: 10.1039/c0cc00701c] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Pollard M, Eder B, Fischer P, Windhab E. Characterization of galactomannans isolated from legume endosperms of Caesalpinioideae and Faboideae subfamilies by multidetection aqueous SEC. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2009.07.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Azagarsamy MA, Sokkalingam P, Thayumanavan S. Enzyme-triggered disassembly of dendrimer-based amphiphilic nanocontainers. J Am Chem Soc 2009; 131:14184-5. [PMID: 19757790 DOI: 10.1021/ja906162u] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate a new enzyme-induced disassembly of amphiphilic nanocontainers based on dendrimers. Disassembly and the ensuing release of noncovalently bound guest molecules are of great interest because of their implications in areas such as drug delivery and sensing. Achieving these with a protein as the stimulus is of even greater importance, because proteins are the primary indicators of biological imbalances. We achieved disassembly of the nanocontainers by disturbing the hydrophilic-lipophilic balance in the amphiphilic dendrimer building blocks.
Collapse
Affiliation(s)
- Malar A Azagarsamy
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
35
|
Brandl F, Kastner F, Gschwind RM, Blunk T, Tessmar J, Göpferich A. Hydrogel-based drug delivery systems: comparison of drug diffusivity and release kinetics. J Control Release 2009; 142:221-8. [PMID: 19887092 DOI: 10.1016/j.jconrel.2009.10.030] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/19/2009] [Accepted: 10/25/2009] [Indexed: 11/30/2022]
Abstract
Hydrogels are extensively studied as matrices for the controlled release of macromolecules. To evaluate the mobility of embedded molecules, these drug delivery systems are usually characterized by release studies. However, these experiments are time-consuming and their reliability is often poor. In this study, gels were prepared by step-growth polymerization of poly(ethylene glycol) (PEG) and loaded with fluoresceine isothiocyanate (FITC) labeled dextrans. Mechanical testing and swelling studies allowed prediction of the expected FITC-dextran diffusivity. The translational diffusion coefficients (D) of the incorporated FITC-dextrans were measured by fluorescence recovery after photobleaching (FRAP) and pulsed field gradient NMR spectroscopy. Because the determined values of D agreed well with those obtained from release studies, mechanical testing, FRAP, and pulsed field gradient NMR spectroscopy are proposed as alternatives to release experiments. The applied methods complemented each other and represented the relative differences between the tested samples correctly. Measuring D can therefore be used to rapidly evaluate the potential of newly developed drug delivery systems.
Collapse
Affiliation(s)
- Ferdinand Brandl
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Lorén N, Nydén M, Hermansson AM. Determination of local diffusion properties in heterogeneous biomaterials. Adv Colloid Interface Sci 2009; 150:5-15. [PMID: 19481193 DOI: 10.1016/j.cis.2009.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 05/11/2009] [Accepted: 05/12/2009] [Indexed: 11/25/2022]
Abstract
The coupling between structure and diffusion properties is essential for the functionality of heterogeneous biomaterials. Structural heterogeneity is defined and its implications for time-dependent diffusion are discussed in detail. The effect of structural heterogeneity in biomaterials on diffusion and the relevance of length scales are exemplified with regard to different biomaterials such as gels, emulsions, phase separated biopolymer mixtures and chocolate. Different diffusion measurement techniques for determination of diffusion properties at different length and time scales are presented. The interplay between local and global diffusion is discussed. New measurement techniques have emerged that enable simultaneous determination of both structure and local diffusion properties. Special emphasis is given to fluorescence recovery after photobleaching (FRAP). The possibilities of FRAP at a conceptual level is presented. The method of FRAP is briefly reviewed and its use in heterogeneous biomaterials, at barriers and during dynamic changes of the structure is discussed.
Collapse
|
37
|
Liu M, Fan J, Wang K, He Z. Synthesis, Characterization, and Evaluation of Phosphated Cross-Linked Konjac Glucomannan Hydrogels for Colon-Targeted Drug Delivery. Drug Deliv 2008; 14:397-402. [PMID: 17701529 DOI: 10.1080/10717540701202887] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Hydrogel systems of konjac glucomannan (KGM) cross-linked with trisodium trimetaphosphate (STMP) were prepared for colon-targeting drug delivery. Swelling degrees of the hydrogels were measured in artificial gastrointestinal fluids and in sodium chloride solution with different concentrations to study their dependence on the cross-linking density and the ionic strength. The absorption of methylene blue was used to characterize the degree of the KGM cross-linking. In vitro release of model drug hydrocortisone was studied in presence and absence of beta -mannanase. KGM cross-linked with STMP was able to retard the release of the poorly water-soluble drug and could be biodegraded enzymatically. Hydrocortisone release was cross-linking density dependent and controlled by degradation of the hydrogles.
Collapse
Affiliation(s)
- Meimei Liu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | | | | | | |
Collapse
|
38
|
Wu DQ, Wang T, Lu B, Xu XD, Cheng SX, Jiang XJ, Zhang XZ, Zhuo RX. Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:10306-10312. [PMID: 18680318 DOI: 10.1021/la8006876] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Supramolecular hydrogels self-assembled by alpha-cyclodextrin and methoxypolyethylene glycol-poly(caprolactone)-(dodecanedioic acid)-poly(caprolactone)-methoxypolyethylene glycol (MPEG-PCL-MPEG) triblock polymers were prepared and characterized in vitro and in vivo. The sustained release of dextran-fluorescein isothiocyanate (FITC) from the hydrogels lasted for more than 1 month, which indicated that the hydrogels were promising for controlled drug delivery. ECV304 cells and marrow mesenchymal stem cells (MSC) were encapsulated and cultured in the hydrogels, during which the morphologies of the cells could be kept. The in vitro cell viability studies and the in vivo histological studies demonstrated that the hydrogels were non-cytotoxic and biocompatible, which indicated that the hydrogels prepared were promising candidates as injectable scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- De-Qun Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
In vitro evaluations of konjac glucomannan and xanthan gum mixture as the sustained release material of matrix tablet. Carbohydr Polym 2008. [DOI: 10.1016/j.carbpol.2007.11.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Roos AA, Edlund U, Sjöberg J, Albertsson AC, Stålbrand H. Protein Release from Galactoglucomannan Hydrogels: Influence of Substitutions and Enzymatic Hydrolysis by β-Mannanase. Biomacromolecules 2008; 9:2104-10. [DOI: 10.1021/bm701399m] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexandra Andersson Roos
- Department of Biochemistry, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden, and Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Ulrica Edlund
- Department of Biochemistry, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden, and Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - John Sjöberg
- Department of Biochemistry, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden, and Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Ann-Christine Albertsson
- Department of Biochemistry, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden, and Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Henrik Stålbrand
- Department of Biochemistry, Lund University, Post Office Box 124, SE-221 00 Lund, Sweden, and Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
41
|
Alvarez-Manceñido F, Landin M, Martínez-Pacheco R. Konjac glucomannan/xanthan gum enzyme sensitive binary mixtures for colonic drug delivery. Eur J Pharm Biopharm 2008; 69:573-81. [PMID: 18294827 DOI: 10.1016/j.ejpb.2008.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 12/21/2007] [Accepted: 01/07/2008] [Indexed: 02/08/2023]
Abstract
The polysaccharide konjac glucomannan (KGM) is degraded in the colon but not the small intestine, which makes it potentially useful as an excipient for colonic drug delivery. With xanthan gum (XG) KGM forms thermoreversible gels with hitherto unexplored biodegradation properties. In this work, rheological measurements of KGM and KGM/XG systems incubated with and without Aspergillus niger beta-mannanase (used to mimic colonic enzymes) showed that KGM was degraded by the enzyme even when interacting with XG. Tablets with KGM/XG/sucrose matrices that varied in accordance with a simplex design and bore diltiazem as a typical highly soluble drug load were prepared by wet granulation, and in most cases were found to possess satisfactory mechanical strength and exhibit slow, nearly zero-order drug release. Drug release from these tablets remained zero-order, but was accelerated (presumably due to degradation of KGM), in the presence of A. niger beta-mannanase at concentrations equivalent to human colonic conditions. However, marked differences between Japanese and American varieties of KGM as regards degree of acetylation and particle size led to significant differences in swelling rate and drug release between formulations prepared with one and the other KGM: whereas a formulation with Japanese KGM released its entire drug load within 24h in the presence of beta-mannanase, only 60% release was achieved under the same conditions by the corresponding formulation with American KGM, suggesting that with this KGM it will be necessary to optimize technological variables such as compression pressure in order to achieve suitable porosity, swelling rate, and drug release. To sum up, the results of this study suggest that sustained release of water-soluble drugs in the colon from orally administered tablets may be achieved using simple, inexpensive formulations based on combinations of KGM and XG that take the variability of KGM characteristics into account.
Collapse
Affiliation(s)
- Felipe Alvarez-Manceñido
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | |
Collapse
|
42
|
Mahammad S, Comfort DA, Kelly RM, Khan SA. Rheological properties of guar galactomannan solutions during hydrolysis with galactomannanase and alpha-galactosidase enzyme mixtures. Biomacromolecules 2007; 8:949-56. [PMID: 17274652 DOI: 10.1021/bm0608232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guar galactomannan, a naturally occurring polysaccharide, is susceptible to hydrolysis by three enzymes: beta-mannosidase, beta-mannanase, and alpha-galactosidase. The beta-mannosidase cleaves a single mannose unit from the nonreducing end of the guar molecule, the beta-mannanase cleaves interior glycosidic bonds between adjacent mannose units, and the alpha-galactosidase cleaves the galactose side branches off the guar. In this study, hydrolysis of guar solutions using hyperthermopilic versions of these enzymes together in different proportions and combinations are examined. The enzymatic reactions are carried out in situ in a rheometer, and the progress of the reaction is monitored through measuring the variation in zero shear viscosity. We find the presence of alpha-galactosidase to affect the action of both beta-mannanase and beta-mannosidase with respect to solution rheology. However, this effect is more pronounced when the alpha-galactosidase and beta-mannanase or beta-mannosidase enzymes were added sequentially rather than simultaneously. This likely is the result of debranching of the guar, which facilitates attack on beta-1,4-linkages by both the beta-mannanase and the beta-mannosidase enzymes and increases hydrolytic rates by the individual enzymes. A rheology-based kinetic model is developed to estimate the reaction rate constants and interpret synergistic effects of multiple enzyme contributions. The model fits the experimental data well and reveals that both the native and the debranched guar have the same activation energy for beta-mannanase action, although debranching considerably increases the frequency of enzyme-guar interactions.
Collapse
Affiliation(s)
- Shamsheer Mahammad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | | | | | | |
Collapse
|
43
|
Srivastava A, Tripathy J, Mishra MM, Behari K. Modification of guar gum through grafting of 4-vinyl pyridine using potassium peroxymonosulphate/ascorbic acid redox pair. J Appl Polym Sci 2007. [DOI: 10.1002/app.26575] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Wojtyk JT, Goyan R, Gudgin-Dickson E, Pottier R. Exploiting tumour biology to develop novel drug delivery strategies for PDT. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.mla.2006.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Gamal-Eldeen AM, Amer H, Helmy WA. Cancer chemopreventive and anti-inflammatory activities of chemically modified guar gum. Chem Biol Interact 2006; 161:229-40. [PMID: 16756967 DOI: 10.1016/j.cbi.2006.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Revised: 03/22/2006] [Accepted: 03/23/2006] [Indexed: 11/20/2022]
Abstract
Guar gum (G) is a simple characterized branched polysaccharide, which is frequently used in food industries. We prepared the gum C-glycosylated derivative (GG), and its sulphated derivative (SGG), aiming to characterize their cancer chemopreventive, and anti-inflammatory properties. Estimation of cancer chemopreventive activity, specifically anti-initiation, including the modulation of carcinogen metabolism and the antioxidant capacity, revealed that GG was a potent anti-initiator, where it inhibited not only the carcinogen activator enzyme, cytochrome P450 1A (CYP1A), but also induced the carcinogen detoxification enzymes glutathione-S-transferases (GSTs), while SGG inhibited both CYP1A and GSTs. SGG was an effective radical scavenger than GG against hydroxyl, peroxyl, and superoxide anion radicals. GG and SGG were found to modulate the macrophage functions into an anti-inflammatory pattern. Thus, both enhanced the macrophage proliferation and phagocytosis of fluorescein isothiocyanate (FITC)-zymosan; however, they also inhibited strongly the nitric oxide generation and tumor necrosis factor-alpha secretion in lipopolysaccharide (LPS)-stimulated RAW macrophage 264.7. Unexpectedly, both GG and SGG dramatically inhibited the binding affinity of FITC-LPS to RAW 264.7, as indicated by flow cytometry analysis. GG and SGG exhibited a significant anti-proliferative activity against human hepatocellular carcinoma cells (Hep G2), and only SGG was specifically cytotoxic for human breast carcinoma cells (MCF-7), but neither was significantly cytotoxic for human lymphoblastic leukemia cells (1301). SGG led to a major disturbance in cell cycle phases of Hep G2 cells as indicated by concomitant arrest in S- and G2/M-phases, a disturbance that was associated with an induced cell death as a result of necrosis, but not apoptosis in both GG- and SGG-treated cells. Taken together, the modified gums could be used as an alternative of G in health food industries to provide cancer prevention in risk populations.
Collapse
Affiliation(s)
- Amira M Gamal-Eldeen
- Cancer Biology Laboratory, Department of Biochemistry, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki 12622, Cairo, Egypt.
| | | | | |
Collapse
|
46
|
Alvarez-Manceñido F, Braeckmans K, De Smedt SC, Demeester J, Landin M, Martínez-Pacheco R. Characterization of diffusion of macromolecules in konjac glucomannan solutions and gels by fluorescence recovery after photobleaching technique. Int J Pharm 2006; 316:37-46. [PMID: 16574355 DOI: 10.1016/j.ijpharm.2006.02.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/14/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
Konjac glucomannan (KGM) is a neutral polysaccharide with interesting properties as gelling agent and thickener. Its peculiar biodegradability, being not degradable in the small intestine but degradable by the anaerobic human intestinal bacteria, turn it into a promising candidate for colonic drug delivery systems. In this study aqueous systems (0.5%, w/v,) of KGM from three different origins and their mixtures with xanthan gum (XG) (1:1) were evaluated as regards their rheological properties and the diffusion coefficients and mobile fraction of macromolecules (dextrans of different molecular weight). Rheological data illustrate the synergism between KGM and XG at a stoichiometric relationship 1:1. Moreover, fluorescence recovery after photobleaching (FRAP) data indicate that diffusion of probes through the polysaccharide systems cannot be completely explained by the macroscopic properties of the medium but it is related to their molecular size and as a consequence to a sieving mechanism. The strong differences between KGM from different suppliers suggest the convenience of establishing specifications for this material in order to use it as pharmaceutical excipient.
Collapse
Affiliation(s)
- Felipe Alvarez-Manceñido
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
47
|
|