1
|
Zhao H, Li Y, Chen J, Zhang J, Yang Q, Cui J, Shi A, Wu J. Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms. Colloids Surf B Biointerfaces 2024; 234:113758. [PMID: 38241892 DOI: 10.1016/j.colsurfb.2024.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Currently, cancer poses a significant health challenge in the medical community. Traditional chemotherapeutic agents are often accompanied by toxic side effects and limited therapeutic efficacy, restricting their application and advancement in cancer treatment. Therefore, there is an urgent need for developing intelligent drug release systems. Mesoporous silica nanoparticles (MSNs) have many advantages, such as a large specific surface area, substantial pore volume and size, adjustable mesoporous material pore size, excellent biocompatibility, and thermodynamic stability, making them ideal carriers for drug delivery and release. Additionally, they have been widely used to develop novel anticancer drug carriers. Recently, MSNs have been employed to design responsive systems that react to the tumor microenvironment and external stimuli for controlled release of anticancer drugs. This includes factors within the intratumor environment, such as pH, temperature, enzymes, and glutathione as well as external tumor stimuli, such as light, magnetic field, and ultrasound, among others. In this review, we discuss the research progress on environmental stimulus-responsive MSNs in anticancer drug delivery systems, including internal and external environment single stimulus-responsive release and combined stimulus-responsive release. We also summarize the current challenges associated with environmental stimulus-responsive MSNs and elucidate future directions, providing a reference for the functionalization modification and practical application of these MSNs.
Collapse
Affiliation(s)
- Huanhuan Zhao
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Yan Li
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jiaxin Chen
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jinjia Zhang
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Qiuqiong Yang
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Ji Cui
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Anhua Shi
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Junzi Wu
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| |
Collapse
|
2
|
Adjei-Sowah E, Benoit DSW, Loiselle AE. Drug Delivery Approaches to Improve Tendon Healing. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:369-386. [PMID: 36888543 PMCID: PMC10442691 DOI: 10.1089/ten.teb.2022.0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 03/09/2023]
Abstract
Tendon injuries disrupt the transmission of forces from muscle to bone, leading to chronic pain, disability, and a large socioeconomic burden. Tendon injuries are prevalent; there are over 300,000 tendon repair procedures a year in the United States to address acute trauma or chronic tendinopathy. Successful restoration of function after tendon injury remains challenging clinically. Despite improvements in surgical and physical therapy techniques, the high complication rate of tendon repair procedures motivates the use of therapeutic interventions to augment healing. While many biological and tissue engineering approaches have attempted to promote scarless tendon healing, there is currently no standard clinical treatment to improve tendon healing. Moreover, the limited efficacy of systemic delivery of several promising therapeutic candidates highlights the need for tendon-specific drug delivery approaches to facilitate translation. This review article will synthesize the current state-of-the-art methods that have been used for tendon-targeted delivery through both systemic and local treatments, highlight emerging technologies used for tissue-specific drug delivery in other tissue systems, and outline future challenges and opportunities to enhance tendon healing through targeted drug delivery.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Cell Biology of Disease Program, University of Rochester, Rochester, New York, USA
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Materials Science Program, University of Rochester, Rochester, New York, USA
- Knight Campus Department of Bioengineering, University of Oregon, Eugene, Oregan, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Cell Biology of Disease Program, University of Rochester, Rochester, New York, USA
| |
Collapse
|
3
|
Can gold nanoparticles improve delivery performance of polymeric drug-delivery systems? Ther Deliv 2021; 12:489-492. [PMID: 34039007 DOI: 10.4155/tde-2021-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
4
|
Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee YI. Recent Advances in Nanomicelles Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E70. [PMID: 33396938 PMCID: PMC7823398 DOI: 10.3390/nano11010070] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
The efficient and selective delivery of therapeutic drugs to the target site remains the main obstacle in the development of new drugs and therapeutic interventions. Up until today, nanomicelles have shown their prospective as nanocarriers for drug delivery owing to their small size, good biocompatibility, and capacity to effectively entrap lipophilic drugs in their core. Nanomicelles are formed via self-assembly in aqueous media of amphiphilic molecules into well-organized supramolecular structures. Molecular weights and structure of the core and corona forming blocks are important properties that will determine the size of nanomicelles and their shape. Selective delivery is achieved via novel design of various stimuli-responsive nanomicelles that release drugs based on endogenous or exogenous stimulations such as pH, temperature, ultrasound, light, redox potential, and others. This review summarizes the emerging micellar nanocarriers developed with various designs, their outstanding properties, and underlying principles that grant targeted and continuous drug delivery. Finally, future perspectives, and challenges for nanomicelles are discussed based on the current achievements and remaining issues.
Collapse
Affiliation(s)
- Salah M. Tawfik
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
- Surfactant Laboratory, Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Shavkatjon Azizov
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
- Laboratory of Polysaccharide Chemistry, Institute of Bioorganic Chemistry, Uzbekistan Academy of Science, Tashkent 100125, Uzbekistan
| | - Mohamed R. Elmasry
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| | - Mirkomil Sharipov
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| |
Collapse
|
5
|
Muttaqien SE, Nomoto T, Dou X, Takemoto H, Matsui M, Nishiyama N. Photodynamic therapy using LCST polymers exerting pH-responsive isothermal phase transition. J Control Release 2020; 328:608-616. [DOI: 10.1016/j.jconrel.2020.09.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
|
6
|
Wang Y, Li Y, Gong J, Ma J. Microfluidic Fabrication of Monodisperse Microcapsules for Thermo-Triggered Release of Liposoluble Drugs. Polymers (Basel) 2020; 12:polym12102200. [PMID: 32992857 PMCID: PMC7601609 DOI: 10.3390/polym12102200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 01/27/2023] Open
Abstract
Here, we report a novel thermo-triggered-releasing microcapsule for liposoluble drug delivery. Monodisperse microcapsules with a poly(N-isopropylacrylamide-co-methacrylic acid) hydrogel shell and an oil core were successfully fabricated by a double coaxial microfluidic device. Fluorescent dye Lumogen Red F300 as a model liposoluble drug was dissolved in the oil core with controllable loading capacity. The volume phase transition temperature (VPTT) of the microcapsule was adjusted by copolymerizing with the hydrophilic methacrylic acid. The in vitro release study demonstrates that the shells shrink, leading to the thermo-triggered release of the model drug from the microcapsules at the environmental temperature above the VPTT, while the swollen hydrogel shells can protect the encapsulated drug from leakage and contamination below the VPTT. The proposed microcapsule is a promising liposoluble drug delivery system with controllable loading and smart thermo-triggered release.
Collapse
|
7
|
Mahdavi Z, Rezvani H, Keshavarz Moraveji M. Core-shell nanoparticles used in drug delivery-microfluidics: a review. RSC Adv 2020; 10:18280-18295. [PMID: 35517190 PMCID: PMC9053716 DOI: 10.1039/d0ra01032d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/19/2020] [Indexed: 11/26/2022] Open
Abstract
Developments in the fields of lab-on-a-chip and microfluidic technology have benefited nanomaterial production processes due to fluid miniaturization. The ability to acquire, manage, create, and modify structures on a nanoscale is of great interest in scientific and technological fields. Recently, more attention has been paid to the production of core-shell nanomaterials because of their use in various fields, such as drug delivery. Heterostructured nanomaterials have more reliable performance than the individual core or shell materials. Nanoparticle synthesis is a complex process; therefore, various techniques exist for the production of different types of nanoparticles. Among these techniques, microfluidic methods are unique and reliable routes, which can be used to produce nanoparticles for drug delivery applications.
Collapse
Affiliation(s)
- Zahra Mahdavi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Hamed Rezvani
- Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | | |
Collapse
|
8
|
Hayati M, Rezanejade Bardajee G, Ramezani M, Mizani F. Temperature/pH/magnetic triple sensitive nanogel for doxorubicin anticancer drug delivery. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1737821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Marziyeh Hayati
- Department of Chemistry Arak Branch, Islamic Azad University, Arak, Iran
| | | | - Majid Ramezani
- Department of Chemistry Arak Branch, Islamic Azad University, Arak, Iran
| | - Farhang Mizani
- Department of Chemistry, Payame Noor University, Tehran, PO, Iran
| |
Collapse
|
9
|
Dunshee LC, Sullivan MO, Kiick KL. Manipulation of the dually thermoresponsive behavior of peptide-based vesicles through modification of collagen-like peptide domains. Bioeng Transl Med 2020; 5:e10145. [PMID: 31989034 PMCID: PMC6971430 DOI: 10.1002/btm2.10145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
Materials that respond to temporally defined exogenous cues continue to be an active pursuit of research toward on-demand nanoparticle drug delivery applications, and using one or more exogenous temperature stimuli could significantly expand the application of nanoparticle-based drug delivery formulations under both hyperthermal and hypothermal conditions. Previously we have reported the development of a biocompatible and thermoresponsive elastin-b-collagen-like polypeptide (ELP-CLP) conjugate that is capable of self-assembling into vesicles and encapsulating small molecule therapeutics that can be delivered at different rates via a single temperature stimulus. Herein we report the evaluation of multiple ELP-CLP conjugates, demonstrating that the inverse transition temperature (T t) of the ELP-CLPs can be manipulated by modifying the melting temperature (T m) of the CLP domain, and that the overall hydrophilicity of the ELP-CLP conjugate also may alter the T t. Based on these design parameters, we demonstrate that the ELP-CLP sequence (VPGFG)6-(GPO)7GG can self-assemble into stable vesicles at 25°C and dissociate at elevated temperatures by means of the unfolding of the CLP domain above its T m. We also demonstrate here for the first time the ability of this ELP-CLP vesicle to dissociate via a hypothermic temperature stimulus by means of exploiting the inverse transition temperature (T t) phenomena found in ELPs. The development of design rules for manipulating the thermal properties of these bioconjugates will enable future modifications to either the ELP or CLP sequences to more finely tune the transitions of the conjugates for specific biomedical applications.
Collapse
Affiliation(s)
- Lucas C Dunshee
- Department of Chemical and Biomolecular Engineering University of Delaware Newark Delaware
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering University of Delaware Newark Delaware
- Department of Biomedical Engineering University of Delaware Newark Delaware
| | - Kristi L Kiick
- Department of Materials Science and Engineering University of Delaware Newark Delaware
| |
Collapse
|
10
|
Casalini T, Rossi F, Castrovinci A, Perale G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front Bioeng Biotechnol 2019; 7:259. [PMID: 31681741 PMCID: PMC6797553 DOI: 10.3389/fbioe.2019.00259] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/26/2019] [Indexed: 11/18/2022] Open
Abstract
Polylactic acid (PLA)-based polymers are ubiquitous in the biomedical field thanks to their combination of attractive peculiarities: biocompatibility (degradation products do not elicit critical responses and are easily metabolized by the body), hydrolytic degradation in situ, tailorable properties, and well-established processing technologies. This led to the development of several applications, such as bone fixation screws, bioresorbable suture threads, and stent coating, just to name a few. Nanomedicine could not be unconcerned by PLA-based materials as well, where their use for the synthesis of nanocarriers for the targeted delivery of hydrophobic drugs emerged as a new promising application. The purpose of the here presented review is two-fold: on one side, it aims at providing a broad overview of PLA-based materials and their properties, which allow them gaining a leading role in the biomedical field; on the other side, it offers a specific focus on their recent use in nanomedicine, highlighting opportunities and perspectives.
Collapse
Affiliation(s)
- Tommaso Casalini
- Polymer Engineering Laboratory, Department of Innovative Technologies, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences of Southern Switzerland, Manno, Switzerland
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Andrea Castrovinci
- Polymer Engineering Laboratory, Department of Innovative Technologies, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences of Southern Switzerland, Manno, Switzerland
| | - Giuseppe Perale
- Polymer Engineering Laboratory, Department of Innovative Technologies, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences of Southern Switzerland, Manno, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
11
|
Yang Z, Fan W, Zou J, Tang W, Li L, He L, Shen Z, Wang Z, Jacobson O, Aronova MA, Rong P, Song J, Wang W, Chen X. Precision Cancer Theranostic Platform by In Situ Polymerization in Perylene Diimide-Hybridized Hollow Mesoporous Organosilica Nanoparticles. J Am Chem Soc 2019; 141:14687-14698. [PMID: 31466436 DOI: 10.1021/jacs.9b06086] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phototheranostics refers to advanced photonics-mediated theranostic methods for cancer and includes imaging-guided photothermal/chemotherapy, photothermal/photodynamic therapy, and photodynamic/chemotherapy, which are expected to provide a paradigm of modern precision medicine. In this regard, various phototheranostic drug delivery systems with excellent photonic performance, controlled drug delivery/release, and precise photoimaging guidance have been developed. In this study, we reported a special "in situ framework growth" method to synthesize novel phototheranostic hollow mesoporous nanoparticles by ingenious hybridization of perylene diimide (PDI) within the framework of small-sized hollow mesoporous organosilica (HMO). The marriage of PDI and HMO endowed the phototheranostic silica nanoparticles (HMPDINs) with largely amplified fluorescence and photoacoustic signals, which can be used for enhanced fluorescence and photoacoustic imaging. The organosilica shell can be chemically chelated with isotope 64Cu for positron emission tomography imaging. Moreover, in situ polymer growth was introduced in the hollow structure of the HMPDINs to produce thermosensitive polymer (TP) in the cavity of HMPDINs to increase the loading capacity and prevent unexpected leakage of the hydrophobic drug SN38. Furthermore, the framework-hybridized PDI generated heat under near-infrared laser irradiation to trigger the deformation of TP for controlled drug release in the tumor region. The fabricated hybrid nanomedicine with organic-inorganic characteristic not only increases the cancer theranostic efficacy but also offers an attractive solution for designing powerful theranostic platforms.
Collapse
Affiliation(s)
- Zhen Yang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital , Central South University , Changsha , Hunan 410083 , China
| | | | | | | | | | | | | | | | | | | | - Pengfei Rong
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital , Central South University , Changsha , Hunan 410083 , China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province , Changsha , Hunan 410000 , China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital , Central South University , Changsha , Hunan 410083 , China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province , Changsha , Hunan 410000 , China
| | | |
Collapse
|
12
|
He H, Liu C, Liu Y, Liu X, Wu Y, Fan J, Zhao L, Cao Y. Mathematical modeling of the heterogeneous distributions of nanomedicines in solid tumors. Eur J Pharm Biopharm 2019; 142:153-164. [PMID: 31226367 DOI: 10.1016/j.ejpb.2019.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/15/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022]
Abstract
The distribution of nanomedicines inside solid tumors is often restricted to perivascular areas, leaving most distal tumor cells out of reach. This partly explains modest patient benefit of many nanomedicines compared to their free-form counterparts. The objective for this study is to develop a mathematical model to quantitatively analyze this phenomenon and the influencing factors to such perivascular distribution and seek for effective strategies to alleviate this. A spatial tumor distribution model was firstly constructed to mimic the geometrical structure of tumor vessels and the surrounding tumor cells. This tumor model was further integrated with a systemic pharmacokinetics model for nanoparticles. A variety of factors on the tumor spatial distributions of nanomedicines were considered in the model. With the model, we quantified the effect of these influencing factors on tumor delivery efficacy (ID %), the magnitude of heterogeneous distribution (H index), and the effect of enhanced permeability and retention (EPR). In particularly, we compared the spatial distributions of the nanoparticles and the free payloads insides tumors. The model predicted high degrees of distributional heterogeneity for both nanoparticles and free payloads. The degree of heterogeneity and the influencing factors for free payloads were markedly different from those for nanoparticles. We found that nanoparticle diffusion coefficient was the most effective factor in reducing the nanoparticle H index but exerted moderate influence on the free payloads H index. The most effective factor in reducing the H index of free payload was payload diffusion coefficient. The factors that improved free payload distribution were closely associated with higher drug efficacy. In contrast, the factors that improved nanoparticle spatial distributions did not always confer improved anti-tumor efficacy of the delivered drug. These findings highlight the importance of assessing the heterogeneous free payload distribution in tumors for the development of effective nanomedicines.
Collapse
Affiliation(s)
- Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuhui Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoquan Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jianghong Fan
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Liang Zhao
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Fan L, Sun X, Wang X, Wang H, Liu J. NIR laser-responsive liquid metal-loaded polymeric hydrogels for controlled release of doxorubicin. RSC Adv 2019; 9:13026-13032. [PMID: 35520786 PMCID: PMC9063745 DOI: 10.1039/c9ra02286d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022] Open
Abstract
Liquid metals (LMs) have recently emerged as a new class of promising multifunctional materials with attractive properties. They have excellent photothermal conversion efficiency, generating heat under near-infrared (NIR) laser irradiation. This work reports encapsulating LM droplets into poly(NIPAm-co-MBA) hydrogels (PNM) to achieve nanodispersed liquid metals in bulk polymeric hydrogels for NIR laser-responsive materials. LM droplets (∼530 nm) are produced by dispersing an alloy of gallium and indium (EGaIn) into glycerol. The LM-loaded PNM hydrogels (PNM/LM) exhibited excellent thermal-/NIR laser-responsive ability. In a water bath, the weight of the PNM/LM can decrease 92% at 50 °C. And the volume of PNM/LM can decrease 62% under NIR laser irradiation for 12 min. Because of its thermal-/NIR laser-responsive ability and porous three-dimensional (3D) networks, PNM/LM is very suitable for use as a drug carrier. We also prepared doxorubicin (DOX)-loaded PNM/LM hydrogels (PNM/LM/DOX) and demonstrated that the PNM/LM/DOX hydrogel can generate heat and raise its temperature under NIR laser irradiation. When the temperature becomes higher than the lower critical solution temperature (LCST), such a hydrogel would shrink immediately and extrude the DOX encapsulated in its networks simultaneously, then complete the controlled release of the pre-loaded drug. Further, an in vitro cytotoxicity test indicated the biocompatibility and feasibility as a chemophotothermal synergistic therapeutic of the present hydrogel. This NIR laser-responsive hydrogel fully exhibits its superiority as a drug carrier which promises great potential in future targeted controlled drug release.
Collapse
Affiliation(s)
- Linlin Fan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Xuyang Sun
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xuelin Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Hongzhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
14
|
Gao D, Duan L, Wu M, Wang X, Sun Z, Zhang Y, Li Y, He P. Preparation of thermo/redox/pH-stimulative poly(N-isopropylacrylamide-co-N,N'-dimethylaminoethyl methacrylate) nanogels and their DOX release behaviors. J Biomed Mater Res A 2019; 107:1195-1203. [PMID: 30650226 DOI: 10.1002/jbm.a.36611] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Stimuli-sensitive drug delivery systems show beneficial features of both medical and pharmaceutical fields. In this article, polymeric nanogel P (N-isopropylacrylamide-N,N '-dimethylaminoethyl methacrylate [NIPAM-DMAEMA]) (PND) with pH/redox/thermo-responsivenesses was synthesized by the in situ polymerization of NIPAM and DMAEMA for the controlled release of doxorubicin hydrochloride (DOX) and N,N '-bis(acryloyl)cystamine (BAC) and N,N '-methylenebisacrylamide (MBA) act as the crosslinkers, respectively. The structure, size, and zeta potential of PND-BAC and PND-MBA were further characterized. Moreover, after loading DOX, the encapsulation efficiency and the in vitro release behavior of PND-BAC/DOX and PND-MBA/DOX nanogels were discussed in detail. Compared to PND-MBA NGs, PND-BAC nanogels have redox degradability due to the presence of the crosslinker BAC. After loading DOX, the PND-BAC/DOX nanogel showed a higher encapsulation efficiency (81.6 ± 1.2)% and thermo- and pH-responsiveness as well as redox-responsive in vitro release. These properties together with excellent environmentally sensitive properties make PND-BAC as an attractive candidate for application in drug nanocarriers for the targeted drug delivery of model payloads. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1195-1203, 2019.
Collapse
Affiliation(s)
- Doudou Gao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Lanlan Duan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Meng Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xianxun Wang
- Department of Orthopedics, Hubei Zhongshan Hospital, Wuhan 430033, China
| | - Zhengguang Sun
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yulin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Peixin He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
15
|
Wu F, Yang S, Wang L, Wei W, Ding CF. Simultaneous enrichment and analysis of tobacco alkaloids by microextraction coupled with mass spectrometry using a poly (N-isopropyl-acrylamide-co-divinyl-benzene-co-N, N'-methylene diacrylamide) monolithic column. Talanta 2019; 198:118-127. [PMID: 30876539 DOI: 10.1016/j.talanta.2019.01.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 02/02/2023]
Abstract
Herein, we realized the simultaneous online detection of six tobacco alkaloids (TAs) by in-tube solid-phase microextraction (In-tube SPME) coupled with mass spectrometry by a rapid, sensitive, and matrix effect-free method requiring no chromatographic separation and only minimal sample pre-treatment. A poly (N-isopropylacrylamide-co-divinylbenzene-co-N, N'-methylenediacrylamide) [Poly (NIPAAm-co-DVB-co-MBAA)] monolithic column was designed according to the chemical structures of selected TAs and used as an extraction medium engaging in hydrophobic, π-π, and hydrogen bonding interactions with analytes, allowing them to be effectively extracted. A number of important parameters were systematically optimized to achieve maximal extraction efficiency. The ion intensity of the TAs signals obtained by in-tube SPME-MS were higher than the direct MS mode by about 400 folds with the signal-to-noise ratio improved by 2-7 folds. The detection limits of the six TAs were determined as 1.99-4.06 ng g-1, with good linearity with correlation coefficients exceeding 0.99 obtained under optimal extraction conditions. Besides, TA recoveries in cigarette tobacco spiked at three concentration levels were in the range of 76.4-100.2%, and the corresponding RSDs (n = 5) were obtained as 4.32-7.16%. The extraction performance of the poly (NIPAAm-co-DVB-co-MBAA) monolithic column was well reproducible, with intra- or inter-day precision RSDs determined not to exceed 7.38%. Finally, no marked matrix effects were observed when the developed method was applied to the analysis of both high-abundance and trace-level TAs in practical samples, and the above technique was therefore concluded to be well suited for the detection of TAs in cigarette tobacco or other products.
Collapse
Affiliation(s)
- Fangling Wu
- Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Shutong Yang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Liang Wang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Wanghui Wei
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Chuan-Fan Ding
- Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Chemistry, Fudan University, Shanghai 200438, China.
| |
Collapse
|
16
|
Nanogels of poly-N-isopropylacrylamide, poly-N,N-diethylacrylamide and acrylic acid for controlled release of thymol. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1644-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Kalhapure RS, Renukuntla J. Thermo- and pH dual responsive polymeric micelles and nanoparticles. Chem Biol Interact 2018; 295:20-37. [DOI: 10.1016/j.cbi.2018.07.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
|
18
|
Hassanzadeh P, Atyabi F, Dinarvand R. Ignoring the modeling approaches: Towards the shadowy paths in nanomedicine. J Control Release 2018; 280:58-75. [DOI: 10.1016/j.jconrel.2018.04.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
|
19
|
Li J, Jiang F, Chi Z, Han D, Yu L, Liu C. Development of Enteromorpha prolifera polysaccharide-based nanoparticles for delivery of curcumin to cancer cells. Int J Biol Macromol 2018; 112:413-421. [DOI: 10.1016/j.ijbiomac.2018.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/15/2022]
|
20
|
Vanparijs N, Nuhn L, De Geest BG. Transiently thermoresponsive polymers and their applications in biomedicine. Chem Soc Rev 2018; 46:1193-1239. [PMID: 28165097 DOI: 10.1039/c6cs00748a] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The focus of this review is on the class of transiently thermoresponsive polymers. These polymers are thermoresponsive, but gradually lose this property upon chemical transformation - often a hydrolysis reaction - in the polymer side chain or backbone. An overview of the different approaches used for the design of these polymers along with their physicochemical properties is given. Their amphiphilic properties and degradability into fully soluble compounds make this class of responsive polymers attractive for drug delivery and tissue engineering applications. Examples of these are also provided in this review.
Collapse
Affiliation(s)
- Nane Vanparijs
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Lutz Nuhn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
21
|
Formation and characterization of polyelectrolyte complex synthesized by chitosan and carboxylic curdlan for 5-fluorouracil delivery. Int J Biol Macromol 2018; 107:397-405. [DOI: 10.1016/j.ijbiomac.2017.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/18/2017] [Accepted: 09/03/2017] [Indexed: 01/28/2023]
|
22
|
PNIPAM-MAPOSS Hybrid Hydrogels with Excellent Swelling Behavior and Enhanced Mechanical Performance: Preparation and Drug Release of 5-Fluorouracil. Polymers (Basel) 2018; 10:polym10020137. [PMID: 30966173 PMCID: PMC6414838 DOI: 10.3390/polym10020137] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/18/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) is a widely-studied polymers due to its excellent temperature sensitivity. PNIPAM-MAPOSS hybrid hydrogel, based on the introduction of acrylolsobutyl polyhedral oligomeric silsesquioxane (MAPOSS) into the PNIPAM matrix in the presence of polyethylene glycol, was prepared via radical polymerization. The modified hydrogels exhibited a thick, heterogeneous porous structure. PEG was used as a pore-forming agent to adjust the pore size. MAPOSS reduced the swelling ratios of gels, and decreased the LCST, causing the hydrogels to shrink at lower temperatures. However, its hydrophobicity helped to improve the temperature response rate. The incorporation of rigid MAPOSS into the polymer network greatly increased the compressive modulus of the hydrogel. It is worth noting that, by adjusting the amount of MAPOSS and PEG, the hydrogel could have both ideal mechanical properties and swelling behavior. In addition, hydrogel containing 8.33 wt % MAPOSS could achieve stable and sustained drug release. Thus, the prepared PNIPAM-MAPOSS hybrid hydrogel can serve as drug carrier for 5-fluorouracil and may have potential application in other biomedical fields.
Collapse
|
23
|
Li J, Peng C, Wang Z, Ren J. Preparation of thermo-responsive drug-loaded nanofibrous films created by electrospinning. RSC Adv 2018; 8:17551-17557. [PMID: 35539269 PMCID: PMC9080397 DOI: 10.1039/c8ra02442a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/06/2018] [Indexed: 12/28/2022] Open
Abstract
We prepared thermosensitive and biocompatible drug-loaded nanofibrous films by an electrospinning technique using a block copolymer, poly(N-isopropylacrylamide)-b-poly(l-lactide) (PNLA), and poly(l-lactide) (PLLA). The copolymer PNLA was synthesized by the radical polymerization of N-isopropylacrylamide (NIPAAm), followed by the ring-opening polymerization of l-lactide. The properties of PNIPAAm and PNLA were selectively discussed based on the results of NMR, FT-IR, GPC, and CA analyses. Because of the low molecular weight of PNIPAAm and PNLA and the hydrolysis of PNLA resulting from its hydrophilicity, these copolymers were inappropriate for electrospinning separately. Hence, a mixture of PNLA and PLLA was used to prepare electrospun nanofibrous films. SEM images of the PNLA/PLLA electrospun films showed that homogeneous fibres with smooth surfaces were obtained. In vitro release studies indicated that the drug-release rate of the PNLA/PLLA electrospun nanofibrous films can be adjusted by the content and molecular weight of PNLA and by the environmental temperature. The results demonstrate that electrospinning is a promising way to create stimuli-responsive fibrous films with potential applications in the design of controllable drug delivery systems. Thermosensitive and biocompatible PNLA/PLLA drug-loaded nanofibrous films with different morphologies and controlled drug release behaviors by electrospinning technique.![]()
Collapse
Affiliation(s)
- Jianbo Li
- Institute of Nano and Biopolymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials
- Ministry of Education
- Tongji University
| | - Chengwei Peng
- Institute of Nano and Biopolymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials
- Ministry of Education
- Tongji University
| | - Zhimei Wang
- Institute of Nano and Biopolymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials
- Ministry of Education
- Tongji University
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials
- Ministry of Education
- Tongji University
| |
Collapse
|
24
|
|
25
|
Liu N, Li B, Gong C, Liu Y, Wang Y, Wu G. A pH- and thermo-responsive poly(amino acid)-based drug delivery system. Colloids Surf B Biointerfaces 2015; 136:562-9. [DOI: 10.1016/j.colsurfb.2015.09.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/18/2015] [Accepted: 09/27/2015] [Indexed: 01/06/2023]
|
26
|
Lee KY, Chiang YT, Hsu NY, Yang CY, Lo CL, Ku CA. Vitamin E containing polymer micelles for reducing normal cell cytotoxicity and enhancing chemotherapy efficacy. Acta Biomater 2015; 24:286-96. [PMID: 26087112 DOI: 10.1016/j.actbio.2015.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/13/2015] [Accepted: 06/10/2015] [Indexed: 02/03/2023]
Abstract
An α-tocopheryl succinate (α-TOS) containing diblock copolymer micellar system was used to deliver doxorubicin (Dox), an anticancer drug, for HCT116 colon cancer therapy. The α-TOS containing diblock copolymers were synthesized by conjugation of α-TOS molecules and a mPEG-b-PHEMA hydrophilic diblock copolymer by ester bonds. The Dox-loaded polymeric micelles were then obtained by solvent exchange process. In acidic surroundings such as endosomes or secondary lysosomes, the structures of the Dox-loaded polymeric micelles deformed and released the drug loads. Additionally, Dox-loaded polymeric micelles enhanced the cytotoxicity of Dox and α-TOS to cancer cells in vitro. Dox-loaded polymeric micelles also showed an exceptional tumor inhibiting effect in vivo. This study indicates that the α-TOS containing polymeric micelle system can be used as a drug carrier for cancer therapy.
Collapse
Affiliation(s)
- Kuan-Yi Lee
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan
| | - Yi-Ting Chiang
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan
| | - Ning-Yu Hsu
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan
| | - Chieh-Yu Yang
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan; Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang Ming University, Taipei 112, Taiwan; Biomedical Engineering Research Center, National Yang Ming University, Taipei 112, Taiwan.
| | - Chen-An Ku
- Taiwan Textile Research Institute, New Taipei City 23674, Taiwan
| |
Collapse
|
27
|
|
28
|
Reactive oxygen species and glutathione dual redox-responsive micelles for selective cytotoxicity of cancer. Biomaterials 2015; 61:150-61. [DOI: 10.1016/j.biomaterials.2015.05.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/28/2015] [Accepted: 05/14/2015] [Indexed: 12/21/2022]
|
29
|
Jaganathan S. Bioresorbable polyelectrolytes for smuggling drugs into cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1080-97. [PMID: 25961363 DOI: 10.3109/21691401.2015.1011801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.
Collapse
Affiliation(s)
- Sripriya Jaganathan
- a SRM Research Institute, SRM University , Kattankulathur, 603203 , Chennai , Tamil Nadu , India
| |
Collapse
|
30
|
|
31
|
Nikfarjam N, Sabzi M, Sattari A. Preparation of pH-sensitive nanoparticles with core-shell-corona morphology as an oral drug carrier. POLYMER SCIENCE SERIES B 2014. [DOI: 10.1134/s1560090414660038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Li R, Zhang J, Chen J, Teng W, Wang J, Li C. Preparation and Characterization of Biological Non-toxic Hybrid Nanoparticles Based on Lactide and Poly(ethylene glycol) Loading Docetaxel for Anticancer Drug Delivery. Chin J Chem Eng 2014. [DOI: 10.1016/j.cjche.2014.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Yuan M, Xiao Y, Le V, Wei C, Fu Y, Liu J, Lang M. Micelle controlled release of 5-fluorouracil: Follow the guideline for good polymer–drug compatibility. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.04.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Chen J, Shao R, Li L, Xu ZP, Gu W. Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways. Int J Nanomedicine 2014; 9:3403-11. [PMID: 25075187 PMCID: PMC4107171 DOI: 10.2147/ijn.s61633] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is the third most common cancer and the third largest cause of cancer-related death. Fluorouracil (5-FU) is the front-line chemotherapeutic agent for colon cancer. However, its response rate is less than 60%, even in combination with other chemotherapeutic agents. The side effects of 5-FU also limit its application. Nanoparticles have been used to deliver 5-FU, to increase its effectiveness and reduce side effects. Another common approach for colon cancer treatment is targeted therapy against the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. A recently-invented inhibitor of this pathway, BEZ-235, has been tested in several clinical trials and has shown effectiveness and low side effects. Thus, it is a very promising drug for colon cancer treatment. The combination of these two drugs, especially nanoparticle-packed 5-FU and BEZ-235, has not been studied. In the present study, we demonstrated that nanoparticles of layered double hydroxide (LDH) loaded with 5-FU were more effective than a free drug at inhibiting colon cancer cell growth, and that a combination treatment with BEZ-235 further increased the sensitivity of colon cancer cells to the treatment of LDH-packed 5-FU (LDH-5-FU). BEZ-235 alone can decrease colon cancer HCT-116 cell viability to 46% of the control, and the addition of LDH-5-FU produced a greater effect, reducing cell survival to 8% of the control. Our data indicate that the combination therapy of nanodelivered 5-FU with a PI3K/Akt inhibitor, BEZ-235, may promise a more effective approach for colon cancer treatment.
Collapse
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia ; Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Li Li
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Zhi Ping Xu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
35
|
Shakeri-Zadeh A, Shiran MB, Khoee S, Sharifi AM, Ghaznavi H, Khoei S. A new magnetic nanocapsule containing 5-fluorouracil: in vivo drug release, anti-tumor, and pro-apoptotic effects on CT26 cells allograft model. J Biomater Appl 2014; 29:548-56. [PMID: 24913615 DOI: 10.1177/0885328214536940] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to create an optimized method for preparation of 5-fluorouracil-loaded magnetic poly lactic-co-glycolic acid nanocapsules and to investigate its potential as multifunctional carriers to deliver therapeutic agents for tumor-targeted therapies. The in vitro release of the newly synthesized 5-fluorouracil-loaded poly lactic-co-glycolic acid magnetic nanocapsules was investigated in phosphate-buffered saline medium using the dialysis method. In vivo release studies of the magnetic nanocapsules were performed in rabbits. Finally, the targeting properties, anti-tumor, and pro-apoptotic effects of this new magnetic nanocapsule on CT26 cells allograft model were studied. The effective diameter of nanocapsules was 67.2 nm. In vivo release investigations showed that 5-fluorouracil has a sustained release profile, prolonged lifetime in the rabbit plasma, and increased tissue appetency when loaded into the magnetic nanocapsule. Magnetic resonance imaging confirmed that the magnetic nanocapsules were successfully targeted to the tumor. Additionally, the anti-tumor studies revealed that the targeted therapy with magnetic nanocapsules containing 5-fluorouracil effectively inhibits the growth of tumors compared with 5-fluorouracil alone (P < 0.01). The present study demonstrates that this new magnetic nanocapsule can be considered a new nanotechnology-based cancer chemotherapy agent in vivo.
Collapse
Affiliation(s)
- Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Bagher Shiran
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Khoee
- Polymer Chemistry Department, School of Sciences, University of Tehran, Tehran, Iran
| | - Ali Mohammad Sharifi
- Razi Drug Research Centre, Iran University of Medical Sciences, Tehran, Iran Pharmacology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Habib Ghaznavi
- Razi Drug Research Centre, Iran University of Medical Sciences, Tehran, Iran Pharmacology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samideh Khoei
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran Razi Drug Research Centre, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Jaiswal MK, De M, Chou SS, Vasavada S, Bleher R, Prasad P, Bahadur D, Dravid VP. Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6237-47. [PMID: 24716547 PMCID: PMC4025575 DOI: 10.1021/am501067j] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 04/09/2014] [Indexed: 05/20/2023]
Abstract
We report the development of thermoresponsive magnetic hydrogels based on poly(N-isopropylacrylamide) encapsulation of Fe3O4 magnetic nanostructures (MNS). In particular, we examined the effects of hydrogels encapsulated with poly-ethylene glycol (PEG) and polyhedral oligomeric silsesquioxane (POSS) surface modified Fe3O4 MNS on magnetic resonance (MR) T2 (transverse spin relaxation) contrast enhancement and associated delivery efficacy of absorbed therapeutic cargo. The microstructural characterization reveal the regular spherical shape and size (∼200 nm) of the hydrogels with elevated hydrophilic to hydrophobic transition temperature (∼40 °C) characterized by LCST (lower critical solution temperature) due to the presence of encapsulated MNS. The hydrogel-MNS (HGMNS) system encapsulated with PEG functionalized Fe3O4 of 12 nm size (HGMNS-PEG-12) exhibited relaxivity rate (r2) of 173 mM(-1) s(-1) compared to 129 mM(-1) s(-1) obtained for hydrogel-MNS system encapsulated with POSS functionalized Fe3O4 (HGMNS-POSS-12) of the same size. Further studies with HGMNS-PEG-12 with absorbed drug doxorubicin (DOX) reveals approximately two-fold enhance in release during 1 h RF (radio-frequency) field exposure followed by 24 h incubation at 37 °C. Quantitatively, it is 2.1 μg mg(-1) (DOX/HGMNS) DOX release with RF exposure while only 0.9 μg mg(-1) release without RF exposure for the same period of incubation. Such enhanced release of therapeutic cargo is attributed to micro-environmental heating in the surroundings of MNS as well as magneto-mechanical vibrations under high frequency RF inside hydrogels. Similarly, RF-induced in vitro localized drug delivery studies with HeLa cell lines for HGMNS-PEG-12 resulted in more than 80% cell death with RF field exposures for 1 h. We therefore believe that magnetic hydrogel system has in vivo theranostic potential given high MR contrast enhancement from encapsulated MNS and RF-induced localized therapeutic delivery in one nanoconstruct.
Collapse
Affiliation(s)
- Manish K. Jaiswal
- Metallurgical
Engineering & Materials science and Centre for Research in Nanotechnology
and Science,Indian Institute of Technology
Bombay, Mumbai, MH 400076, India
- Department of Materials Science & Engineering and International Institute
of Nanotechnology, Northwestern University Evanston, Illinois 60208, United States
| | - Mrinmoy De
- Department of Materials Science & Engineering and International Institute
of Nanotechnology, Northwestern University Evanston, Illinois 60208, United States
| | - Stanley S. Chou
- Department of Materials Science & Engineering and International Institute
of Nanotechnology, Northwestern University Evanston, Illinois 60208, United States
| | - Shaleen Vasavada
- Department of Materials Science & Engineering and International Institute
of Nanotechnology, Northwestern University Evanston, Illinois 60208, United States
| | - Reiner Bleher
- Department of Materials Science & Engineering and International Institute
of Nanotechnology, Northwestern University Evanston, Illinois 60208, United States
| | - Pottumarthi
V. Prasad
- Department of Radiology, Northshore University
Healthcare, Evanston, Illinois 60201, United
States
| | - Dhirendra Bahadur
- Metallurgical
Engineering & Materials science and Centre for Research in Nanotechnology
and Science,Indian Institute of Technology
Bombay, Mumbai, MH 400076, India
| | - Vinayak P. Dravid
- Department of Materials Science & Engineering and International Institute
of Nanotechnology, Northwestern University Evanston, Illinois 60208, United States
| |
Collapse
|
37
|
Li D, Liang Y, Lai Y, Wang G, He B, Gu Z. Polymeric micelles with small lipophilic moieties for drug delivery. Colloids Surf B Biointerfaces 2013; 116:627-32. [PMID: 24268560 DOI: 10.1016/j.colsurfb.2013.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/15/2013] [Accepted: 10/22/2013] [Indexed: 12/20/2022]
Abstract
The aim of this study was to develop a new polymeric micelle delivery system for antitumor drugs. An amphiphile of methoxypoly(ethylene glycol)-histidine-di(cinnamic acid) (PEGHC) with a small lipophilic moiety instead of a hydrophobic biodegradable polymer chain was synthesized and characterized. The PEGHC self-assembled into micelles. The critical micelle concentration (CMC) was tested. 9-Nitro-20(s)-camptothecin (9-NC) was used as a model drug for encapsulation. The size and morphology of both blank and 9-NC loaded micelles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The release profile of 9-NC loaded micelles was studied. HepG2 liver cancer cells were incubated with the drug-loaded micelles to investigate the in vitro anticancer efficiency. The results showed that the 9-NC loaded micelles exhibited high accumulated release rate (>85%) and efficient in vitro anticancer activity.
Collapse
Affiliation(s)
- Dong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yusi Lai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
38
|
Zhao Z, Zhang Z, Chen L, Cao Y, He C, Chen X. Biodegradable stereocomplex micelles based on dextran-block-polylactide as efficient drug deliveries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13072-13080. [PMID: 24112037 DOI: 10.1021/la402890k] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biodegradable stereocomplex micelles (SCMs) based on amphiphilic dextran-block-polylactide (Dex-b-PLA) were designed and used for efficient intracellular drug deliveries. The Dex-b-PLA copolymers were successfully synthesized by click reaction. The structures of the resultant copolymers were verified by (1)H NMR and FT-IR spectra. The formation of stable micelles through self-assembly driven by the stereocomplexation between enantiomeric l- and d-PLA blocks was characterized by transmission electron microscopy (TEM), dynamic laser scattering (DLS), and fluorescence techniques. It was interesting to observe that the SCMs showed lower critical micelle concentration values (CMCs) because of the stereocomplex interaction between PLLA and PDLA. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis provided information on the thermal and crystal properties of the copolymers and SCMs. The improved stability of SCMs should be attractive for intracellular drug delivery. Thus, a model anticancer drug doxorubicin (DOX) was loaded into micelles, and the in vitro drug release in was also studied. The release kinetics of DOX showed DOX-loaded SCMs exhibited slower DOX release. Confocal laser scanning microscopy (CLSM) and flow cytometry studies also showed that the DOX-loaded SCMs exhibited a slower drug release behavior. Meanwhile, the MTT assay demonstrated that DOX-loaded SCMs show lower cellular proliferation inhibition against HepG2. In sum, the micelles through self-assembly driven by stereocomplex interaction would have great potential to be used as stable delivery vehicles for pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Ziwei Zhao
- Department of Chemistry, Northeast Normal University , Changchun 130024, P. R. China
| | | | | | | | | | | |
Collapse
|
39
|
Calejo MT, Sande SA, Nyström B. Thermoresponsive polymers as gene and drug delivery vectors: architecture and mechanism of action. Expert Opin Drug Deliv 2013; 10:1669-86. [DOI: 10.1517/17425247.2013.846906] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Yadav R, Kumar D, Kumari A, Yadav SK. Encapsulation of podophyllotoxin and etoposide in biodegradable poly-d,l-lactide nanoparticles improved their anticancer activity. J Microencapsul 2013; 31:211-9. [DOI: 10.3109/02652048.2013.834988] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Luo YL, Yang XL, Xu F, Chen YS, Ren-Ting ZM. Thermosensitive self-assembly micelles from A 2BA 2-type poly( N-isopropyl acrylamide) 2- b-Poly(lactic acid)- b-Poly( N-isopropyl acrylamide) 2four-armed star block copolymers and their applications as drug carriers. J Appl Polym Sci 2013. [DOI: 10.1002/app.39530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an; 710062; People's Republic of China
| | - Xiao-Li Yang
- Key Laboratory of Macromolecular Science of Shaanxi Province; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an; 710062; People's Republic of China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an; 710062; People's Republic of China
| | - Ya-Shao Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an; 710062; People's Republic of China
| | - Zhuo-Ma Ren-Ting
- Key Laboratory of Macromolecular Science of Shaanxi Province; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an; 710062; People's Republic of China
| |
Collapse
|
42
|
Salehi R, Nowruzi K, Salehi S, Khandaghi AA, Davaran S, Entezami AA. Smart Poly (N-Isopropylacrylamide)-block-Poly (L-Lactide) Nanoparticles for Prolonged Release of Naltrexone. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2013.769227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Preparation and properties of a dually responsive hydrogels based on polyampholyte for oral delivery of drugs. Polym Bull (Berl) 2013. [DOI: 10.1007/s00289-013-0975-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013; 34:3647-57. [DOI: 10.1016/j.biomaterials.2013.01.084] [Citation(s) in RCA: 999] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 01/19/2023]
|
45
|
pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials 2013; 34:4501-9. [PMID: 23498892 DOI: 10.1016/j.biomaterials.2013.02.049] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/19/2013] [Indexed: 01/05/2023]
Abstract
Polymeric micelles are promising carriers for anti-cancer agents due to their small size, ease of assembly, and versatility for functionalization. A current challenge in the use of polymeric micelles is the sensitive balance that must be achieved between stability during prolonged blood circulation and release of active drug at the tumor site. Stimuli-responsive materials provide a mechanism for triggered drug release in the acidic tumor and intracellular microenvironments. In this work, we synthesized a series of dual pH- and temperature-responsive block copolymers containing a poly(ε-caprolactone) (PCL) hydrophobic block with a poly(triethylene glycol) block that were copolymerized with an amino acid-functionalized monomer. The block copolymers formed micellar structures in aqueous solutions. An optimized polymer that was functionalized with 6-aminocaproic acid (ACA) possessed pH-sensitive phase transitions at mildly acidic pH and body temperature. Doxorubicin-loaded micelles formed from these polymers were stable at blood pH (~7.4) and showed increased drug release at acidic pH. In addition, these micelles displayed more potent anti-cancer activity than free doxorubicin when tested in a tumor xenograft model in mice.
Collapse
|
46
|
Li Y, Gao GH, Lee DS. Stimulus-sensitive polymeric nanoparticles and their applications as drug and gene carriers. Adv Healthc Mater 2013. [PMID: 23184586 DOI: 10.1002/adhm.201200313] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polymeric nanoparticles are promising candidates as drug and gene carriers. Among polymeric nanoparticles, those that are responsive to internal or external stimuli are of greater interest because they allow more efficient delivery of therapeutics to pathological regions. Stimulus-sensitive polymeric nanoparticles have been fabricated based on numerous nanostructures, including micelles, vesicles, crosslinked nanoparticles, and hybrid nanoparticles. The changes in chemical or physical properties of polymeric nanoparticles that occur in response to single, dual, or multiple stimuli endow these nanoparticles with the ability to retain cargoes during circulation, target the pathological region, and release their cargoes after cell internalization. This Review focuses on the most recent developments in the preparation of stimulus-sensitive polymeric nanoparticles and their applications in drug and gene delivery.
Collapse
Affiliation(s)
- Yi Li
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | |
Collapse
|
47
|
Ao M, Zhu Y, He S, Li D, Li P, Li J, Cao Y. Preparation and characterization of 1-naphthylacetic acid-silica conjugated nanospheres for enhancement of controlled-release performance. NANOTECHNOLOGY 2013; 24:035601. [PMID: 23263661 DOI: 10.1088/0957-4484/24/3/035601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chemical pesticides have been widely used to increase the yield and quality of agricultural products as they are efficient, effective, and easy to apply. However, the rapid degradation and low utilization ratio of conventional pesticides has led to environmental pollution and resource waste. Nano-sized controlled-release formulations (CRFs) can provide better penetration through the plant cuticle and deliver the active ingredients efficiently to the targeted tissue. In this paper we reported novel conjugated nanospheres derived from 1-naphthylacetic acid (NNA), 3-aminopropyltriethoxysilane (APTES) and tetraethyl orthosilicate and their application as a controlled-release plant growth regulator. The NNA and APTES conjugate was prepared through a covalent cross-linking reaction and subsequent hydrolyzation and polycondensation to synthesize NNA-silica nanospheres. The release data indicated that the release of NNA was by non-Fickian transport and increased as particle size decreased. It was also found that the acidity-alkalinity was enhanced and as the temperature increased, the release of the active ingredient was faster. The nanoconjugate displayed a better efficacy in promoting root formation than NNA technical. The present study provides a novel synthesis route for CRFs comprising a pesticide, with long-duration sustained-release performance and good environmental compatibility. This method may be extended to other pesticides that possess a carboxyl group.
Collapse
Affiliation(s)
- Mingming Ao
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Tan BH, Hussain H, Leong YW, Lin TT, Tjiu WW, He C. Tuning self-assembly of hybrid PLA-P(MA-POSS) block copolymers in solution via stereocomplexation. Polym Chem 2013. [DOI: 10.1039/c2py20823g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Zengin A, Yildirim E, Caykara T. RAFT‐mediated synthesis and temperature‐induced responsive properties of poly(2‐(2‐methoxyethoxy)ethyl methacrylate) brushes. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26460] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Adem Zengin
- Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara, Turkey
| | - Ertan Yildirim
- Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara, Turkey
| | - Tuncer Caykara
- Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara, Turkey
| |
Collapse
|