1
|
Haririan Y, Asefnejad A. Biopolymer hydrogels and synergistic blends for tailored wound healing. Int J Biol Macromol 2024; 279:135519. [PMID: 39260639 DOI: 10.1016/j.ijbiomac.2024.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Biopolymers have a transformative role in wound repair due to their biocompatibility, ability to stimulate collagen production, and controlled drug and growth factor delivery. This article delves into the biological parameters critical to wound healing emphasizing how combinations of hydrogels with reparative properties can be strategically designed to create matrices that stimulate targeted cellular responses at the wound site to facilitate tissue repair and recovery. Beyond a detailed examination of various biopolymer types and their functionalities in wound dressings acknowledging that the optimal choice depends on the specific wound type and application, this evaluation provides concepts for developing synergistic biopolymer blends to create next-generation dressings with enhanced efficiencies. Furthermore, the incorporation of therapeutic agents such as medications and wound healing accelerators into dressings to enhance their efficacy is examined. These agents often possess desirable properties such as antibacterial activity, antioxidant effects, and the ability to promote collagen synthesis and tissue regeneration. Finally, recent advancements in conductive hydrogels are explored, highlighting their capabilities in treatment and real-time wound monitoring. This comprehensive resource emphasizes the importance of optimizing ingredient efficiency besides assisting researchers in selecting suitable materials for personalized wound dressings, ultimately leading to more sophisticated and effective wound management strategies.
Collapse
Affiliation(s)
- Yasamin Haririan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Abid Mustafa M, Rashid Hussain H, Akbar Khan J, Ahmad N, Bashir S, Asad M, Saeed Shah H, Ali Khan A, Malik A, Fatima S, Mehmood Yousaf A, Nazir I. Development and In Vitro Characterization of Azadirachta Indica Gum Grafted Polyacrylamide Based pH-Sensitive Hydrogels to Improve the Bioavailability of Lansoprazole. Chem Biodivers 2024:e202401434. [PMID: 39404191 DOI: 10.1002/cbdv.202401434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 11/14/2024]
Abstract
The present study intended to develop a pH-responsive hydrogel based on Neem gum (Ng) to improve Lansoprazole (LSP) oral bioavailability. Azadirachta Indica seed extract was used to obtain Ng. pH-responsive hydrogel formulations (F1-F9) were prepared using different Ng ratios, Acrylamide (AAm), and methylene-bis-acrylamide (MBA). The formulated hydrogels were characterized through FTIR, thermal analysis, swelling ratio, SEM, sol-gel ratios, In-Vitro drug release, and cytotoxicity analysis. Azadirachta Indica was extracted to produce a powder containing 21.5 % Ng. Prepared hydrogels showed maximum swelling at pH 7.4, whereas the swelling at an acidic pH was insignificant. LSP-loaded hydrogel demonstrated a regulated release of LSP for up to 24 h and indicated a Super Case II transport release mechanism. During the cytotoxic evaluation, the delivery system showed minimal cytotoxicity towards normal cells, while percent cytotoxicity was carried out for a longer duration (up to 96 h). The present study revealed Azadirachta indica gum-based pH-responsive hydrogel as a promising technique for precisely delivering LSP.
Collapse
Affiliation(s)
- Muhammad Abid Mustafa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, 54000, Pakistan
| | | | - Jawad Akbar Khan
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Wahringerstrasse 13a, A-1090, Vienna, Austria
| | - Nadeem Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Sajid Bashir
- Lords College of Pharmacy, Lahore, 54000, Pakistan
| | | | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Mishra A, Omoyeni T, Singh PK, Anandakumar S, Tiwari A. Trends in sustainable chitosan-based hydrogel technology for circular biomedical engineering: A review. Int J Biol Macromol 2024; 276:133823. [PMID: 39002912 DOI: 10.1016/j.ijbiomac.2024.133823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Eco-friendly materials have emerged in biomedical engineering, driving major advances in chitosan-based hydrogels. These hydrogels offer a promising green alternative to conventional polymers due to their non-toxicity, biodegradability, biocompatibility, environmental friendliness, affordability, and easy accessibility. Known for their remarkable properties such as drug encapsulation, delivery capabilities, biosensing, functional scaffolding, and antimicrobial behavior, chitosan hydrogels are at the forefront of biomedical research. This paper explores the fabrication and modification methods of chitosan hydrogels for diverse applications, highlighting their role in advancing climate-neutral healthcare technologies. It reviews significant scientific advancements and trends chitosan hydrogels focusing on cancer diagnosis, drug delivery, and wound care. Additionally, it addresses current challenges and green synthesis practices that support a circular economy, enhancing biomedical sustainability. By providing an in-depth analysis of the latest evidence on climate-neutral management, this review aims to facilitate informed decision-making and foster the development of sustainable strategies leveraging chitosan hydrogel technology. The insights from this comprehensive examination are pivotal for steering future research and applications in sustainable biomedical solutions.
Collapse
Affiliation(s)
- Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Temitayo Omoyeni
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden; Cyprus International University Faculty of Engineering, Nicosia 99258, TRNC, Cyprus
| | - Pravin Kumar Singh
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - S Anandakumar
- Department of Chemistry, Anna University, Chennai 600025, India
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden.
| |
Collapse
|
4
|
Chen X, Wu T, Bu Y, Yan H, Lin Q. Fabrication and Biomedical Application of Alginate Composite Hydrogels in Bone Tissue Engineering: A Review. Int J Mol Sci 2024; 25:7810. [PMID: 39063052 PMCID: PMC11277200 DOI: 10.3390/ijms25147810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, as a result of the frequent occurrence of accidental injuries and traumas such as bone damage, the number of people causing bone injuries or fractures is increasing around the world. The design and fabrication of ideal bone tissue engineering (BTE) materials have become a research hotspot in the scientific community, and thus provide a novel path for the treatment of bone diseases. Among the materials used to construct scaffolds in BTE, including metals, bioceramics, bioglasses, biomacromolecules, synthetic organic polymers, etc., natural biopolymers have more advantages against them because they can interact with cells well, causing natural polymers to be widely studied and applied in the field of BTE. In particular, alginate has the advantages of excellent biocompatibility, good biodegradability, non-immunogenicity, non-toxicity, wide sources, low price, and easy gelation, enabling itself to be widely used as a biomaterial. However, pure alginate hydrogel as a BTE scaffold material still has many shortcomings, such as insufficient mechanical properties, easy disintegration of materials in physiological environments, and lack of cell-specific recognition sites, which severely limits its clinical application in BTE. In order to overcome the defects of single alginate hydrogels, researchers prepared alginate composite hydrogels by adding one or more materials to the alginate matrix in a certain proportion to improve their bioapplicability. For this reason, this review will introduce in detail the methods for constructing alginate composite hydrogels, including alginate/polymer composite hydrogels, alginate/bioprotein or polypeptide composite hydrogels, alginate/bioceramic composite hydrogels, alginate/bioceramic composite hydrogels, and alginate/nanoclay composite hydrogels, as well as their biological application trends in BTE scaffold materials, and look forward to their future research direction. These alginate composite hydrogel scaffolds exhibit both unexceptionable mechanical and biochemical properties, which exhibit their high application value in bone tissue repair and regeneration, thus providing a theoretical basis for the development and sustainable application of alginate-based functional biomedical materials.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ting Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yanan Bu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
5
|
Pramanik S, Alhomrani M, Alamri AS, Alsanie WF, Nainwal P, Kimothi V, Deepak A, Sargsyan AS. Unveiling the versatility of gelatin methacryloyl hydrogels: a comprehensive journey into biomedical applications. Biomed Mater 2024; 19:042008. [PMID: 38768611 DOI: 10.1088/1748-605x/ad4df7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have gained significant recognition as versatile biomaterials in the biomedical domain. GelMA hydrogels emulate vital characteristics of the innate extracellular matrix by integrating cell-adhering and matrix metalloproteinase-responsive peptide motifs. These features enable cellular proliferation and spreading within GelMA-based hydrogel scaffolds. Moreover, GelMA displays flexibility in processing, as it experiences crosslinking when exposed to light irradiation, supporting the development of hydrogels with adjustable mechanical characteristics. The drug delivery landscape has been reshaped by GelMA hydrogels, offering a favorable platform for the controlled and sustained release of therapeutic actives. The tunable physicochemical characteristics of GelMA enable precise modulation of the kinetics of drug release, ensuring optimal therapeutic effectiveness. In tissue engineering, GelMA hydrogels perform an essential role in the design of the scaffold, providing a biomimetic environment conducive to cell adhesion, proliferation, and differentiation. Incorporating GelMA in three-dimensional printing further improves its applicability in drug delivery and developing complicated tissue constructs with spatial precision. Wound healing applications showcase GelMA hydrogels as bioactive dressings, fostering a conducive microenvironment for tissue regeneration. The inherent biocompatibility and tunable mechanical characteristics of GelMA provide its efficiency in the closure of wounds and tissue repair. GelMA hydrogels stand at the forefront of biomedical innovation, offering a versatile platform for addressing diverse challenges in drug delivery, tissue engineering, and wound healing. This review provides a comprehensive overview, fostering an in-depth understanding of GelMA hydrogel's potential impact on progressing biomedical sciences.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun 248001, India
| | - Vishwadeepak Kimothi
- Himalayan Institute of Pharmacy and Research, Rajawala, Dehradun, Uttrakhand, India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Armen S Sargsyan
- Scientific and Production Center 'Armbiotechnology' NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| |
Collapse
|
6
|
Noor M, Muhammad G, Hanif H, Hussain MA, Iqbal MM, Mehmood U, Taslimi P, Shafiq Z. Structure, chemical modification, and functional applications of mucilage from Mimosa pudica seeds - A review. Int J Biol Macromol 2024; 270:132390. [PMID: 38754657 DOI: 10.1016/j.ijbiomac.2024.132390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Mimosa pudica (MP) is an ornamental plant due to seismonastic movements that close leaves and fall petioles in response to touch, wind, light, heat, cold, and vibration. The seeds of MP secrete smart, biocompatible, and non-toxic mucilage that has captivated researchers due to its widespread use in various fields such as pharmaceuticals and biotechnology. The mucilage is responsive to pH, salt solutions, and solvents and acts as a binder in tablet formulations for targeted drug delivery. The mucilage is chemically modifiable via acetylation, succinylation, and graft polymerization. Chemically modified MP mucilage appeared supersorbent for heavy metal ion uptake. Nanoparticles synthesized using mucilage as a reducing and capping agent displayed significant antimicrobial and wound-healing potential. Crosslinking of mucilage using citric acid as a crosslinking agent offers a sustained release of drugs. The present review is aimed to discuss extraction optimization, structure, modification, and the stimuli-responsive nature of mucilage. The review article will cover the potential of mucilage as emulsifying, suspending, bio-adhesive, gelling, and thickening agent. The role of mucilage as a capping and reducing agent for nanoparticles will also be discussed.
Collapse
Affiliation(s)
- Manahil Noor
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Gulzar Muhammad
- Department of Chemistry, Government College University, Lahore 54000, Pakistan.
| | - Hina Hanif
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | | | - Uqba Mehmood
- Department of Biological Sciences, Superior University, Lahore, Pakistan
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
7
|
Das IJ, Bal T. Exploring carrageenan: From seaweed to biomedicine-A comprehensive review. Int J Biol Macromol 2024; 268:131822. [PMID: 38677668 DOI: 10.1016/j.ijbiomac.2024.131822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Biomaterials are pivotal in the realms of tissue engineering, regenerative medicine, and drug delivery and serve as fundamental building blocks. Within this dynamic landscape, polymeric biomaterials emerge as the frontrunners, offering unparalleled versatility across physical, chemical, and biological domains. Natural polymers, in particular, captivate attention for their inherent bioactivity. Among these, carrageenan (CRG), extracted from red seaweeds, stands out as a naturally occurring polysaccharide with immense potential in various biomedical applications. CRG boasts a unique array of properties, encompassing antiviral, antibacterial, immunomodulatory, antihyperlipidemic, antioxidant, and antitumor attributes, positioning it as an attractive choice for cutting-edge research in drug delivery, wound healing, and tissue regeneration. This comprehensive review encapsulates the multifaceted properties of CRG, shedding light on the chemical modifications that it undergoes. Additionally, it spotlights pioneering research that harnesses the potential of CRG to craft scaffolds and drug delivery systems, offering high efficacy in the realms of tissue repair and disease intervention. In essence, this review celebrates the remarkable versatility of CRG and its transformative role in advancing biomedical solutions.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
8
|
Baranauskaite J, Aydin M, Uner B, Tas C. Formulation of Metoclopramide Hydrochloride-Loaded Lipid Carriers by QbD Approach for Combating Nausea: Safety and Bioavailability Evaluation in New Zealand Rabbit. AAPS PharmSciTech 2024; 25:73. [PMID: 38575825 DOI: 10.1208/s12249-024-02791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
The focus of the research was to overcome the limitations of metoclopramide (MTC) when administered intranasally. The aim was to improve its bioavailability, increase patient compliance, and prolong its residence time in the nasal cavity. MTC-loaded liposomes were prepared by applying the film hydration method. A study was conducted to determine how formulation variables affected encapsulation efficiency (EE %), mean particle size (MPS), and zeta potential (ZP). The MTC-liposomes were further loaded into the in situ gel (gellan gum) for longer residence times following intranasal administration. pH, gelling time, and in vitro release tests were conducted on the formulations produced. In vivo performance of the MTC-loaded in situ gels was appraised based on disparate parameters such as plasma peak concentration, plasma peak time, and elimination coefficient compared to intravenous administration. When the optimal liposome formulation contained 1.98% of SPC, 0.081% of cholesterol, 97.84% of chloroform, and 0.1% of MTC, the EE of MTC was 83.21%, PS was 107.3 nm. After 5 h, more than 80% of the drug was released from MTC-loaded liposome incorporated into gellan gum in situ gel formulation (Lip-GG), which exhibited improved absorption and higher bioavailability compared to MTC loaded into gellan gum in situ gel (MTC-GG). Acceptable cell viability was also achieved. It was found out that MTC-loaded liposomal in situ gel formulations administered through the nasal route could be a better choice than other options due to its ease of administration, accurate dosing, and higher bioavailability in comparison with MTC-GG.
Collapse
Affiliation(s)
- Juste Baranauskaite
- Department of Pharmaceutical Technology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| | - Meryem Aydin
- Department of Pharmaceutical Technology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| | - Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, Missouri, USA.
| | - Cetin Tas
- Department of Pharmaceutical Technology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| |
Collapse
|
9
|
Kosmidis Papadimitriou A, Chong SW, Shen Y, Lee OS, Knowles TPJ, Grover LM, Vigolo D. Fabrication of gradient hydrogels using a thermophoretic approach in microfluidics. Biofabrication 2024; 16:025023. [PMID: 38377611 DOI: 10.1088/1758-5090/ad2b05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
The extracellular matrix presents spatially varying physical cues that can influence cell behavior in many processes. Physical gradients within hydrogels that mimic the heterogenous mechanical microenvironment are useful to study the impact of these cues on cellular responses. Therefore, simple and reliable techniques to create such gradient hydrogels are highly desirable. This work demonstrates the fabrication of stiffness gradient Gellan gum (GG) hydrogels by applying a temperature gradient across a microchannel containing hydrogel precursor solution. Thermophoretic migration of components within the precursor solution generates a concentration gradient that mirrors the temperature gradient profile, which translates into mechanical gradients upon crosslinking. Using this technique, GG hydrogels with stiffness gradients ranging from 20 to 90 kPa over 600µm are created, covering the elastic moduli typical of moderately hard to hard tissues. MC3T3 osteoblast cells are then cultured on these gradient substrates, which exhibit preferential migration and enhanced osteogenic potential toward the stiffest region on the gradient. Overall, the thermophoretic approach provides a non-toxic and effective method to create hydrogels with defined mechanical gradients at the micron scale suitable forin vitrobiological studies and potentially tissue engineering applications.
Collapse
Affiliation(s)
| | - Shin Wei Chong
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Yi Shen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Oisin Stefan Lee
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW 2006, Australia
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
El-Husseiny HM, Mady EA, Doghish AS, Zewail MB, Abdelfatah AM, Noshy M, Mohammed OA, El-Dakroury WA. Smart/stimuli-responsive chitosan/gelatin and other polymeric macromolecules natural hydrogels vs. synthetic hydrogels systems for brain tissue engineering: A state-of-the-art review. Int J Biol Macromol 2024; 260:129323. [PMID: 38242393 DOI: 10.1016/j.ijbiomac.2024.129323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Currently, there are no viable curative treatments that can enhance the central nervous system's (CNS) recovery from trauma or illness. Bioengineered injectable smart/stimuli-responsive hydrogels (SSRHs) that mirror the intricacy of the CNS milieu and architecture have been suggested as a way to get around these restrictions in combination with medication and cell therapy. Additionally, the right biophysical and pharmacological stimuli are required to boost meaningful CNS regeneration. Recent research has focused heavily on developing SSRHs as cutting-edge delivery systems that can direct the regeneration of brain tissue. In the present article, we have discussed the pathology of brain injuries, and the applicable strategies employed to regenerate the brain tissues. Moreover, the most promising SSRHs for neural tissue engineering (TE) including alginate (Alg.), hyaluronic acid (HA), chitosan (CH), gelatin, and collagen are used in natural polymer-based hydrogels and thoroughly discussed in this review. The ability of these hydrogels to distribute bioactive substances or cells in response to internal and external stimuli is highlighted with particular attention. In addition, this article provides a summary of the most cutting-edge techniques for CNS recovery employing SSRHs for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr 46612, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| |
Collapse
|
11
|
Kumari P, Kumar M, Kumar R, Kaushal D, Chauhan V, Thakur S, Shandilya P, Sharma PP. Gum acacia based hydrogels and their composite for waste water treatment: A review. Int J Biol Macromol 2024; 262:129914. [PMID: 38325681 DOI: 10.1016/j.ijbiomac.2024.129914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The non-toxic nature of natural polysaccharides and their biodegradability makes them the first choice of researchers. Various natural polysaccharides are available nowadays, like cellulose, starch, chitosan, gum acacia, guar gum etc. Among these, gum acacia is a common natural polysaccharide presently used in research and technology. It is highly biodegradable, pH stable and shows appropriate water solubility. It is used in research to synthesize hydrogels and hydrogel nanocomposites for various applications because of its antimicrobial, anti-inflammatory and excellent absorption properties. The major fields of applications include the stabilization of metal nanoparticles in the form of nanocomposites, wound dressing materials, delivery systems of various drugs and pharmaceutical agents, bioengineering, tissue engineering, purification of water, synthesis of antibacterial and antifungal composites for agricultural improvements, and many others. Due to the increasing problem of water pollution, the major focus is on research helping to reduce this problem. Gum acacia-based hydrogel and hydrogel composites were synthesized and tested for pollutant removal efficiency from wastewater by different researchers. The research on gum acacia hydrogel and their hydrogel composite applications for water purification, as well as their synthesis processes and properties, are summarized in this review article.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176206, India
| | - Manish Kumar
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176206, India.
| | - Rajender Kumar
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176206, India
| | - Deepika Kaushal
- Department of Chemistry, Sri Sai University Palampur, HP, India
| | - Vinay Chauhan
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP 173229, India
| | - Sourab Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Pooja Shandilya
- Department of Chemical and Environmental Engineering, University of Cincinnati, OH, USA
| | | |
Collapse
|
12
|
Maiti S, Maji B, Yadav H. Progress on green crosslinking of polysaccharide hydrogels for drug delivery and tissue engineering applications. Carbohydr Polym 2024; 326:121584. [PMID: 38142088 DOI: 10.1016/j.carbpol.2023.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/25/2023]
Abstract
Natural polysaccharides are being studied for their biocompatibility, biodegradability, low toxicity, and low cost in the fabrication of various hydrogel devices. However, due to their insufficient physicochemical and mechanical qualities, polysaccharide hydrogels alone are not acceptable for biological applications. Various synthetic crosslinkers have been tested to overcome the drawbacks of standalone polysaccharide hydrogels; however, the presence of toxic residual crosslinkers, the generation of toxic by-products following biodegradation, and the requirement of toxic organic solvents for processing pose challenges in achieving the desired non-toxic biomaterials. Natural crosslinkers such as citric acid, tannic acid, vanillin, gallic acid, ferulic acid, proanthocyanidins, phytic acid, squaric acid, and epigallocatechin have been used to generate polysaccharide-based hydrogels in recent years. Various polysaccharides, including cellulose, alginate, pectin, hyaluronic acid, and chitosan, have been hydrogelized and investigated for their potential in drug delivery and tissue engineering applications using natural crosslinkers. We attempted to provide an overview of the synthesis of polysaccharide-based hydrogel systems (films, complex nanoparticles, microspheres, and porous scaffolds) based on green crosslinkers, as well as a description of the mechanism of crosslinking and properties with a special emphasis on drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India
| |
Collapse
|
13
|
Zhang B, Wang M, Tian H, Cai H, Wu S, Jiao S, Zhao J, Li Y, Zhou H, Guo W, Qu W. Functional hemostatic hydrogels: design based on procoagulant principles. J Mater Chem B 2024; 12:1706-1729. [PMID: 38288779 DOI: 10.1039/d3tb01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Uncontrolled hemorrhage results in various complications and is currently the leading cause of death in the general population. Traditional hemostatic methods have drawbacks that may lead to ineffective hemostasis and even the risk of secondary injury. Therefore, there is an urgent need for more effective hemostatic techniques. Polymeric hemostatic materials, particularly hydrogels, are ideal due to their biocompatibility, flexibility, absorption, and versatility. Functional hemostatic hydrogels can enhance hemostasis by creating physical circumstances conducive to hemostasis or by directly interfering with the physiological processes of hemostasis. The procoagulant principles include increasing the concentration of localized hemostatic substances or establishing a physical barrier at the physical level and intervention in blood cells or the coagulation cascade at the physiological level. Moreover, synergistic hemostasis can combine these functions. However, some hydrogels are ineffective in promoting hemostasis or have a limited application scope. These defects have impeded the advancement of hemostatic hydrogels. To provide inspiration and resources for new designs, this review provides an overview of the procoagulant principles of hemostatic hydrogels. We also discuss the challenges in developing effective hemostatic hydrogels and provide viewpoints.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Min Wang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, P. R. China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| |
Collapse
|
14
|
Kumar NR, Rao GSNK, Ratna JV, Murthy KVR. Exploring the potential of neem and tamarind gum as release retardants: Design and statistical optimisation of vildagliptin extended release matrix systems using D-optimal quadratic mixture design. Int J Biol Macromol 2024; 259:129136. [PMID: 38181924 DOI: 10.1016/j.ijbiomac.2023.129136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Exploring the significant role of natural polymers in developing drug delivery systems has been a promising area of research interest. The current investigation uses a D-optimal quadratic mixture design to design and evaluate neem and tamarind gum-based vildagliptin extended-release matrix tablets. Studying the combination effect of gums is one of the major objectives. Initial screening studies were performed to select the factors and their levels. The variables selected at different levels in mg/tablet are neem gum, tamarind gum, polyvinylpyrrolidone, and lactose monohydrate. Based on the screening experiments with both gums, the polymer content of 165 mg was chosen as the highest level in the DOE. Nineteen runs were generated to screen the desired parameters as responses. The total weight of the formulation was kept constant at 275 mg. Time (hours) required for 50 %, 90 % and 100 % of drug release and tablet hardness were selected as the responses for each run. The wet granulation method was adopted, and the critical variables were optimised using the design of experiments following Design Expert software. Statistical analysis was conducted, and the optimised formulations were prepared and evaluated to compare with the predicted responses. Stability studies were performed for the optimised batches. Results indicated that the prepared batches met the compendial limits and confirmed the application of neem and tamarind gum in the development of extended-release tablets of vildagliptin for 24 h. An optimised formulation comprising of 16.52 mg of neem gum and 148.48 mg of tamarind gum with a hardness of 7.5-8.5 kp produced 50 %, 90 % and 100 % drug release in 12, 22 and 25 h.
Collapse
Affiliation(s)
- N Ravi Kumar
- A.U. College of Pharmaceutical Sciences, Visakhapatnam 530003, Andhra Pradesh, India.
| | - G S N Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India.
| | - J Vijaya Ratna
- A.U. College of Pharmaceutical Sciences, Visakhapatnam 530003, Andhra Pradesh, India
| | - K V Ramana Murthy
- A.U. College of Pharmaceutical Sciences, Visakhapatnam 530003, Andhra Pradesh, India
| |
Collapse
|
15
|
Xiong Q, Liang W, Shang W, Xie Z, Cheng J, Yu B, Fang Y, Sun L, Zhao J. Bidirectional Uptake, Transfer, and Transport of Dextran-Based Nanoparticles in Plants for Multidimensional Enhancement of Pesticide Utilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305693. [PMID: 37828638 DOI: 10.1002/smll.202305693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Indexed: 10/14/2023]
Abstract
The development of effective multifunctional nano-delivery approaches for pesticide absorption remains a challenge. Here, a dextran-based pesticide delivery system (MBD) is constructed to deliver tebuconazole for multidimensionally enhancing its effective utilization on tomato plants. Spherical MBD nanoparticles are obtained through two-step esterification of dextran, followed by tebuconazole loading using the Michael addition reaction. Confocal laser scanning microscopy shows that fluorescein isothiocyanate-labeled MBD nanoparticles can be bidirectionally transported in tomato plants and a modified quick, easy, cheap, effective, rugged, and safe-HPLC approach demonstrates the capacity to carry tebuconazole to plant tissues after 24 h of root uptake and foliar spray, respectively. Additionally, MBD nanoparticles could increase the retention of tebuconazole on tomato leaves by up to nearly 2.1 times compared with the tebuconazole technical material by measuring the tebuconazole content retained on the leaves. In vitro antifungal and pot experiments show that MBD nanoparticles improve the inhibitory effect of tebuconazole against botrytis cinerea by 58.4% and the protection against tomato gray molds by 74.9% compared with commercial suspensions. Furthermore, the MBD nanoparticles do not affect the healthy growth of tomato plants. These results underline the potential for the delivery system to provide a strategy for multidimensional enhancement of pesticide efficacy.
Collapse
Affiliation(s)
- Qiuyu Xiong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenlong Liang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenxuan Shang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhengang Xie
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jingli Cheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bin Yu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yun Fang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Li Sun
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Jinhao Zhao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
16
|
Benalaya I, Alves G, Lopes J, Silva LR. A Review of Natural Polysaccharides: Sources, Characteristics, Properties, Food, and Pharmaceutical Applications. Int J Mol Sci 2024; 25:1322. [PMID: 38279323 PMCID: PMC10816883 DOI: 10.3390/ijms25021322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024] Open
Abstract
Natural polysaccharides, which are described in this study, are some of the most extensively used biopolymers in food, pharmaceutical, and medical applications, because they are renewable and have a high level of biocompatibility and biodegradability. The fundamental understanding required to properly exploit polysaccharides potential in the biocomposite, nanoconjugate, and pharmaceutical industries depends on detailed research of these molecules. Polysaccharides are preferred over other polymers because of their biocompatibility, bioactivity, homogeneity, and bioadhesive properties. Natural polysaccharides have also been discovered to have excellent rheological and biomucoadhesive properties, which may be used to design and create a variety of useful and cost-effective drug delivery systems. Polysaccharide-based composites derived from natural sources have been widely exploited due to their multifunctional properties, particularly in drug delivery systems and biomedical applications. These materials have achieved global attention and are in great demand because to their biochemical properties, which mimic both human and animal cells. Although synthetic polymers account for a substantial amount of organic chemistry, natural polymers play a vital role in a range of industries, including biomedical, pharmaceutical, and construction. As a consequence, the current study will provide information on natural polymers, their biological uses, and food and pharmaceutical applications.
Collapse
Affiliation(s)
- Ikbel Benalaya
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisbon, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
- CPIRN-UDI/IPG, Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CIEPQPF, Department of Chemical Engineering, Pólo II—Pinhal de Marrocos, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
17
|
Huang NC, Huang NC, Kang LY, Hsieh PS, Dai LG, Dai NT, Huang CJ. Enhanced Diabetic Rat Wound Healing by Platelet-Rich Plasma Adhesion Zwitterionic Hydrogel. Ann Plast Surg 2024; 92:S2-S11. [PMID: 38285989 DOI: 10.1097/sap.0000000000003796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
BACKGROUND The skin is the largest organ in the human body and serves as a barrier for protective, immune, and sensory functions. Continuous and permanent exposure to the external environment results in different levels of skin and extracellular matrix damage. During skin wound healing, the use of good dressings and addition of growth factors to the wound site can effectively modulate the rate of wound healing. A dressing containing bioactive substances can absorb wound exudates and reduce adhesion between the wound and dressing, whereas growth factors, cytokines, and signaling factors can promote cell motility and proliferation. AIM AND OBJECTIVES We prepared a functional wound dressing by combining platelet-rich plasma (PRP) and zwitterionic hydrogels. Functional wound dressings are rich in various naturally occurring growth factors that can effectively promote the healing process in various types of tissues and absorb wound exudates to reduce adhesion between wounds and dressings. Furthermore, PRP-incorporated zwitterionic hydrogels have been used to repair full-thickness wounds in Sprague-Dawley rats with diabetes (DM SD). MATERIALS AND METHODS Fibroblasts and keratinocytes were cultured with PRP, zwitterionic hydrogels, and PRP-incorporated zwitterionic hydrogels to assess cell proliferation and specific gene expression. Furthermore, PRP-incorporated zwitterionic hydrogels were used to repair full-thickness skin defects in DM SD rats. RESULTS The swelling ratio of hydrogel, hydrogel + PRP1000 (108 platelets/mL), and hydrogel + PRP1000 (109 platelets/mL) groups were similar (~07.71% ± 1.396%, 700.17% ± 1.901%, 687.48% ± 4.661%, respectively) at 144 hours. The tensile strength and Young modulus of the hydrogel and hydrogel + PRP10000 groups were not significantly different. High concentrations of PRP (approximately 108 and 109 platelets/mL) effectively promoted the proliferation of fibroblasts and keratinocytes. The zwitterionic hydrogels were not cytotoxic to any cell type. High PRP concentration-incorporated zwitterionic hydrogels increased the rate of cell proliferation and significantly increased the expression of characteristic genes such as collagen, fibronectin, involucrin, and keratin. Subsequently, zwitterionic hydrogels with high PRP concentrations were used to repair full-thickness skin defects in DM SD rats, and a wound healing rate of more than 90% was recorded on day 12. CONCLUSIONS PRP contains high concentrations of growth factors that promote cell viability, enhance specific gene expression, and have a high medical value in cell therapy. Zwitterionic hydrogels have a 3-dimensional interconnected microporous structure and can resist cell adhesion without causing cytotoxicity. Platelet-rich plasma-incorporated zwitterionic hydrogels further enhance the cellular properties and provide an effective therapeutic option for wound healing.
Collapse
Affiliation(s)
| | - Nien-Chi Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Lan-Ya Kang
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Pai-Shan Hsieh
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Lien-Guo Dai
- Department of Orthopaedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | | |
Collapse
|
18
|
Zarei N, Hassanzadeh-Tabrizi SA. Alginate/hyaluronic acid-based systems as a new generation of wound dressings: A review. Int J Biol Macromol 2023; 253:127249. [PMID: 37802435 DOI: 10.1016/j.ijbiomac.2023.127249] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Skin is the largest organ of the human body, which acts as a protective barrier against pathogens. Therefore, a lot of research has been carried out on wound care and healing. Creating an ideal environment for wound healing and optimizing the local and systemic conditions of the patient play critical roles in successful wound care. Many products have been developed for improving the wound environment and providing a protected and moist area for fast healing. However, there is still high demand for new systems with high efficiency. The first generation of wound dressings merely covered the wound, while the subsequent/last generations covered it and aided in healing it in different ways. In modern wound dressings, the kind of used materials and their complexity play a crucial role in the healing process. These new systems support wound healing by lowering inflammation, exudate, slough, and bacteria. This study addresses a review of alginate/hyaluronic acid-based wound dressings developed so far as well as binary and ternary systems and their role in wound healing. Our review corroborates that these systems can open up a new horizon for wounds that do not respond to usual treatments and have a long curing period.
Collapse
Affiliation(s)
- Nazanin Zarei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
19
|
Sequeira DB, Diogo P, Gomes BPFA, Peça J, Santos JMM. Scaffolds for Dentin-Pulp Complex Regeneration. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:7. [PMID: 38276040 PMCID: PMC10821321 DOI: 10.3390/medicina60010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Background and Objectives: Regenerative dentistry aims to regenerate the pulp-dentin complex and restore those of its functions that have become compromised by pulp injury and/or inflammation. Scaffold-based techniques are a regeneration strategy that replicate a biological environment by utilizing a suitable scaffold, which is considered crucial for the successful regeneration of dental pulp. The aim of the present review is to address the main characteristics of the different scaffolds, as well as their application in dentin-pulp complex regeneration. Materials and Methods: A narrative review was conducted by two independent reviewers to answer the research question: What type of scaffolds can be used in dentin-pulp complex regeneration? An electronic search of PubMed, EMBASE and Cochrane library databases was undertaken. Keywords including "pulp-dentin regeneration scaffold" and "pulp-dentin complex regeneration" were used. To locate additional reports, reference mining of the identified papers was undertaken. Results: A wide variety of biomaterials is already available for tissue engineering and can be broadly categorized into two groups: (i) natural, and (ii) synthetic, scaffolds. Natural scaffolds often contain bioactive molecules, growth factors, and signaling cues that can positively influence cell behavior. These signaling molecules can promote specific cellular responses, such as cell proliferation and differentiation, crucial for effective tissue regeneration. Synthetic scaffolds offer flexibility in design and can be tailored to meet specific requirements, such as size, shape, and mechanical properties. Moreover, they can be functionalized with bioactive molecules, growth factors, or signaling cues to enhance their biological properties and the manufacturing process can be standardized, ensuring consistent quality for widespread clinical use. Conclusions: There is still a lack of evidence to determine the optimal scaffold composition that meets the specific requirements and complexities needed for effectively promoting dental pulp tissue engineering and achieving successful clinical outcomes.
Collapse
Affiliation(s)
- Diana B. Sequeira
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (P.D.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Patrícia Diogo
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (P.D.)
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Brenda P. F. A. Gomes
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas—UNICAMP, Piracicaba 13083-970, Brazil;
| | - João Peça
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - João Miguel Marques Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (P.D.)
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
20
|
Karppanen H, Halahlah A, Kilpeläinen PO, Mikkonen KS, Ho TM. Gel characteristics of low-acetyl spruce galactoglucomannans. Carbohydr Polym 2023; 321:121316. [PMID: 37739540 DOI: 10.1016/j.carbpol.2023.121316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
Galactoglucomannans (GGM) recovered from abundant forest industry side-streams has been widely recognized as a renewable hydrocolloid. The low molar mass and presence of O-acetyl side-groups results in low viscous dispersions and weak intermolecular interactions that make GGM unsuitable for hydrogel formation, unless forcefully chemically derivatized and/or crosslinked with other polymers. Here we present the characterization of hydrogels prepared from GGM after tailoring the degree of acetylation by alkaline treatment during its recovery. Specifically, we investigated gel characteristics of low-acetyl GGM dispersions prepared at varied solid concentrations (5, 10 and 15 %) and pH (4, 7 and 10), and then subjected to ultrasonication. The results indicated that low-acetyl GGM dispersions formed gels (G' > G″) at all other studied solid concentration and pH level combinations except 5 % and pH 4. High pH levels, leading to further removal of acetyl groups, and high solid concentration facilitated the gel formation. GGM hydrogels were weak gels with strong shear-thinning behavior and thixotropic properties, and high hardness and water holding capacity; which were enhanced with increased pH and solid concentration, and prolonged storage time. Our study showed the possibility to utilize low-acetyl GGM as mildly processed gelling or thickening agents, and renewable materials for bio-based hydrogels.
Collapse
Affiliation(s)
- Henrik Karppanen
- Department of Food and Nutrition, P.O. Box 66, FIN-00014 University of Helsinki, Finland
| | - Abedalghani Halahlah
- Department of Food and Nutrition, P.O. Box 66, FIN-00014 University of Helsinki, Finland
| | - Petri O Kilpeläinen
- Biorefinery and Bioproducts, Production Systems Unit - Natural Resources Institute Finland (Luke), Viikinkaari 9, FI-00790 HU, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, P.O. Box 66, FIN-00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, FIN-00014 University of Helsinki, Finland
| | - Thao M Ho
- Department of Food and Nutrition, P.O. Box 66, FIN-00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, FIN-00014 University of Helsinki, Finland.
| |
Collapse
|
21
|
Shahzadi U, Zeeshan R, Tabassum S, Khadim H, Arshad M, Ansari AA, Safi SZ, ul Haq RI, Asif A. Physico‐chemical properties and in‐vitro biocompatibility of thermo‐sensitive hydrogel developed with enhanced antimicrobial activity for soft tissue engineering. POLYM ADVAN TECHNOL 2023; 34:3870-3884. [DOI: 10.1002/pat.6188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/02/2023] [Indexed: 10/07/2024]
Abstract
AbstractSmart materials such as thermo‐sensitive in situ forming hydrogels can be effective agents in drug delivery and tissue regeneration with minimal invasion. Injection method would avoid complex surgical procedures facilitating rapid recovery process. In this research, we report the fabrication of an easy, reproducible thermo‐sensitive hydrogel constituting of chitosan (CHI), glycerol phosphate (GP) with variable quantity of ‐poly‐l‐lysine (PS). Fourier‐transform infrared spectra exhibited hydrogel formation where interactions between CHI and GP were seen. The gelation kinetics presented gelation time of 8 min at physiological temperature. The results indicated an increase in degradation rate with the passage of time. Contact angles measurements were employed to observe hydrophilic characteristics which were shown to be favorable. Mechanical strength was determined to be in the range of ~0.1–0.6 MPa for all the hydrogels. Due to intrinsic antibacterial features of CHI and PS, the hydrogels showed potent antibacterial activity against Escherichia coli, Staphylococcus aureus, and Methicillin‐resistant S. aureus (MR‐SA). Interestingly, PS's addition in the hydrogel resulted in potent antibacterial activity against clinically relevant MR‐SA. The hydrogels can hence be delivered to a specific target for localized treatments where the potential of inhibiting multidrug resistant strain is clinically relevant. Biocompatibility of the hydrogels was seen by an overall increase in cell viability of mouse fibroblast cells and scratch assay revealed favorable migration potential. Proangiogenic Vascular endothelial growth factor (VEGF)'s expression showed a gradual increase with increasing concentration of PS, whereas one composition demonstrated a slight increase in the expression of cytosolic prostaglandin E synthase (cPGES) as determined by RT‐PCR. Overall, an increase in PS content of the hydrogels resulted in simultaneously enhanced antibacterial efficiency and marked increase in fibroblast cell viability, hence, reiterating their potential as potent antibacterial agents that can be explored as wound healing agents. In conclusion, novel antibacterial thermo‐sensitive hydrogels were synthesized with a potential of regulating proangiogenic and tissue regeneration factors that highlight their role as wound healing agents.
Collapse
Affiliation(s)
- Uzma Shahzadi
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Rabia Zeeshan
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Hina Khadim
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
- Department of Chemistry COMSATS University Islamabad Lahore Pakistan
| | - Muhammad Arshad
- Institute of Chemistry The Islamia University of Bahawalpur Pakistan
| | - Arsalan Ahmad Ansari
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | | | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| |
Collapse
|
22
|
Chen C, Zhan C, Huang X, Zhang S, Chen J. Three-dimensional printing of cell-laden bioink for blood vessel tissue engineering: influence of process parameters and components on cell viability. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2411-2437. [PMID: 37725406 DOI: 10.1080/09205063.2023.2251781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
Three-dimensional (3D) bioprinting is a potential therapeutic method for tissue engineering owing to its ability to prepare cell-laden tissue constructs. The properties of bioink are crucial to accurately control the printing structure. Meanwhile, the effect of process parameters on the precise structure is not nonsignificant. We investigated the correlation between process parameters of 3D bioprinting and the structural response of κ-carrageenan-based hydrogels to explore the controllable structure, printing resolution, and cell survival rate. Small-diameter (<6 mm) gel filaments with different structures were printed by varying the shear stress of the extrusion bioprinter to simulate the natural blood vessel structure. The cell viability of the scaffold was evaluated. The in vitro culture of human umbilical vein endothelium cells (HUVECs) on the κ-carrageenan (kc) and composite gels (carrageenan/carbon nanotube and carrageenan/sodium alginate) demonstrated that the cell attachment and proliferation on composite gels were better than those on pure kc. Our results revealed that the carrageenan-based composite bioinks offer better printability, sufficient mechanical stiffness, interconnectivity, and biocompatibility. This process can facilitate precise adjustment of the pore size, porosity, and pore distribution of the hydrogel structure by optimising the printing parameters as well as realise the precise preparation of the internal structure of the 3D hydrogel-based tissue engineering scaffold. Moreover, we obtained perfused tubular filament by 3D printing at optimal process parameters.
Collapse
Affiliation(s)
- Chongshuai Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Congcong Zhan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xia Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shanfeng Zhang
- Experimental Center for Basic Medicine, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Junying Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
23
|
Kogon R, Faux D, Assifaoui A, Bodart P. Advanced insight on the water dynamics of anisotropic hydrogels by field-cycling nuclear magnetic resonance: Application of 3-Tau model. Carbohydr Polym 2023; 314:120922. [PMID: 37173021 DOI: 10.1016/j.carbpol.2023.120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Fast field cycling (FFC) nuclear magnetic resonance (NMR) relaxometry is used to investigate an anisotropic polygalacturonate hydrogel formed by the diffusion of calcium ions from an external reservoir (external gelation). Such a hydrogel has a gradient of polymer density accompanied by a gradient of the mesh size of its 3D network. The NMR relaxation process is dominated by the interaction of proton spins between water molecules located at polymer interfaces and in nanoporous spaces. The FFC NMR experiment provides the spin-lattice relaxation rate R1ω as a function of Larmor frequency ω producing dispersion (NMRD) curves that are highly sensitive to the dynamics of the protons at the surfaces. The hydrogel is sliced into three parts and the NMR profile for each hydrogel slice is measured. The NMRD data for each slice is interpreted using the 3-Tau Model with the aid of user-friendly fitting software called 3TM. The key fit parameters include three nano-dynamical time constants and the average "mesh size" which collectively determine the bulk water and water surface layer contribution to the total relaxation rate. The results are consistent with independent studies where comparison is possible.
Collapse
Affiliation(s)
- Rémi Kogon
- UMR PAM A02.102 Université Bourgogne Institut Agro, Dijon 21000, France.
| | - David Faux
- Department of Physics, University of Surrey, Stag Hill, Guildford GU2 7XH, UK
| | - Ali Assifaoui
- UMR PAM A02.102 Université Bourgogne Institut Agro, Dijon 21000, France
| | - Philippe Bodart
- UMR PAM A02.102 Université Bourgogne Institut Agro, Dijon 21000, France
| |
Collapse
|
24
|
Francavilla A, Corradini MG, Joye IJ. Bigels as Delivery Systems: Potential Uses and Applicability in Food. Gels 2023; 9:648. [PMID: 37623103 PMCID: PMC10453560 DOI: 10.3390/gels9080648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Bigels have been mainly applied in the pharmaceutical sector for the controlled release of drugs or therapeutics. However, these systems, with their intricate structures, hold great promise for wider application in food products. Besides their classical role as carrier and target delivery vehicles for molecules of interest, bigels may also be valuable tools for building complex food structures. In the context of reducing or even eliminating undesirable (but often highly functional) food components, current strategies often critically affect food structure and palatability. The production of solid fat systems that are trans-fat-free and have high levels of unsaturated fatty acids is one of the challenges the food industry currently faces. According to recent studies, bigels can be successfully used as ingredients for total or partial solid fat replacement in complex food matrices. This review aims to critically assess current research on bigels in food and pharmaceutical applications, discuss the role of bigel composition and production parameters on the characteristics of bigels and further expand the use of bigels as solid fat replacers and functional food ingredients. The hydrogel:oleogel ratio, selected gelators, inclusion of surfactants and encapsulation of molecules of interest, and process parameters (e.g., temperature, shear rate) during bigel production play a crucial role in the bigel's rheological and textural properties, microstructure, release characteristics, biocompatibility, and stability. Besides exploring the role of these parameters in bigel production, future research directions for bigels in a food context are explored.
Collapse
Affiliation(s)
- Alyssa Francavilla
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.F.); (M.G.C.)
| | - Maria G. Corradini
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.F.); (M.G.C.)
- Arrell Food Institute, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Iris J. Joye
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.F.); (M.G.C.)
| |
Collapse
|
25
|
Xiao M. Development of chitosan-based hydrogels for healthcare: A review. Int J Biol Macromol 2023:125333. [PMID: 37307979 DOI: 10.1016/j.ijbiomac.2023.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Chitosan-based hydrogels (CSH) are promising materials for healthcare. Based on the relationship among structure, property and application, researches reported within last decade are chosen to elucidate the developing approaches and potential applications of target CSH. The applications of CSH are classified into the conventional biomedical fields, such as drug controlled release, tissue repair and monitoring, and the essential ones including food safety, water purification and air cleaning. The approaches focused on in this article are the reversible chemical and physical ones. Apart from describing the current status of the development, suggestions are presented as well.
Collapse
Affiliation(s)
- Mo Xiao
- Quanzhou Medical College, 362021, China.
| |
Collapse
|
26
|
Sharma R, Malviya R, Singh S, Prajapati B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023; 9:gels9050430. [PMID: 37233021 DOI: 10.3390/gels9050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
27
|
Teora SP, Panavaité E, Sun M, Kiffen B, Wilson DA. Anisotropic, Hydrogel Microparticles as pH-Responsive Drug Carriers for Oral Administration of 5-FU. Pharmaceutics 2023; 15:pharmaceutics15051380. [PMID: 37242622 DOI: 10.3390/pharmaceutics15051380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
In the last 20 years, the development of stimuli-responsive drug delivery systems (DDS) has received great attention. Hydrogel microparticles represent one of the candidates with the most potential. However, if the role of the cross-linking method, polymer composition, and concentration on their performance as DDS has been well-studied, still, a lot needs to be explained regarding the effect caused by the morphology. To investigate this, herein, we report the fabrication of PEGDA-ALMA-based microgels with spherical and asymmetric shapes for 5-fluorouracil (5-FU) on-demand loading and in vitro pH-triggered release. Due to anisotropic properties, the asymmetric particles showed an increased drug adsorption and higher pH responsiveness, which in turn led to a higher desorption efficacy at the target pH environment, making them an ideal candidate for oral administration of 5-FU in colorectal cancer. The cytotoxicity of empty spherical microgels was higher than the cytotoxicity of empty asymmetric microgels, suggesting that the gel network's mechanical proprieties of anisotropic particles were a better three-dimensional environment for the vital functions of cells. Upon treatment with drug-loaded microgels, the HeLa cells' viability was lower after incubation with asymmetric particles, confirming a minor release of 5-FU from spherical particles.
Collapse
Affiliation(s)
- Serena P Teora
- Department of Systems Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 Nijmegen, The Netherlands
| | - Elada Panavaité
- Department of Systems Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 Nijmegen, The Netherlands
| | - Mingchen Sun
- Department of Systems Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 Nijmegen, The Netherlands
| | - Bas Kiffen
- Department of Systems Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 Nijmegen, The Netherlands
| | - Daniela A Wilson
- Department of Systems Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 Nijmegen, The Netherlands
| |
Collapse
|
28
|
Sasikanth V, Meganathan B, Rathinavel T, Seshachalam S, Nallappa H, Gopi B. General overview of biopolymers: structure and properties. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Abstract
Biopolymers are synthesized from a biological origin under natural phenomenon especially during their growth cycle, in the form of polymeric substances that portrays excellent properties such as flexibility, tensile strength, steadiness, reusability, and so on. The amalgamated form of two or more biopolymers leads to the formation of “biocomposites” with novel applications. Several mechanisms were identified for the effective production of biopolymers from diverse life forms such as microbial origin plant and animal origin. Based on their origin, biopolymer differs in their structure and functions. Biopolymers are preferred over chemically synthesized polymers due to their biodegradability and their impact on the environment. Biopolymers play a pivotal role in pharmaceutical industries. The biopolymers could be employed for, the administration of medicine as well as regenerative medicine to reach minimal immunogenicity and maximum pharmacological expressivity in a treated individual. Based on their properties biopolymers were exclusively used in medical devices, cosmaceuticals, and confectionaries, it is also used as additives in food industries, bio-sensors, textile industries, and wastewater treatment plants. Ecological support is of utmost concern nowadays due to the ever-expanding ramification over the planet by usage of plastic as packaging material, turning up scientists and researchers to focus on biodegradable biopolymer utilization. The miscibility-structural-property relation between every biopolymer must be focused on to improve the better environment. Specific biopolymers are designed for the betterment of agrarian and commoners of society. Advanced structural modifications, properties of biopolymers, and applications of biopolymers to achieve a greener environment were discussed in this chapter.
Collapse
Affiliation(s)
- Vasuki Sasikanth
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| | | | | | - Sindhu Seshachalam
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| | - Harini Nallappa
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| | - Brindha Gopi
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| |
Collapse
|
29
|
Tian L, Roos YH, Gómez-Mascaraque LG, Lu X, Miao S. Tremella fuciform Polysaccharides: Extraction, Physicochemical, and Emulsion Properties at Different pHs. Polymers (Basel) 2023; 15:polym15071771. [PMID: 37050384 PMCID: PMC10097164 DOI: 10.3390/polym15071771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The chemical composition, macromolecular characteristics, and structure of four types of Tremella fuciform polysaccharides (TPS) were analyzed, including one TPS that was extracted in the laboratory (L-TPS) and three commercial TPS. The effects of pH on the properties of TPS emulsions were investigated by analyzing their zeta potential, particle size, apparent viscosity, and stability. The results showed that L-TPS presented a higher percentage content of protein (2.33%) than commercial TPS (0.73–0.87%), and a lower molecular mass (17.54 × 106 g/mol). Thus, L-TPS exhibited the best emulsifying activity but gave poor emulsion stability. The droplet sizes and apparent viscosity of commercial TPS-stabilized emulsions were larger or higher in acidic environments. At pH 2, the apparent viscosity was the lowest for L-TPS. Commercial TPS emulsions were most stable at pH 6, while the L-TPS-stabilized emulsion was most stable at pH 2. The obtained results revealed that the emulsifying properties of TPS varied and the effects of pH on emulsion characteristics differed, as determined from the molecular mass, macromolecular characteristics, and structure. This research is useful for expanding the application of TPS as a novel food ingredient in emulsions.
Collapse
Affiliation(s)
- Lili Tian
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland
| | - Yrjö H. Roos
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland
| | | | - Xu Lu
- China-Ireland International Cooperation Centre for Food Material Sciences and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
- China-Ireland International Cooperation Centre for Food Material Sciences and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
30
|
Lazăr AI, Aghasoleimani K, Semertsidou A, Vyas J, Roșca AL, Ficai D, Ficai A. Graphene-Related Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1092. [PMID: 36985986 PMCID: PMC10051126 DOI: 10.3390/nano13061092] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
This paper builds on the context and recent progress on the control, reproducibility, and limitations of using graphene and graphene-related materials (GRMs) in biomedical applications. The review describes the human hazard assessment of GRMs in in vitro and in vivo studies, highlights the composition-structure-activity relationships that cause toxicity for these substances, and identifies the key parameters that determine the activation of their biological effects. GRMs are designed to offer the advantage of facilitating unique biomedical applications that impact different techniques in medicine, especially in neuroscience. Due to the increasing utilization of GRMs, there is a need to comprehensively assess the potential impact of these materials on human health. Various outcomes associated with GRMs, including biocompatibility, biodegradability, beneficial effects on cell proliferation, differentiation rates, apoptosis, necrosis, autophagy, oxidative stress, physical destruction, DNA damage, and inflammatory responses, have led to an increasing interest in these regenerative nanostructured materials. Considering the existence of graphene-related nanomaterials with different physicochemical properties, the materials are expected to exhibit unique modes of interactions with biomolecules, cells, and tissues depending on their size, chemical composition, and hydrophil-to-hydrophobe ratio. Understanding such interactions is crucial from two perspectives, namely, from the perspectives of their toxicity and biological uses. The main aim of this study is to assess and tune the diverse properties that must be considered when planning biomedical applications. These properties include flexibility, transparency, surface chemistry (hydrophil-hydrophobe ratio), thermoelectrical conductibility, loading and release capacity, and biocompatibility.
Collapse
Affiliation(s)
- Andreea-Isabela Lazăr
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | | | - Anna Semertsidou
- Charles River Laboratories, Margate, Manston Road, Kent CT9 4LT, UK
| | - Jahnavi Vyas
- Drug Development Solution, Newmarket road, Ely, CB7 5WW, UK
| | - Alin-Lucian Roșca
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050045 Bucharest, Romania
| |
Collapse
|
31
|
Joly JP, Aricov L, Balan GA, Popescu EI, Mocanu S, Leonties AR, Matei I, Marque SRA, Ionita G. Formation of Alginate/Chitosan Interpenetrated Networks Revealed by EPR Spectroscopy. Gels 2023; 9:231. [PMID: 36975680 PMCID: PMC10048464 DOI: 10.3390/gels9030231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
This study analyzes the physico-chemical properties of interpenetrated polymer networks (IPNs) and semi-IPN resulting from cross-linking chitosan with glutaraldehyde and alginate with Ca2+ cations, as a function of the order in which the cross-linking agents are added to the polymer mixture. Three physico-chemical methods were used to assess the differences between systems: rheology, IR spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. While rheology and IR spectroscopy are commonly used to characterize gel materials, EPR spectroscopy is rarely used, but has the advantage of providing local information about the dynamics of a system. The rheological parameters, which describe the global behavior of the samples, show that semi-IPN systems have a weaker gel behavior and the order of introducing the cross-linker in the polymer systems plays a role. The IR spectra of samples resulting by adding only Ca2+ or Ca2+ as the first cross-linker are similar to that of the alginate gel, while the spectra of samples in which glutaraldehyde is firstly added resemble the chitosan gel spectrum. Using spin-labeled alginate and spin-labeled chitosan, we monitored the changes occurring in the dynamic of the spin labels due to the formation of IPN and semi-IPN. The results show that the order of adding the cross-linking agents influences the dynamic of the IPN network, and that the formation of the alginate network determines the characteristics of the entire IPN system. The EPR data were correlated with the rheological parameters and IR spectra of the analyzed samples.
Collapse
Affiliation(s)
- Jean-Patrick Joly
- Aix Marseille University, CNRS, Institut de Chimie Radicalaire, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France
| | - Ludmila Aricov
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - George-Alin Balan
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Elena Irina Popescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Sorin Mocanu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Anca Ruxandra Leonties
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Iulia Matei
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Sylvain R. A. Marque
- Aix Marseille University, CNRS, Institut de Chimie Radicalaire, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France
| | - Gabriela Ionita
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
32
|
Hu Y, Ma Y, Liu L, Yu J, Cui J, Ling S, Fan Y. Nanosilk Template-Guided/Induced Construction of Brush-/Flower-like 3D Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36916656 DOI: 10.1021/acsami.2c20339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biomaterials with natural hierarchical structures typically exhibit extraordinary properties because of their multilevel structural designs. They offer many templates and models as well as inspiration for material design, particularly for fabricating structure-regulated, performance-enhanced, and function-enriched materials. Biopolymer-based nanocomposites with ingenious nanostructures constructed through ecofriendly and sustainable approaches are highly desirable to meet the multifunctional requirements of developing bioinspired materials. Herein, an all-silk fibroin-based nanocomposite with a brush-like nanostructure was constructed for the first time using a nanotemplate-guided assembly approach in which dissolved silk assembled directly on a silk nanowhisker (SNW) backbone to form peculiar nanobrushes based on the classical micelle model. Three-dimensional spider-like or centipede-like silk nanobrushes (SNBs) were fabricated by varying the SNW backbone length from 0.16 to 6 μm. The branches with average lengths of 32-290 nm were also adjustable. SNBs were further designed to regulate and induce biomineralization of hydroxyapatite (HAP) to form interesting flower-like nanostructures, in which the HAP nanosphere (diameters ∼16 nm) "core" was covered by SNBs with branches extending to form a "shell" (∼101 nm in length). Based on such protein nanotemplate-guided formation of nanoscale structures, practical hollow conduits with remarkable mechanical properties, biocompatibility, shape memory behavior, and bone engineering potential were fabricated. This study inspires the design of polymorphous biopolymer-based nanostructures with enhanced performance at multiple length scales where the weaknesses of individual building blocks are offset.
Collapse
Affiliation(s)
- Yanlei Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Lonpan Road, Nanjing, Jiangsu 210037, China
| | - Yue Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Lonpan Road, Nanjing, Jiangsu 210037, China
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Lonpan Road, Nanjing, Jiangsu 210037, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Lonpan Road, Nanjing, Jiangsu 210037, China
| | - Jing Cui
- School of Physical Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No. 159 Lonpan Road, Nanjing, Jiangsu 210037, China
| |
Collapse
|
33
|
Matsumoto Y, Enomoto Y, Kabe T, Iwata T. Static and in situ small-angle X-ray scattering analyses of the effect of molecular structure on the tensile properties of cross-linked curdlan hydrogels and stretched, dried gel-films. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
34
|
Qaiser R, Pervaiz F, Shoukat H, Yasin H, Hanan H, Murtaza G. Mucoadhesive chitosan/polyvinylpyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) based hydrogels of captopril with adjustable properties as sustained release carrier: Formulation design and toxicological evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
35
|
Agwa MM, Elmotasem H, Elsayed H, Abdelsattar AS, Omer AM, Gebreel DT, Mohy-Eldin MS, Fouda MMG. Carbohydrate ligands-directed active tumor targeting of combinatorial chemotherapy/phototherapy-based nanomedicine: A review. Int J Biol Macromol 2023; 239:124294. [PMID: 37004933 DOI: 10.1016/j.ijbiomac.2023.124294] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Phototherapies or light mediated therapies, including mutually photothermal and photodynamic therapy that encompass irradiation of the target organs with light, have been widely employed as minimally invasive approach associated with negligible drug resistance for eradicating multiple tumors with minimal hazards to normal organs. Despite all these advantages, many obstacles in phototherapy hinder progress toward clinical application. Therefore, researchers have developed nano-particulate delivery systems integrated with phototherapy and therapeutic cytotoxic drugs to overcome these obstacles and achieve maximum efficacy in cancer treatment. Active targeting ligands were integrated into their surfaces to improve the selectivity and tumor targeting ability, enabling easy binding and recognition by cellular receptors overexpressed on the tumor tissue compared to normal ones. This enhances intratumoral accumulation with minimal toxicity on the adjacent normal cells. Various active targeting ligands, including antibodies, aptamers, peptides, lactoferrin, folic acid and carbohydrates, have been explored for the targeted delivery of chemotherapy/phototherapy-based nanomedicine. Among these ligands, carbohydrates have been applied due to their unique features that ameliorate the bioadhesive, noncovalent conjugation to biological tissues. In this review, the up-to-date techniques of employing carbohydrates active targeting ligands will be highlighted concerning the surface modification of the nanoparticles for ameliorating the targeting ability of the chemo/phototherapy.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Behooth St., Dokki, Giza 12622, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Behooth St., Dokki, Giza 12622, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Doaa T Gebreel
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research and Technology Institute (TRT), National Research Center, 33 El-Behooth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
36
|
Lee MF, Poh CL. Strategies to improve the physicochemical properties of peptide-based drugs. Pharm Res 2023; 40:617-632. [PMID: 36869247 DOI: 10.1007/s11095-023-03486-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Peptides are a rapid-growing class of therapeutics with unique and desirable physicochemical properties. Due to disadvantages such as low membrane permeability and susceptibility to proteolytic degradation, peptide-based drugs have limited bioavailability, a short half-life, and rapid in vivo elimination. Various strategies can be applied to improve the physicochemical properties of peptide-based drugs to overcome limitations such as limited tissue residence time, metabolic instability, and low permeability. Applied strategies including backbone modifications, side chain modifications, conjugation with polymers, modification of peptide termini, fusion to albumin, conjugation with the Fc portion of antibodies, cyclization, stapled peptides, pseudopeptides, cell-penetrating peptide conjugates, conjugation with lipids, and encapsulation in nanocarriers are discussed.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
37
|
Esfahani NP, Koupaei N, Bahreini H. Fabrication and characterization of a novel hydrogel network composed of polyvinyl alcohol/polyvinylpyrrolidone/nano-rGO as wound dressing application. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Dattilo M, Patitucci F, Prete S, Parisi OI, Puoci F. Polysaccharide-Based Hydrogels and Their Application as Drug Delivery Systems in Cancer Treatment: A Review. J Funct Biomater 2023; 14:55. [PMID: 36826854 PMCID: PMC9966105 DOI: 10.3390/jfb14020055] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Hydrogels are three-dimensional crosslinked structures with physicochemical properties similar to the extracellular matrix (ECM). By changing the hydrogel's material type, crosslinking, molecular weight, chemical surface, and functionalization, it is possible to mimic the mechanical properties of native tissues. Hydrogels are currently used in the biomedical and pharmaceutical fields for drug delivery systems, wound dressings, tissue engineering, and contact lenses. Lately, research has been focused on hydrogels from natural sources. Polysaccharides have drawn attention in recent years as a promising material for biological applications, due to their biocompatibility, biodegradability, non-toxicity, and excellent mechanical properties. Polysaccharide-based hydrogels can be used as drug delivery systems for the efficient release of various types of cancer therapeutics, enhancing the therapeutic efficacy and minimizing potential side effects. This review summarizes hydrogels' classification, properties, and synthesis methods. Furthermore, it also covers several important natural polysaccharides (chitosan, alginate, hyaluronic acid, cellulose, and carrageenan) widely used as hydrogels for drug delivery and, in particular, their application in cancer treatment.
Collapse
Affiliation(s)
- Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
39
|
Peng H, Liu Y, Xiao F, Zhang L, Li W, Wang B, Weng Z, Liu Y, Chen G. Research progress of hydrogels as delivery systems and scaffolds in the treatment of secondary spinal cord injury. Front Bioeng Biotechnol 2023; 11:1111882. [PMID: 36741755 PMCID: PMC9889880 DOI: 10.3389/fbioe.2023.1111882] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Secondary spinal cord injury (SSCI) is the second stage of spinal cord injury (SCI) and involves vasculature derangement, immune response, inflammatory response, and glial scar formation. Bioactive additives, such as drugs and cells, have been widely used to inhibit the progression of secondary spinal cord injury. However, the delivery and long-term retention of these additives remain a problem to be solved. In recent years, hydrogels have attracted much attention as a popular delivery system for loading cells and drugs for secondary spinal cord injury therapy. After implantation into the site of spinal cord injury, hydrogels can deliver bioactive additives in situ and induce the unidirectional growth of nerve cells as scaffolds. In addition, physical and chemical methods can endow hydrogels with new functions. In this review, we summarize the current state of various hydrogel delivery systems for secondary spinal cord injury treatment. Moreover, functional modifications of these hydrogels for better therapeutic effects are also discussed to provide a comprehensive insight into the application of hydrogels in the treatment of secondary spinal cord injury.
Collapse
Affiliation(s)
- Haichuan Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yongkang Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Binghan Wang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhijian Weng
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yu Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| | - Gang Chen
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| |
Collapse
|
40
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Viola M, Migliorini C, Matricardi P, Di Meo C. Synthesis and characterization of a novel amphiphilic polyacrylate-cholesterol derivative as promising material for pharmaceutical and cosmetic applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
43
|
Yoshiba K, Kawada S, Dobashi T, Yamamoto T. Adsorption dynamics of quercetin with electrospun konjac glucomannan fabric containing double stranded DNA. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels. Polymers (Basel) 2022; 14:polym14224953. [PMID: 36433079 PMCID: PMC9692448 DOI: 10.3390/polym14224953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Electroactive hydrogels based on derivatives of polyethyleneglycol (PEG), chitosan and polypyrrole were prepared via a combination of photopolymerization and oxidative chemical polymerization, and optionally doped with anions (e.g., lignin, drugs, etc.). The products were analyzed with a variety of techniques, including: FT-IR, UV-Vis, 1H NMR (solution state), 13C NMR (solid state), XRD, TGA, SEM, swelling ratios and rheology. The conductive gels swell ca. 8 times less than the non-conductive gels due to the presence of the interpenetrating network (IPN) of polypyrrole and lignin. A rheological study showed that the non-conductive gels are soft (G' 0.35 kPa, G″ 0.02 kPa) with properties analogous to brain tissue, whereas the conductive gels are significantly stronger (G' 30 kPa, G″ 19 kPa) analogous to breast tissue due to the presence of the IPN of polypyrrole and lignin. The potential of these biomaterials to be used for biomedical applications was validated in vitro by cell culture studies (assessing adhesion and proliferation of fibroblasts) and drug delivery studies (electrochemically loading the FDA-approved chemotherapeutic pemetrexed and measuring passive and stimulated release); indeed, the application of electrical stimulus enhanced the release of PEM from gels by ca. 10-15% relative to the passive release control experiment for each application of electrical stimulation over a short period analogous to the duration of stimulation applied for electrochemotherapy. It is foreseeable that such materials could be integrated in electrochemotherapeutic medical devices, e.g., electrode arrays or plates currently used in the clinic.
Collapse
|
45
|
Franc A, Vetchý D, Fülöpová N. Commercially Available Enteric Empty Hard Capsules, Production Technology and Application. Pharmaceuticals (Basel) 2022; 15:1398. [PMID: 36422528 PMCID: PMC9696354 DOI: 10.3390/ph15111398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/10/2023] Open
Abstract
Currently, there is a growing need to prepare small batches of enteric capsules for individual therapy or clinical evaluation since many acidic-sensitive substances should be protected from the stomach's acidic environment, including probiotics or fecal material, in the fecal microbiota transplantation (FMT) process. A suitable method seems to be the encapsulation of drugs or lyophilized alternatively frozen biological suspensions in commercial hard enteric capsules prepared by so-called Enteric Capsule Drug Delivery Technology (ECDDT). Manufacturers supply these types of capsules, made from pH-soluble polymers, in products such as AR Caps®, EnTRinsicTM, and Vcaps® Enteric, or capsules made of gelling polymers that release their content as the gel erodes over time when passing through the digestive tract. These include DRcaps®, EMBO CAPS® AP, BioVXR®, or ACGcaps™ HD. Although not all capsules in all formulations meet pharmaceutical requirements for delayed-release dosage forms in disintegration and dissolution tests, they usually find practical application. This literature review presents their composition and properties. Since ECDDT is a new technology, this article is based on a limited number of references.
Collapse
Affiliation(s)
- Aleš Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| | - David Vetchý
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| | - Nicole Fülöpová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| |
Collapse
|
46
|
Dynamic Double Cross-Linked Self-Healing Polysaccharide Hydrogel Wound Dressing Based on Schiff Base and Thiol-Alkynone Reactions. Int J Mol Sci 2022; 23:ijms232213817. [PMID: 36430295 PMCID: PMC9699423 DOI: 10.3390/ijms232213817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
In this study, a hydrogel composite wound dressing with antibacterial and self-healing ability was prepared using cysteine-modified carboxymethyl chitosan, sodium oxidized alginate, and but-3-yn-2-one base on Schiff base and thiol-alkynone double cross-links. The structure and properties of the hydrogel were characterized by scanning electron microscope, Fourier-transform infrared, and rheological test, followed by antibacterial and in vivo biocompatibility tests. The results showed that the hydrogel exhibited good self-healing, mechanical properties, good antibacterial effect, and in vivo biocompatibility, and can inhibit inflammation and promote skin tissue regeneration in mice. This novel self-healing hydrogel dressing has a broad application prospect in skin tissue engineering.
Collapse
|
47
|
Sun Z, Lyu F, Wu S, Lu Z, Cheng H. Ultrafast construction of partially hydrogen-bonded metal-hyaluronan networks with multiple biotissue-related features. Carbohydr Polym 2022; 295:119852. [DOI: 10.1016/j.carbpol.2022.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
|
48
|
Oliveira CBP, Gomes V, Ferreira PMT, Martins JA, Jervis PJ. Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels 2022; 8:706. [PMID: 36354614 PMCID: PMC9689023 DOI: 10.3390/gels8110706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported in this rapidly developing field. In this review, we report the latest developments in supramolecular peptide-based hydrogels for drug delivery, focusing primarily on discoveries that have been reported in the last four years (2018-present). We address clinical points, such as peptide self-assembly and drug release, mechanical properties in drug delivery, peptide functionalization, bioadhesive properties and drug delivery enhancement strategies, drug release profiles, and different hydrogel matrices for anticancer drug loading and release.
Collapse
Affiliation(s)
| | | | | | | | - Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
49
|
Alsaidan OA, Zafar A, Yasir M, Alzarea SI, Alqinyah M, Khalid M. Development of Ciprofloxacin-Loaded Bilosomes In-Situ Gel for Ocular Delivery: Optimization, In-Vitro Characterization, Ex-Vivo Permeation, and Antimicrobial Study. Gels 2022; 8:gels8110687. [PMID: 36354595 PMCID: PMC9688993 DOI: 10.3390/gels8110687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional eye drops are most commonly employed topically in the eye for the management of bacterial conjunctivitis. Eye drops have a low corneal residence time and 90−95% of the administered dose is eliminated from the eye by blinking and the nasolacrimal drainage system. This problem can be minimized by formulating a mucoadhesive ocular in-situ gel system that undergoes sol-gel transition upon stimulation by temperature, pH, and ions. The goal of this study was to develop ciprofloxacin (CIP) loaded bilosomes (BLO) in-situ gel for the improvement of therapeutic efficacy. The BLO was prepared by the thin-film hydration method and optimized by the Box−Behnken design. Cholesterol (CHO), surfactant (Span 60), and bile salt (sodium deoxycholate/SDC) were used as formulation factors. The vesicle size (nm) and entrapment efficiency (%) were selected as responses (dependent factors). The optimized CIP-BLO (CIP-BLO-opt) formulation displayed a vesicle size of 182.4 ± 9.2 nm, a polydispersity index of 0.274, a zeta potential of −34,461.51 mV, and an entrapment efficiency of 90.14 ± 1.24%. Both x-ray diffraction and differential scanning calorimetry spectra did not exhibit extensive peaks of CIP in CIP-BLO-opt, revealing that CIP is encapsulated in the BLO matrix. The CIP-BLO-opt formulation was successfully incorporated into an in-situ gel system using a gelling agent, i.e., Carbopol 934P and hydroxyl propyl methyl cellulose (HPMC K100 M). CIP-BLO-opt in-situ gel formulation (CIP-BLO-opt-IG3) was evaluated for gelling capacity, clarity, pH, viscosity, in-vitro CIP release, bio-adhesive, ex-vivo permeation, toxicity, and antimicrobial study. The CIP-BLO-opt-IG3 exhibited satisfactory gelling properties with a viscosity of 145.85 ± 9.48 cP in the gelling state. CIP-BLO-opt-IG3 displayed sustained CIP release (83.87 ± 5.24%) with Korsmeyer−Peppas kinetic as a best-fitted model (R2 = 0.9667). CIP-BLO-opt-IG3 exhibited a 1.16-fold than CIP-IG and a 2.08-fold higher permeability than pure CIP. CIP-BLO-opt-IG3 displayed a significantly greater bio-adhesion property (924.52 ± 12.37 dyne/cm2) than tear film. Further, CIP-BLO-opt-IG3 does not display any toxicity as confirmed by corneal hydration (76.15%), histology, and the HET-CAM test (zero scores). CIP-BLO-opt-IG3 shows significantly higher (p < 0.05) antimicrobial activity against P. aeruginosa and S. aureus than pure CIP. From all these findings, it could be concluded that CIP-BLO-opt-IG3 might be an effective strategy for the increment of corneal residence time and therapeutic activity of CIP.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence:
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella 396, Ethiopia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
50
|
Mohananaidu K, Chatterjee B, Mohamed F, Mahmood S, Hamed Almurisi S. Thermoreversible Carbamazepine In Situ Gel for Intranasal Delivery: Development and In Vitro, Ex Vivo Evaluation. AAPS PharmSciTech 2022; 23:288. [PMID: 36271212 DOI: 10.1208/s12249-022-02439-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Over the past decade, intranasal (IN) delivery has been gaining attention as an alternative approach to conventional drug delivery routes targeting the brain. Carbamazepine (CBZ) is available as an orally ingestible formulation. The present study aims to develop a thermoreversible in situ gelling system for delivering CBZ via IN route. A cold method of synthesis has been used to tailor and optimize the thermoreversible gel composition, using poloxamer 407 (P407) (15-20% w/v) and iota carrageenan (ɩ-Cg) (0.15-0.25% w/v). The developed in situ gel showed gelation temperatures (28-33°C), pH (4.5-6.5), rheological properties (pseudoplastic, shear thinning), and mucoadhesive strength (1755.78-2495.05 dyne/cm2). The in vitro release study has shown sustained release behavior (24 h) for gel, containing significant retardation of CBZ release. The release kinetics fit to the Korsmeyer-Peppas model, suggesting the non-Fickian diffusion type controlled release behavior. Ex vivo permeation through goat nasal mucosa showed sustained release from the gel containing 18% P407 with the highest cumulative drug permeated (243.94 µg/cm2) and a permeation flux of 10.16 µg/cm2/h. After treatment with CBZ in situ gel, the barrier function of nasal mucosa remained unaffected. Permeation through goat nasal mucosa using in situ gel has demonstrated a harmless nasal delivery, which can provide a new dimension to deliver CBZ directly to the brain bypassing the blood-brain barrier.
Collapse
Affiliation(s)
- K Mohananaidu
- AIMST University, Bukit Air Nasi 3 ½, Jalan Bedong, Semeling, Malaysia.,Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Malaysia
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L.Mehta Road, Mumbai, 400055, India.
| | - Farahidah Mohamed
- Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Samah Hamed Almurisi
- Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Malaysia
| |
Collapse
|