1
|
Sheikhi M, Nemayandeh N, Shirangi M. Peptide Acylation in Aliphatic Polyesters: a Review of Mechanisms and Inhibition Strategies. Pharm Res 2024; 41:765-778. [PMID: 38504074 DOI: 10.1007/s11095-024-03682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Biodegradable polyesters are widely employed in the development of controlled release systems for peptide drugs. However, one of the challenges in developing a polyester-based delivery system for peptides is the acylation reaction between peptides and polymers. Peptide acylation is an important factor that affects formulation stability and can occur during storage, in vitro release, and after drug administration. This review focuses on the mechanisms and parameters that influence the rate of peptide acylation within polyesters. Furthermore, it discusses reported strategies to minimize the acylation reaction.
Collapse
Affiliation(s)
- Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Tehran, Iran
| | - Nasrin Nemayandeh
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Tehran, Iran
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Sheikhi M, Sharifzadeh M, Hennink WE, Firoozpour L, Hajimahmoodi M, Khoshayand MR, Shirangi M. Design of experiments approach for the development of a validated method to determine the exenatide content in poly(lactide-co-glycolide) microspheres. Eur J Pharm Biopharm 2023; 192:56-61. [PMID: 37783361 DOI: 10.1016/j.ejpb.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Due to the lack of pharmacopeia guidelines for injectable microspheres based on poly (D, L-lactide-co-glycolide) (PLGA), an internal method validation is a critical prerequisite for quality assurance. One of the essential issues of developing peptide-based drugs loaded PLGA microspheres is the precise determination of the amount of peptide drug entrapped in the microspheres. The aim of this study is the development and optimization of a method for measuring the drug content loading of PLGA microspheres using exenatide as a model peptide drug. Exenatide-loaded PLGA microspheres were prepared by a double emulsion solvent evaporation method. The extraction method to determine exenatide content in microspheres was optimized using Design of Experiments (DoE) approach. After the initial screening of six factors, using Fractional Factorial design (FFD), four of them, including type of organic solvent, buffer/organic solvent ratio (v/v), shaking time and pH, exhibited significant effects on the response, namely the exenatide loading, and a Box-Behnken design (BBD) was subsequently applied to obtain its optimum level. The optimum level for organic solvent volume, buffer/organic solvent ratio, shaking time, and pH were 4 ml, 1, 5.6 hrs, and pH 6, respectively. The exenatide content in microspheres under these conditions was 6.4 ± 0.0 (%w/w), whereas a value of 6.1% was predicted by the derived equation. This excellent agreement between the actual and the predicted value demonstrates that the fitted model can thus be used to determine the exenatide content.
Collapse
Affiliation(s)
- Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mannan Hajimahmoodi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran.
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran.
| |
Collapse
|
3
|
Gonella A, Grizot S, Liu F, López Noriega A, Richard J. Long-acting injectable formulation technologies: Challenges and opportunities for the delivery of fragile molecules. Expert Opin Drug Deliv 2022; 19:927-944. [PMID: 35899474 DOI: 10.1080/17425247.2022.2105318] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The development of long acting injectables (LAIs) for protein and peptide therapeutics has been a key challenge over the last 20 years. If these molecules offer advantages due to their high specificity and selectivity, their controlled release may confer several additional benefits in terms of extended half-life, local delivery, and patient compliance. AREA COVERED This manuscript aims to give an overview of peptide and protein based LAIs from an industrial perspective, describing both approved and promising technologies (with exceptions of protein engineering strategies and devices), their advantages and potential improvements to aid their access to the market. EXPERT OPINION Many LAIs have been developed for peptides, with formulations on the market for several decades. On the contrary, LAIs for proteins are still far from the market and issues related to manufacturing and sterilization of these products still need to be overcome. In situ forming depots (ISFDs), whose simple manufacturing conditions and easy administration procedures (without reconstitution) are strong advantages, appear as one of the most promising technologies for the delivery of these molecules. In this regard, the approval of ELIGARD® in the early 2000's (which still requires a complex reconstitution process), paved the way for the development of second-generation, ready-to-use ISFD technologies like BEPO® and FluidCrystal®.
Collapse
Affiliation(s)
- Andrea Gonella
- MedinCell S.A. - 3 rue des Frères Lumiere, 34830, Jacou, France
| | | | - Fang Liu
- MedinCell S.A. - 3 rue des Frères Lumiere, 34830, Jacou, France
| | | | - Joël Richard
- MedinCell S.A. - 3 rue des Frères Lumiere, 34830, Jacou, France
| |
Collapse
|
4
|
Hydroxypropyl methyl cellulose derivatives stabilize fragment antibody against aggregation in spray dried formulations at elevated temperature and resist pH changes. Eur J Pharm Biopharm 2022; 178:105-116. [DOI: 10.1016/j.ejpb.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/19/2022]
|
5
|
Beig A, Ackermann R, Wang Y, Schutzman R, Schwendeman SP. Minimizing the initial burst of octreotide acetate based long-acting microspheres by the solvent evaporation method. Int J Pharm 2022; 624:121842. [DOI: 10.1016/j.ijpharm.2022.121842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
|
6
|
Beig A, Feng L, Walker J, Ackermann R, Hong JKY, Li T, Wang Y, Schwendeman SP. Development and characterization of composition-equivalent formulations to the Sandostatin LAR® by the solvent evaporation method. Drug Deliv Transl Res 2022; 12:695-707. [PMID: 34215997 DOI: 10.1007/s13346-021-01013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 10/20/2022]
Abstract
Sandostatin long-acting release® (SLAR) is a long-acting injectable somatostatin analogue formulation composed of octreotide encapsulated in glucose-initiated poly(lactic-co-glycolic acid) (PLGA) microspheres. Despite the end of patent protection, SLAR remains resistant to generic competition likely due to complexity of production process, the uniqueness of the glucose star polymer, and the instability of octreotide in the formulation. Here, we describe development of glucose-PLGA-based composition-equivalent to SLAR formulations prepared by double emulsion-solvent evaporation method and the effect of variations in encapsulation variables on release kinetics and other formulation characteristics. The following encapsulation variables were adjusted at constant theoretical loading of 7.0% peptide: PLGA concentration, pH of inner water phase, and stirring rate. After final drying, the microspheres were examined with and without annealing at 50 °C under vacuum for 3 days. The loading and encapsulation efficiency (EE) of octreotide acetate, manufacturing yield, and in vitro drug release kinetics in PBStc (10 mM phosphate-buffered saline (PBS) with 1% triethyl citrate and 0.02% sodium azide at pH 7.4) were determined by UPLC. The in vitro release and acylation kinetics of octreotide for the solvent evaporation formulations prepared were similar to SLAR although the initial burst was slightly higher. Key formulation steps identified to maximize microsphere yield and minimize residual solvent and initial burst release included (a) addition of acetic acid to the peptide before preparation and (b) annealing the microspheres under vacuum after drying. Controlled release octreotide formulations prepared and investigated in this study could provide a better understanding of the effect of production variables on release performance and supply information useful for making progress in manufacturing of SLAR generic equivalents.
Collapse
Affiliation(s)
- Avital Beig
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Linglin Feng
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Jennifer Walker
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Rose Ackermann
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Justin K Y Hong
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Tinghui Li
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Yan Wang
- Evaluation and Research, Office of Research and Standards, Office of Generic Drugs, Center for Drug, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MA, 20993, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Kim Y, Park EJ, Kim TW, Na DH. Recent Progress in Drug Release Testing Methods of Biopolymeric Particulate System. Pharmaceutics 2021; 13:1313. [PMID: 34452274 PMCID: PMC8399039 DOI: 10.3390/pharmaceutics13081313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Biopolymeric microparticles have been widely used for long-term release formulations of short half-life chemicals or synthetic peptides. Characterization of the drug release from microparticles is important to ensure product quality and desired pharmacological effect. However, there is no official method for long-term release parenteral dosage forms. Much work has been done to develop methods for in vitro drug release testing, generally grouped into three major categories: sample and separate, dialysis membrane, and continuous flow (flow-through cell) methods. In vitro drug release testing also plays an important role in providing insight into the in vivo performance of a product. In vitro release test with in vivo relevance can reduce the cost of conducting in vivo studies and accelerate drug product development. Therefore, investigation of the in vitro-in vivo correlation (IVIVC) is increasingly becoming an essential part of particulate formulation development. This review summarizes the principles of the in vitro release testing methods of biopolymeric particulate system with the recent research articles and discusses their characteristics including IVIVC, accelerated release testing methods, and stability of encapsulated drugs.
Collapse
Affiliation(s)
- Yejin Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.K.); (T.W.K.)
- G2GBIO, Inc., Daejeon 34054, Korea
| | | | - Tae Wan Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.K.); (T.W.K.)
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.K.); (T.W.K.)
| |
Collapse
|
8
|
Molinier C, Picot-Groz M, Malval O, Le Lamer-Déchamps S, Richard J, Lopez-Noriega A, Grizot S. Impact of octreotide counterion nature on the long-term stability and release kinetics from an in situ forming depot technology. J Control Release 2021; 336:457-468. [PMID: 34214596 DOI: 10.1016/j.jconrel.2021.06.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 01/03/2023]
Abstract
The generation of acylated impurities has represented an important hurdle in the development of long acting injectables for therapeutic peptides using biocompatible polymers with a polyester moiety. We investigated here an in situ forming depot (ISFD) technology that uses polyethylene glycol - polyester copolymers and a solvent exchange mechanism to promote depot formation. This technology has shown promise in formulating small molecules as well as therapeutic proteins. In the present work, using the well-known somatostatin analog octreotide acetate (OctAc) as a model molecule, we evaluated this delivery platform to release therapeutic peptides. Peptide acylation was found to be pronounced in the formulation, while it was very limited once the depot was formed and during the release process. The octreotide acylation pattern was fully characterized by LC-MS/MS. Moreover, it was demonstrated that exchanging the acetate anion with more hydrophobic counterions like pamoate or lauryl sulfate allowed to greatly improve the peptide stability profile, as well as the formulation release performance. Finally, the in vivo evaluation through pharmacokinetics studies in rat of these new octreotide salts in ISFD formulations showed that octreotide was quantifiable up to four weeks post-administration with a high bioavailability and an acceptable initial burst.
Collapse
Affiliation(s)
| | | | - Océane Malval
- MedinCell, 3 Rue des Frères Lumière, 34830 Jacou, France
| | | | - Joël Richard
- MedinCell, 3 Rue des Frères Lumière, 34830 Jacou, France
| | | | | |
Collapse
|
9
|
Omidi M, Mansouri V, Mohammadi Amirabad L, Tayebi L. Impact of Lipid/Magnesium Hydroxide Hybrid Nanoparticles on the Stability of Vascular Endothelial Growth Factor-Loaded PLGA Microspheres. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24370-24384. [PMID: 34006111 PMCID: PMC9328745 DOI: 10.1021/acsami.0c22140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The purpose of the present study is to characterize poly(d,l-lactide-co-glycolide) (PLGA) composite microcarriers for vascular endothelial growth factor (VEGF) delivery. To reduce the initial burst release and protect the bioactivity, VEGF is encapsulated in soybean l-α-phosphatidylethanolamine (PE) and l-α-phosphatidylcholine (PC) anhydrous reverse micelle (VEGF-RM) nanoparticles. Also, mesoporous nano-hexagonal Mg(OH)2 nanostructure (MNS)-loaded PE/PC anhydrous reverse micelle (MNS-RM) nanoparticles are synthesized to suppress the induced inflammation of PLGA acidic byproducts and regulate the release profile. The flow-focusing microfluidic geometry platforms are used to fabricate different combinations of PLGA composite microspheres (PLGA-CMPs) with MNSs, MNS-RM, VEGF-RM, and native VEGF. The essential parameters of each formulation, such as release profiles, encapsulation efficacy, bioactivity, inflammatory response, and cytotoxicity, are investigated by in vitro and in vivo studies. The results indicate that generated acidic byproducts during the hydrolytic degradation process of PLGA can be buffered, and pH values inside and outside microspheres can remain steady during degradation by MNSs. Furthermore, the significant improvement in the stability of the encapsulated VEGF is confirmed by the bioactivity assay. In vitro release study shows that the VEGF initial burst release is well minimized in the present microcarriers. The present monodisperse PLGA-CMPs can be widely used in various tissue engineering and therapeutic applications.
Collapse
Affiliation(s)
- Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53201-1881, United States
- Protein Research Center, Shahid Beheshti University G.C., Tehran 19839-69411, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical sciences, Tehran 19857-17443, Iran
- Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
10
|
Hong JKY, Schwendeman SP. Characterization of Octreotide-PLGA Binding by Isothermal Titration Calorimetry. Biomacromolecules 2020; 21:4087-4093. [PMID: 32885949 DOI: 10.1021/acs.biomac.0c00885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cationic peptides are well known to readily bind poly(lactic-co-glycolic acids) (PLGAs) with a carboxylic acid (-COOH) end group, which poses a significant challenge to develop PLGA-based delivery systems for peptide therapeutics. This binding has been considered as a critical step leading to the peptide acylation within PLGA-based formulations, which is also known to affect microencapsulation and release. Herein, we utilized nano isothermal titration calorimetry (NanoITC) to investigate the thermodynamics of peptide-PLGA binding in dimethyl sulfoxide (DMSO) using a model cationic octapeptide, octreotide, which contains two primary amino groups located at its N-terminus and lysine side chain at position five. ITC results of PLGAs with different lactic acid to glycolic acid ratios (50:50 to 100:0) revealed that the extent of the interaction with the octreotide was solely dependent on the availability of the acid end group of the PLGA. The binding constants (Ka) at 37 °C were determined in a narrow range from 1.33 to 1.72 × 104 M-1 with 0.59 to 0.66 binding stoichiometries irrespective of the lactic/glycolic acid ratio in the PLGA-COOH. Over 25-65 °C, the octreotide-PLGA-COOH interactions were found to be enthalpically favored (ΔH < 0) and entropically unfavorable (ΔS < 0). Hence, the interactions were characterized as enthalpically driven. At different sodium chloride (NaCl) levels, the sensitivity of thermodynamics of the interactions to the charge screening effect contributed by the NaCl unveiled the actual driving force of the octreotide-PLGA-COOH interactions is simple ion-pairing.
Collapse
Affiliation(s)
- Justin K Y Hong
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan 48109, United States
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan 48109, United States.,Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Zhang C, Yang L, Wan F, Bera H, Cun D, Rantanen J, Yang M. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int J Pharm 2020; 585:119441. [PMID: 32442645 DOI: 10.1016/j.ijpharm.2020.119441] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
Adopting the Quality by Design (QbD) approach in the drug development process has transformed from "nice-to-do" into a crucial and required part of the development, ensuring the quality of pharmaceutical products throughout their whole life cycles. This review is discussing the implementation of the QbD thinking into the production of long-acting injectable (LAI) PLGA/PLA-based microspheres for the therapeutic peptide and protein drug delivery. Various key elements of the QbD approaches are initially elaborated using Bydureon®, a commercial product of LAI PLGA/PLA-based microspheres, as a classical example. Subsequently, the factors influencing the release patterns and the stability of the peptide and protein drugs are discussed. This is followed by a summary of the state-of-the-art of manufacturing LAI PLGA/PLA-based microspheres and the related critical process parameters (CPPs). Finally, a landscape of generic product development of LAI PLGA/PLA-based microspheres is reviewed including some major challenges in the field.
Collapse
Affiliation(s)
- Chengqian Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China
| | - Liang Yang
- CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Company, Ltd, Huanghe Road 226, 050035 Shijiazhuang, China
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Park H, Ha DH, Ha ES, Kim JS, Kim MS, Hwang SJ. Effect of Stabilizers on Encapsulation Efficiency and Release Behavior of Exenatide-Loaded PLGA Microsphere Prepared by the W/O/W Solvent Evaporation Method. Pharmaceutics 2019; 11:E627. [PMID: 31771254 PMCID: PMC6955873 DOI: 10.3390/pharmaceutics11120627] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to investigate the effects of various stabilizers on the encapsulation efficiency and release of exenatide-loaded PLGA (poly(lactic-co-glycolic acid)) microspheres prepared by the water-in-oil-in-water (W/O/W) solvent evaporation (SE) method. It was shown that the stabilizers affected exenatide stability in aqueous solutions, at water/dichloromethane interfaces, on PLGA surfaces, or during freeze-thawing and freeze-drying procedures. Sucrose predominantly reduces instability generated during freeze-thawing and freeze-drying. Phenylalanine prevents the destabilization at the water-dichloromethane (DCM) interface through decreased adsorption. Poloxamer 188 enhances stability in aqueous solutions and prevents adsorption to PLGA. Proline and lysine decrease adsorption on PLGA surfaces. Fourier transform infra-red spectroscopy (FT-IR) was used to find the molecular interaction of additives with exenatide or PLGA. Additives used in stability assessments were then added stepwise into the inner or outer water phase of the W/O/W double emulsion, and exenatide-loaded microspheres were prepared using the solvent evaporation method. The effect of each stabilizer on the encapsulation efficiency and release behavior of microspheres correlated well with the stability assessment results, except for the negative effect of poloxamer 188. Particle size analysis using laser diffractometry, scanning electron microscopy (SEM), water vapor sorption analysis, differential scanning calorimetry (DSC), and circular dichroism (CD) spectroscopy were also employed to characterize the prepared exenatide-loaded PLGA microsphere. This study demonstrated that an adequate formulation can be obtained by the study about the effect of stabilizers on peptide stability at the preformulation step. In addition, it can help to overcome various problems that can cause the destabilization of a peptide during the microsphere-manufacturing process and sustained drug release.
Collapse
Affiliation(s)
- Heejun Park
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (H.P.); (D.-H.H.); (E.-S.H.)
| | - Dong-Hyun Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (H.P.); (D.-H.H.); (E.-S.H.)
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (H.P.); (D.-H.H.); (E.-S.H.)
| | - Jeong-Soo Kim
- Dong-A ST Co., Ltd., Giheung-gu, Yongin, Gyeonggi 446-905, Korea;
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (H.P.); (D.-H.H.); (E.-S.H.)
| | - Sung-Joo Hwang
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
| |
Collapse
|
13
|
Liu J, Xu Y, Liu Z, Ren H, Meng Z, Liu K, Liu Z, Yong J, Wang Y, Li X. A modified hydrophobic ion-pairing complex strategy for long-term peptide delivery with high drug encapsulation and reduced burst release from PLGA microspheres. Eur J Pharm Biopharm 2019; 144:217-229. [DOI: 10.1016/j.ejpb.2019.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
|
14
|
Mechanistic Evaluation of the Opposite Effects on Initial Burst Induced by Two Similar Hydrophilic Additives From Octreotide Acetate–Loaded PLGA Microspheres. J Pharm Sci 2019; 108:2367-2376. [DOI: 10.1016/j.xphs.2019.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
|
15
|
Wang T, Zhang C, Zhong W, Yang X, Wang A, Liang R. Modification of Three-Phase Drug Release Mode of Octreotide PLGA Microspheres by Microsphere-Gel Composite System. AAPS PharmSciTech 2019; 20:228. [PMID: 31227940 DOI: 10.1208/s12249-019-1438-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
In order to obtain sustained release of biodegradable microspheres, the purpose of this study was to design and characterize an injectable octreotide microsphere-gel composite system. The octreotide microspheres were prepared by phase separation method, which used PLGA as a carrier material, dimethyl silicone oil as a phase separation reagent, and n-heptane-Span 80 as a hardener. In addition, we used poloxamer 407 (PL 407) and poloxamer 188 (PL 188) as the thermosensitive gel matrix material. The composite system was obtained by scattering octreotide microspheres in a poloxamer gel. In vitro data showed that the release time of the composite system could last for about 50 days. Because of the blocking and control actions of the poloxamer gel, the initial burst release was significantly reduced and the plateau phase was eliminated. Pharmacokinetic data showed that the burst release of the composite system was significantly less than that of the microspheres, i.e., Cmax1 was reduced by about half. From day 2 to day 50, higher plasma concentration levels and more stable drug release behavior were exhibited. In addition, the good biocompatibility of the composite system in vivo was also demonstrated by hematoxylin-eosin (HE) staining. Therefore, the octreotide microsphere-gel composite system will be a new direction for hydrophilic polypeptide/protein-loaded sustained release dosage forms with high pharmacological activity.
Collapse
|
16
|
Liu J, Xu Y, Wang Y, Ren H, Meng Z, Liu K, Liu Z, Huang H, Li X. Proton Oriented-"Smart Depot" for Responsive Release of Ca 2+ to Inhibit Peptide Acylation in PLGA Microspheres. Pharm Res 2019; 36:119. [PMID: 31165279 DOI: 10.1007/s11095-019-2640-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this study was to characterize and detail the mechanism of a smart Ca2+ release depot (Ca3(PO4)2) about its ability for sustainable inhibition on peptide acylation within PLGA microspheres. METHODS The octreotide acetate release and acylation kinetics were analyzed by RP-HPLC. Changes of Ca2+ concentration and adsorption behavior were determined by a Calcium Colorimetric Assay Kit. The inner pH changes were delineated by a classic pH sensitive probe, Lysosensor yellow/ blue® dextran. Morphological changes of microspheres, adsorption between polymer and additive, transformation of Ca3(PO4)2 were characterized using SEM, FTIR and SSNMR separately. RESULTS Before and after microspheres formulation, the property and effectiveness of Ca3(PO4)2 were investigated. Compared with a commonly used calcium salt (CaCl2), high encapsulation efficiency (96.56%) of Ca3(PO4)2 guarantees lasting effectiveness. In an increasingly acidic environment that simulated polymer degradation, the poorly water-soluble Ca3(PO4)2 could absorb protons and transform into the more and more soluble CaHPO4 and Ca(H2PO4)2 to produce sufficient Ca2+ according to severity of acylation. The corresponding Ca2+ produce capacity fully met the optimum inhibition requirement since the real-time adsorption sites (water-soluble carboxylic acids) inside the degrading microspheres were rare. A sustained retention of three switchable calcium salts and slow release of Ca2+ were observed during the microsphere incubation. FTIR results confirmed the long-term inhibition effect induced by Ca3(PO4)2 on the adsorption between drug and polymer. CONCLUSIONS With the presence of the smart Ca2+ depot (Ca3(PO4)2) in the microspheres, a sustainable and long-term inhibition of peptide acylation was achieved.
Collapse
Affiliation(s)
- Jiwei Liu
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Yan Xu
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Yonglu Wang
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Zhengjie Meng
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Kuntang Liu
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Zhe Liu
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - He Huang
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China.
| |
Collapse
|
17
|
Effect of inner pH on peptide acylation within PLGA microspheres. Eur J Pharm Sci 2019; 134:69-80. [DOI: 10.1016/j.ejps.2019.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/07/2019] [Accepted: 04/14/2019] [Indexed: 01/31/2023]
|
18
|
Guo N, Zhang Q, Sun Y, Yang H. Separation and identification of acylated leuprorelin inside PLGA microspheres. Int J Pharm 2019; 560:273-281. [PMID: 30731258 DOI: 10.1016/j.ijpharm.2019.01.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/11/2019] [Accepted: 01/27/2019] [Indexed: 12/15/2022]
Abstract
Studies have shown that the N-terminus and lysine side residue of peptides are prone to acylation in poly(d,l-lactide-co-glycolide) (PLGA) microspheres. Peptides such as leuprorelin lack a free N-terminus or lysine and only contain serine, arginine, and tyrosine as nucleophilic residues. The purpose of this study was to detect potential acylation impurities and determine their corresponding acylation sites in commercial leuprorelin-loaded PLGA microspheres. Commercial samples from three vendors were selected as targets for our study. The high-performance liquid chromatography (HPLC) conditions of the European Pharmacopoeia were used to separate and collect impurities. HPLC-tandem mass spectrometry (HPLC-MS/MS) was applied to confirm both the structure and acylation sites of the impurities. Our study demonstrated that impurities originating from both degradation of microspheres and synthesis of leuprorelin were well separated and identified using these HPLC conditions. HPLC-MS/MS analysis of acylated leuprorelin showed that diglycoyl, lactoyl-glycoyl, dilactoyl, and monolactoyl groups were conjugated to serine in leuprorelin-loaded PLGA microspheres. This is the first report showing serine to be the acylation site in peptide-loaded PLGA microspheres. Separation and identification of acylated leuprorelin derivatives will assist in minimising acylation and guiding the development of quality control for commercial leuprorelin-loaded PLGA microspheres.
Collapse
Affiliation(s)
- Ningzi Guo
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 102629, China
| | - Qi Zhang
- Genova Biotechnology Corporation, No. 7, Hanshan Road, Xinbei District, Changzhou 213125, China
| | - Yue Sun
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 102629, China
| | - Huaxin Yang
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 102629, China.
| |
Collapse
|
19
|
Nanaki S, Barmpalexis P, Papakonstantinou Z, Christodoulou E, Kostoglou M, Bikiaris DN. Preparation of New Risperidone Depot Microspheres Based on Novel Biocompatible Poly(Alkylene Adipate) Polyesters as Long-Acting Injectable Formulations. J Pharm Sci 2018; 107:2891-2901. [PMID: 30096352 DOI: 10.1016/j.xphs.2018.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/29/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Risperidone (RIS)-loaded microspheres based on poly(alkylene adipate)s derived from dicarboxylic acids and different aliphatic diols were prepared by the oil in water emulsion and solvent evaporation method. Specifically, 3 polyesters, namely poly(ethylene adipate), poly(propylene adipate), and poly(butylene adipate), were prepared with the aid of a 2-stage melt-polycondensation method and characterized by gel permeation chromatography, proton nuclear magnetic resonance (1H NMR), differential scanning calorimetry, and X-ray diffraction analysis. Results showed that the molecular weight of the polyesters increased as the diol molecular weight increased, while all polymers were of semi-crystalline nature and the melting temperature was varying from 49.1°C to 51.8°C and 65.9°C for poly(propylene adipate), poly(ethylene adipate), and poly(butylene adipate), respectively. The particle size of the RIS-loaded microspheres varied from 10 to 100 μm depending on the polyester type and the drug loading, while X-ray diffraction analysis revealed amorphous active pharmaceutical ingredient in the cases of high drug-loaded microspheres. In vitro drug release studies along with scanning electron microscopy images of microspheres after the completion of dissolution process showed that in all cases RIS release was controlled by the glass transition temperature of polyesters and physical state of active pharmaceutical ingredients via diffusion.
Collapse
Affiliation(s)
- Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Zoi Papakonstantinou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
20
|
Ernst J, Klinger-Strobel M, Arnold K, Thamm J, Hartung A, Pletz MW, Makarewicz O, Fischer D. Polyester-based particles to overcome the obstacles of mucus and biofilms in the lung for tobramycin application under static and dynamic fluidic conditions. Eur J Pharm Biopharm 2018; 131:120-129. [PMID: 30063969 DOI: 10.1016/j.ejpb.2018.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Pulmonary infections with Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) are difficult to treat and related with high mortality in some diseases like cystic fibrosis due to the recurrent formation of biofilms. The biofilm formation hinders efficient treatment with inhaled antibiotics due to a low penetration of the antibiotics through the polyanionic biofilm matrix and increased antimicrobial resistance of the biofilm-embedded bacteria. In this study, tobramycin (Tb) was encapsulated in particles based on poly(d,l,-lactide-co-glycolide) (PLGA) and poly(ethylene glycol)-co-poly(d,l,-lactide-co-glycolide) diblock (PEG-PLGA) to overcome the biofilm barrier with particle sizes of 225-231 nm (nanoparticles) and 896-902 nm (microparticles), spherical shape and negative zeta potentials. The effectiveness against biofilms of P. aeruginosa and B. cepacia was strongly enhanced by the encapsulation under fluidic experimental condition as well as under static conditions in artificial mucus. The biofilm-embedded bacteria were killed by less than 0.77 mg/l encapsulated Tb, whereas 1,000 mg/l of free Tb or the bulk mixtures of Tb and the particles were ineffective against the biofilms. Moreover, encapsulated Tb was even effective against biofilms of the intrinsically aminoglycoside-resistant B. cepacia, indicating a supportive effect of PEG and PLGA on Tb. No cytotoxicity was detected in vitro in human lung epithelial cells with any formulation.
Collapse
Affiliation(s)
- Julia Ernst
- Pharmaceutical Technology and Biopharmacy, Institute for Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Mareike Klinger-Strobel
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Kathrin Arnold
- Pharmaceutical Technology and Biopharmacy, Institute for Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Jana Thamm
- Pharmaceutical Technology and Biopharmacy, Institute for Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Anita Hartung
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Oliwia Makarewicz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.
| | - Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Institute for Pharmacy, Friedrich Schiller University Jena, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
21
|
Cossé A, König C, Lamprecht A, Wagner KG. Hot Melt Extrusion for Sustained Protein Release: Matrix Erosion and In Vitro Release of PLGA-Based Implants. AAPS PharmSciTech 2017; 18:15-26. [PMID: 27193002 DOI: 10.1208/s12249-016-0548-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022] Open
Abstract
The design of biodegradable implants for sustained release of proteins is a complex challenge optimizing protein polymer interaction in combination with a mini-scale process which is predictive for production. The process of hot melt extrusion (HME) was therefore conducted on 5- and 9-mm mini-scale twin screw extruders. Poly(lactic-co-glycolic acid) (PLGA) implants were characterized for their erosion properties and the in vitro release of the embedded protein (bovine serum albumin, BSA). The release of acidic monomers as well as other parameters (pH value, mass loss) during 16 weeks indicated a delayed onset of matrix erosion in week 3. BSA-loaded implants released 17.0% glycolic and 5.9% lactic acid after a 2-week lag time. Following a low burst release (3.7% BSA), sustained protein release started in week 4. Storage under stress conditions (30°C, 75% rH) revealed a shift of erosion onset of 1 week (BSA-loaded implants: 26.9% glycolic and 9.3% lactic acid). Coherent with the changed erosion profiles, an influence on the protein release was observed. Confocal laser scanning and Raman microscopy showed a homogenous protein distribution throughout the matrix after extrusion and during release studies. Raman spectra indicated a conformational change of the protein structure which could be one reason for incomplete protein release. The study underlined the suitability of the HME process to obtain a solid dispersion of protein inside a polymeric matrix providing sustained protein release. However, the incomplete protein release and the impact by storage conditions require thorough characterization and understanding of erosion and release mechanisms.
Collapse
|
22
|
Shirangi M, Najafi M, Rijkers DTS, Kok RJ, Hennink WE, van Nostrum CF. Inhibition of Octreotide Acylation Inside PLGA Microspheres by Derivatization of the Amines of the Peptide with a Self-Immolative Protecting Group. Bioconjug Chem 2016; 27:576-85. [PMID: 26726953 DOI: 10.1021/acs.bioconjchem.5b00598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acylation of biopharmaceuticals such as peptides has been identified as a major obstacle for the successful development of PLGA controlled release formulations. The purpose of this study was to develop a method to inhibit peptide acylation in poly(d,l-lactide-co-glycolide) (PLGA) formulations by reversibly and temporarily blocking the amine groups of a model peptide (octreotide) with a self-immolative protecting group (SIP), O-4-nitrophenyl-O'-4-acetoxybenzyl carbonate. The octreotide with two self-immolative protecting groups (OctdiSIP) on the N-terminus and lysine side chain was synthesized by reaction of the peptide with O-4-nitrophenyl-O'-4-acetoxybenzyl carbonate, purified by preparative RP-HPLC and characterized by mass spectrometry. Degradation studies of OctdiSIP in aqueous solutions of different pH values showed that protected octreotide was stable at low pH (pH 5) whereas the protecting group was eliminated at physiological pH, especially in the presence of an esterase, to generate native octreotide. OctdiSIP encapsulated in PLGA microspheres, prepared using a double emulsion solvent evaporation method, showed substantial inhibition of acylation as compared to the unprotected octreotide: 52.5% of unprotected octreotide was acylated after 50 days incubation of microspheres in PBS pH 7.4 at 37 °C, whereas OctdiSIP showed only 5.0% acylation in the same time frame. In conclusion, the incorporation of self-immolative protection groups provides a viable approach for inhibition of acylation of peptides in PLGA delivery systems.
Collapse
Affiliation(s)
- Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science , Tehran 1417614411, Iran
| | | | | | | | | | | |
Collapse
|
23
|
Extended release microparticle-in-gel formulation of octreotide: Effect of polymer type on acylation of peptide during in vitro release. Int J Pharm 2015; 496:676-88. [PMID: 26561725 DOI: 10.1016/j.ijpharm.2015.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/25/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022]
Abstract
Polymeric microparticles (MPs)-in-gel formulations for extended delivery of octreotide were developed. We investigated influence of polymer composition on acylation of octreotide and kinetics of release during in vitro release from biodegradable polymeric formulations. Polycaprolactone (PCL), polylactic acid (PLA), polyglycolic acid (PGA) and polyethylene glycol (PEG) based triblock (TB≈PCL10k-PEG2k-PCL10k) and pentablock (PBA≈PLA3k-PCL7k-PEG2k-PCL7k-PLA3k and PBB≈PGA3k-PCL7k-PEG2k-PCL7k-PGA3k) polymers were investigated. Octreotide was encapsulated in MPs using methanol-oil/water emulsion solvent evaporation method. The particles were characterized for size, morphology, encapsulation efficiency, drug loading and in vitro release. Release samples were subjected to HPLC analysis for quantitation and HPLC-MS analysis for identification of native and chemically modified octreotide adducts. Entrapment efficiency of methanol-oil/water method with TB, PBA and PBB polymers were 45%, 60%, and 82%, respectively. A significant fraction of released octreotide was acylated from lactide and glycolide based PBA (53%) and PBB (92%) polymers. Substantial amount of peptide was not released from PBB polymers after 330 days of incubation. Complete release of octreotide was achieved from TB polymer over a period of 3 months with minimal acylation of peptide (13%). PCL based polymers resulted in minimal acylation of peptide and hence may be suitable for extended peptide and protein delivery. Conversely, polymers having PLA and PGA blocks may not be appropriate for peptide delivery due to acylation and incomplete release.
Collapse
|
24
|
Balmert SC, Zmolek AC, Glowacki AJ, Knab TD, Rothstein SN, Wokpetah JM, Fedorchak MV, Little SR. Positive Charge of "Sticky" Peptides and Proteins Impedes Release From Negatively Charged PLGA Matrices. J Mater Chem B 2015; 3:4723-4734. [PMID: 26085928 PMCID: PMC4465798 DOI: 10.1039/c5tb00515a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The influence of electrostatic interactions and/or acylation on release of charged ("sticky") agents from biodegradable polymer matrices was systematically characterized. We hypothesized that release of peptides with positive charge would be hindered from negatively charged poly(lactic-co-glycolic acid) (PLGA) microparticles. Thus, we investigated release of peptides with different degrees of positive charge from several PLGA microparticle formulations, with different molecular weights and/or end groups (acid- or ester-terminated). Indeed, release studies revealed distinct inverse correlations between the amount of positive charge on peptides and their release rates from each PLGA microparticle formulation. Furthermore, we examined the case of peptides with net charge that changes from negative to positive within the pH range observed in degrading microparticles. These charge changing peptides displayed counterintuitive release kinetics, initially releasing faster from slower degrading (less acidic) microparticles, and releasing slower from the faster degrading (more acidic) microparticles. Importantly, trends between agent charge and release rates for model peptides also translated to larger, therapeutically relevant proteins and oligonucleotides. The results of these studies may improve future design of controlled release systems for numerous therapeutic biomolecules exhibiting positive charge, ultimately reducing time-consuming and costly trial and error iterations of such formulations.
Collapse
Affiliation(s)
- Stephen C. Balmert
- Department of Bioengineering, University of Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
| | - Andrew C. Zmolek
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
| | - Andrew J. Glowacki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
| | - Timothy D. Knab
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
| | - Sam N. Rothstein
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
| | | | - Morgan V. Fedorchak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
- Department of Ophthalmology, University of Pittsburgh, PA, USA
| | - Steven R. Little
- Department of Bioengineering, University of Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
- Department of Chemical Engineering, University of Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, PA, USA
| |
Collapse
|
25
|
Reversible hydrophobic ion-paring complex strategy to minimize acylation of octreotide during long-term delivery from PLGA microparticles. Int J Pharm 2015; 489:237-45. [PMID: 25940041 DOI: 10.1016/j.ijpharm.2015.04.075] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 11/22/2022]
Abstract
Acylation of peptide has been reported for a number of peptides and proteins during release from polymers comprising of lactide and glycolide. We hypothesize that reversible hydrophobic ion-pairing (HIP) complex may minimize octreotide acylation during release. Sodium dodecyl sulfate (SDS), dextran sulfate A (DSA, Mw 9-20 kDa) and dextran sulfate B (DSB, Mw 36-50 kDa) were selected as ion-pairing agents to prepare reversible HIP complex with octreotide. Complexation efficiency was optimized with respect to the mole ratio of ion-pairing agent to octreotide to achieve 100% complexation of octreotide. Dissociation studies suggested that DSA-octreotide and DSB-octreotide complexes dissociate completely at physiological pH in presence of counter ions unlike SDS-octreotide complex. DSA-octreotide and DSB-octreotide complex encapsulated PLGA microparticles (DSAMPs and DSBMPs) were prepared using the S/O/W emulsion method. Entrapment efficiencies for DSAMPs and DSBMPs were 74.7±8.4% and 81.7±6.3%, respectively. In vitro release of octreotide was performed by suspending MPs in gel. A large fraction of peptide was released in chemically intact form and <7% was acylated from DSAMPs and DSBMPs in gel over 55 days. Therefore, HIP complexation could be a viable strategy to minimize acylation of peptides and proteins during extended release from lactide and glycolide based polymers.
Collapse
|
26
|
Shirangi M, Hennink WE, Somsen GW, van Nostrum CF. Identification and Assessment of Octreotide Acylation in Polyester Microspheres by LC-MS/MS. Pharm Res 2015; 32:3044-54. [PMID: 25832500 PMCID: PMC4526596 DOI: 10.1007/s11095-015-1685-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/20/2015] [Indexed: 01/29/2023]
Abstract
Purpose Polyesters with hydrophilic domains, i.e., poly(d,l-lactic-co-glycolic-co-hydroxymethyl glycolic acid) (PLGHMGA) and a multiblock copolymer of poly(ε-caprolactone)-PEG-poly(ε-caprolactone) and poly(l-lactide) ((PC-PEG-PC)-(PL)) are expected to cause less acylation of encapsulated peptides than fully hydrophobic matrices. Our purpose is to assess the extent and sites of acylation of octreotide loaded in microspheres using tandem mass spectrometry analysis. Methods Octreotide loaded microspheres were prepared by a double emulsion solvent evaporation technique. Release profiles of octreotide from hydrophilic microspheres were compared with that of PLGA microspheres. To scrutinize the structural information and localize the actual modification site(s) of octreotide, liquid chromatography ion-trap mass spectrometry (LC-ITMS) was performed on the acylated adducts. Results Hydrophilic microspheres showed less acylated adducts in comparison with PLGA microspheres. LC-MS/MS showed that besides the N-terminus and primary amine of lysine, the primary hydroxyl of the end group of octreotide was also subjected to acylation. Nucleophilic attack of the peptide can also occur to the carbamate bond presented in (PC-PEG-PC)-(PL) since 1,4-butanediisocyanate was used as the chain extender. Conclusions Hydrophilic polyesters are promising systems for controlled release of peptide because substantially less acylation occurs in microspheres based on these polymers. LC-ITMS provided detailed structural information of octreotide modifications via mass analysis of ion fragments. Electronic supplementary material The online version of this article (doi:10.1007/s11095-015-1685-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mehrnoosh Shirangi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
27
|
Zhu T, Chen S, Li W, Lou J, Wang J. Flurbiprofen axetil loaded coaxial electrospun poly(vinyl pyrrolidone)-nanopoly(lactic-co-glycolic acid) core-shell composite nanofibers: Preparation, characterization, and anti-adhesion activity. J Appl Polym Sci 2015. [DOI: 10.1002/app.41982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tonghe Zhu
- School of Fashion Design; Shanghai University of Engineering Science; Shanghai 201620 People's Republic of China
- Multidisciplinary Center for Advanced Materials; Shanghai University of Engineering Science; Shanghai 201620 People's Republic of China
| | - Sihao Chen
- Multidisciplinary Center for Advanced Materials; Shanghai University of Engineering Science; Shanghai 201620 People's Republic of China
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; Shanghai 201620 People's Republic of China
| | - Wenyao Li
- School of Materials Engineering; Shanghai University of Engineering Science; Shanghai 201620 People's Republic of China
| | - Jianzhong Lou
- Multidisciplinary Center for Advanced Materials; Shanghai University of Engineering Science; Shanghai 201620 People's Republic of China
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; Shanghai 201620 People's Republic of China
- Department of Chemical Engineering and Biomedical Engineering; North Carolina A&T State University; 1601 East Market Street Greensboro North Carolina 27411
| | - Jihu Wang
- Multidisciplinary Center for Advanced Materials; Shanghai University of Engineering Science; Shanghai 201620 People's Republic of China
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; Shanghai 201620 People's Republic of China
| |
Collapse
|
28
|
Microcosmic mechanism of dication for inhibiting acylation of acidic Peptide. Pharm Res 2015; 32:2310-7. [PMID: 25585955 DOI: 10.1007/s11095-015-1622-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE For long-effective peptide formulation based on poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres, acylation often leads to peptide instability during its release and reduced drug efficacy. Among the reported solving strategies, adding dication such as Ca(2+) and Mn(2+) in the formulation was the most convenient method for inhibiting basic peptide acylation. However, the strategies for the acidic peptide still remain unexplored, possibly due to the peptide's changeable charge state in acid environment within degraded PLGA microspheres. Moreover, the previous studies mainly focusing on the macroscopical adsorption of peptide to PLGA cannot demonstrate the inhibition mechanism. METHODS Acylation inhibition for acidic peptide (exenatide) by dications (Ca(2+), Mn(2+) and Zn(2+)) was studied for the first time, and Quartz Crystal Microbalance with Dissipation (QCM-D) was innovatively employed to analyze microcosmic mechanism of the inhibition. RESULTS These dications played different roles in acylation inhibition of acidic peptide. The effects of dications on acylation outside or inside PLGA microspheres indicated that Ca(2+) did not work, Mn(2+) played a weak role, and Zn(2+) possessed the greatest inhibition. CONCLUSIONS Zn(2+) was the most effective dication for the acylation inhibition because of the complex formation and its steric-hindrance effect, which was a new function for this dication.
Collapse
|
29
|
Lim SM, Eom HN, Jiang HH, Sohn M, Lee KC. Evaluation of PEGylated Exendin-4 Released from Poly (Lactic-co-Glycolic Acid) Microspheres for Antidiabetic Therapy. J Pharm Sci 2015; 104:72-80. [DOI: 10.1002/jps.24238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 11/10/2022]
|
30
|
Rahimian S, Kleinovink JW, Fransen MF, Mezzanotte L, Gold H, Wisse P, Overkleeft H, Amidi M, Jiskoot W, Löwik CW, Ossendorp F, Hennink WE. Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine: In vivo tracking and evaluation of antigen-specific CD8(+) T cell immune response. Biomaterials 2014; 37:469-77. [PMID: 25453974 DOI: 10.1016/j.biomaterials.2014.10.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/05/2014] [Indexed: 11/29/2022]
Abstract
Particulate antigen delivery systems aimed at the induction of antigen-specific T cells form a promising approach in immunotherapy to replace pharmacokinetically unfavorable soluble antigen formulations. In this study, we developed a delivery system using the model protein antigen ovalbumin (OVA) encapsulated in nanoparticles based on the hydrophilic polyester poly(lactide-co-hydroxymethylglycolic acid) (pLHMGA). Spherical nanoparticles with size 300-400 nm were prepared and characterized and showed a strong ability to deliver antigen to dendritic cells for cross-presentation to antigen-specific T cells in vitro. Using near-infrared (NIR) fluorescent dyes covalently linked to both the nanoparticle and the encapsulated OVA antigen, we tracked the fate of this formulation in mice. We observed that the antigen and the nanoparticles are efficiently co-transported from the injection site to the draining lymph nodes, in a more gradual and durable manner than soluble OVA protein. OVA-loaded pLHMGA nanoparticles efficiently induced antigen cross-presentation to OVA-specific CD8+ T cells in the lymph nodes, superior to soluble OVA vaccination. Together, these data show the potential of pLHMGA nanoparticles as attractive antigen delivery vehicles.
Collapse
Affiliation(s)
- Sima Rahimian
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jan Willem Kleinovink
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Mezzanotte
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henrik Gold
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Patrick Wisse
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Hermen Overkleeft
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Maryam Amidi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Clemens W Löwik
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Schwendeman SP, Shah RB, Bailey BA, Schwendeman AS. Injectable controlled release depots for large molecules. J Control Release 2014; 190:240-53. [PMID: 24929039 PMCID: PMC4261190 DOI: 10.1016/j.jconrel.2014.05.057] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/28/2014] [Indexed: 11/23/2022]
Abstract
Biodegradable, injectable depot formulations for long-term controlled drug release have improved therapy for a number of drug molecules and led to over a dozen highly successful pharmaceutical products. Until now, success has been limited to several small molecules and peptides, although remarkable improvements have been accomplished in some of these cases. For example, twice-a-year depot injections with leuprolide are available compared to the once-a-day injection of the solution dosage form. Injectable depots are typically prepared by encapsulation of the drug in poly(lactic-co-glycolic acid) (PLGA), a polymer that is used in children every day as a resorbable suture material, and therefore, highly biocompatible. PLGAs remain today as one of the few "real world" biodegradable synthetic biomaterials used in US FDA-approved parenteral long-acting-release (LAR) products. Despite their success, there remain critical barriers to the more widespread use of PLGA LARproducts, particularly for delivery of more peptides and other large molecular drugs, namely proteins. In this review, we describe key concepts in the development of injectable PLGA controlled-release depots for peptides and proteins, and then use this information to identify key issues impeding greater widespread use of PLGA depots for this class of drugs. Finally, we examine important approaches, particularly those developed in our research laboratory, toward overcoming these barriers to advance commercial LAR development.
Collapse
Affiliation(s)
- Steven P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, The Biointerfaces Institute, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Ronak B Shah
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Brittany A Bailey
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Anna S Schwendeman
- Department of Medicinal Chemistry, The Biointerfaces Institute, North Campus Research Complex, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Acylation of Exenatide by Glycolic Acid and its Anti-Diabetic Activities in db/db Mice. Pharm Res 2014; 31:1958-66. [DOI: 10.1007/s11095-014-1298-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
|
33
|
Sophocleous AM, Desai KGH, Mazzara JM, Tong L, Cheng JX, Olsen KF, Schwendeman SP. The nature of peptide interactions with acid end-group PLGAs and facile aqueous-based microencapsulation of therapeutic peptides. J Control Release 2013; 172:662-70. [PMID: 24021356 DOI: 10.1016/j.jconrel.2013.08.295] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
An important poorly understood phenomenon in controlled-release depots involves the strong interaction between common cationic peptides and low Mw free acid end-group poly(lactic-co-glycolic acids) (PLGAs) used to achieve continuous peptide release kinetics. The kinetics of peptide sorption to PLGA was examined by incubating peptide solutions of 0.2-4mM octreotide or leuprolide acetate salts in a 0.1M HEPES buffer, pH7.4, with polymer particles or films at 4-37°C for 24h. The extent of absorption/loading of peptides in PLGA particles/films was assayed by two-phase extraction and amino acid analysis. Confocal Raman microspectroscopy, stimulated Raman scattering (SRS) and laser scanning confocal imaging, and microtome sectioning techniques were used to examine peptide penetration into the polymer phase. The release of sorbed peptide from leuprolide-PLGA particles was evaluated both in vitro (PBST+0.02% sodium azide, 37°C) and in vivo (male Sprague-Dawley rats). We found that when the PLGA-COOH chains are sufficiently mobilized, therapeutic peptides not only bind at the surface, a common belief to date, but also can be internalized and distributed throughout the polymer phase at physiological temperature forming a salt with low-molecular weight PLGA-COOH. Importantly, absorption of leuprolide into low MW PLGA-COOH particles yielded ~17 wt.% leuprolide loading in the polymer (i.e., ~70% of PLGA-COOH acids occupied), and the absorbed peptide was released from the polymer for >2 weeks in a controlled fashion in vitro and as indicated by sustained testosterone suppression in male Sprague-Dawley rats. This new approach, which bypasses the traditional encapsulation method and associated production cost, opens up the potential for facile production of low-cost controlled-release injectable depots for leuprolide and related peptides.
Collapse
|
34
|
Liang R, Li X, Shi Y, Wang A, Sun K, Liu W, Li Y. Effect of water on exenatide acylation in poly(lactide-co-glycolide) microspheres. Int J Pharm 2013; 454:344-53. [DOI: 10.1016/j.ijpharm.2013.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/30/2013] [Accepted: 07/02/2013] [Indexed: 11/25/2022]
|
35
|
Thatcher JE, Welch T, Eberhart RC, Schelly ZA, DiMaio JM. Thymosin β4 sustained release from poly(lactide-co-glycolide) microspheres: synthesis and implications for treatment of myocardial ischemia. Ann N Y Acad Sci 2013; 1270:112-9. [PMID: 23050826 DOI: 10.1111/j.1749-6632.2012.06681.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A sustained release formulation for the therapeutic peptide thymosin β4 (Tβ4) that can be localized to the heart and reduce the concentration and frequency of dose is being explored as a means to improve its delivery in humans. This review contains concepts involved in the delivery of peptides to the heart and the synthesis of polymer microspheres for the sustained release of peptides, including Tβ4. Initial results of poly(lactic-co-glycolic acid) microspheres synthesized with specific tolerances for intramyocardial injection that demonstrate the encapsulation and release of Tβ4 from double-emulsion microspheres are also presented.
Collapse
Affiliation(s)
- Jeffrey E Thatcher
- Department of Cardiothoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | | | |
Collapse
|
36
|
Zhang Y, Schwendeman SP. Minimizing acylation of peptides in PLGA microspheres. J Control Release 2012; 162:119-26. [PMID: 22546683 DOI: 10.1016/j.jconrel.2012.04.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/04/2012] [Accepted: 04/14/2012] [Indexed: 11/16/2022]
Abstract
The main objective of this study was to characterize and find mechanisms to prevent acylation of therapeutic peptides encapsulated in glucose-star poly(d,l-lactic-co-glycolic acid) (PLGA) microspheres. The effect of addition of divalent cation salts CaCl(2), MnCl(2) as well as carboxymethyl chitosan (CMCS) on inhibition of acylation of octreotide (Oct), salmon calcitonin (sCT), and human parathyroid hormone (hPTH) was evaluated. Peptide content and integrity inside the degrading microspheres was monitored by reversed-phase high performance liquid chromatography (HPLC) and mass spectrometry during release incubation under physiological conditions. The extent of peptide acylation was strongly inhibited in the formulations containing divalent cations and/or CMCS as excipients, although specific effects were dependent on the specific peptide and excipient combinations. Both inorganic cations improved stability of Oct and hPTH but not sCT. Addition of CMCS alone was ineffective. Combining inorganic cations with CMCS improved stability of Oct and sCT but it had no effect on hPTH stability. The operative stabilization mechanisms are consistent with blocking peptide-PLGA interactions by a) directly competing for PLGA interactions with dications and/or b) increasing peptide affinity in the stabilizer phase within PLGA pores. Hence, inorganic multivalent cations are general stabilizers against peptide acylation, the effect of which may be augmented in certain instances with addition of CMCS.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | | |
Collapse
|
37
|
Affiliation(s)
- Tina Vermonden
- Department of Pharmaceutics, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
38
|
Ahn JH, Park EJ, Lee HS, Lee KC, Na DH. Reversible blocking of amino groups of octreotide for the inhibition of formation of acylated peptide impurities in poly(lactide-co-glycolide) delivery systems. AAPS PharmSciTech 2011; 12:1220-6. [PMID: 21935743 DOI: 10.1208/s12249-011-9694-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 09/12/2011] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to develop a novel method to inhibit the formation of acylated peptide impurities in poly(D,L-lactide-co-glycolide) (PLGA) formulations by reversely blocking the amino groups of octreotide with maleic anhydride (MA). Two mono-MA conjugates with different modification sites (N terminus and Lys residue) and di-MA conjugate of octreotide were prepared and isolated by reversed-phase high-performance liquid chromatography (RP-HPLC). The polymer interaction of peptides and the formation of acylated peptides were monitored by RP-HPLC. The stability of MA-octreotide conjugates in PLGA films was studied in 0.1 M phosphate buffer (pH 7.4) at 37°C. The conjugation of MA to octreotide substantially inhibited the interaction of peptide with PLGA polymer and the subsequent formation of acylated peptide impurities. The MA-octreotides were successfully converted to intact octreotide as pH drops by PLGA hydrolysis. In PLGA films, MA-octreotide also showed complete inhibition of peptide acylation. In conclusion, MA conjugation provides a viable approach for stabilizing peptides in PLGA delivery systems.
Collapse
|
39
|
Rhee YS, Sohn M, Woo BH, Thanoo BC, DeLuca PP, Mansour HM. Sustained-release delivery of octreotide from biodegradable polymeric microspheres. AAPS PharmSciTech 2011; 12:1293-301. [PMID: 21948321 DOI: 10.1208/s12249-011-9693-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 09/12/2011] [Indexed: 11/30/2022] Open
Abstract
The study reports on the drug release behavior of a potent synthetic somatostatin analogue, octreotide acetate, from biocompatible and biodegradable microspheres composed of poly-lactic-co-glycolic acid (PLGA) following a single intramuscular depot injection. The serum octreotide levels of three Oakwood Laboratories formulations and one Sandostatin LAR(®) formulation were compared. Three formulations of octreotide acetate-loaded PLGA microspheres were prepared by a solvent extraction and evaporation procedure using PLGA polymers with different molecular weights. The in vivo drug release study was conducted in male Sprague-Dawley rats. Blood samples were taken at predetermined time points for up to 70 days. Drug serum concentrations were quantified using a radioimmunoassay procedure consisting of radiolabeled octreotide. The three octreotide PLGA microsphere formulations and Sandostatin LAR(®) all showed a two-phase drug release profile (i.e., bimodal). The peak serum drug concentration of octreotide was reached in 30 min for all formulations followed by a decline after 6 h. Following this initial burst and decline, a second-release phase occurred after 3 days. This second-release phase exhibited sustained-release behavior, as the drug serum levels were discernible between days 7 and 42. Using pharmacokinetic computer simulations, it was estimated that the steady-state octreotide serum drug levels would be predicted to fall in the range of 40-130 pg/10 μL and 20-100 pg/10 μL following repeat dosing of the Oakwood formulations and Sandostatin LAR(®) every 28 days and every 42 days at a dose of 3 mg/rat, respectively.
Collapse
|
40
|
The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review. Int J Pharm 2011; 415:34-52. [DOI: 10.1016/j.ijpharm.2011.05.049] [Citation(s) in RCA: 722] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/08/2011] [Accepted: 05/09/2011] [Indexed: 01/07/2023]
|
41
|
Ghassemi AH, van Steenbergen MJ, Barendregt A, Talsma H, Kok RJ, van Nostrum CF, Crommelin DJA, Hennink WE. Controlled release of octreotide and assessment of peptide acylation from poly(D,L-lactide-co-hydroxymethyl glycolide) compared to PLGA microspheres. Pharm Res 2011; 29:110-20. [PMID: 21744173 PMCID: PMC3246586 DOI: 10.1007/s11095-011-0517-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/15/2011] [Indexed: 11/24/2022]
Abstract
Purpose To investigate the in vitro release of octreotide acetate, a somatostatin agonist, from microspheres based on a hydrophilic polyester, poly(D,L-lactide-co-hydroxymethyl glycolide) (PLHMGA). Methods Spherical and non-porous octreotide-loaded PLHMGA microspheres (12 to 16 μm) and loading efficiency of 60–70% were prepared by a solvent evaporation. Octreotide release profiles were compared with commercial PLGA formulation (Sandostatin LAR®); possible peptide modification with lactic, glycolic and hydroxymethyl glycolic acid units was monitored. Results PLHMGA microspheres showed burst release (~20%) followed by sustained release for 20–60 days, depending on the hydrophilicity of the polymer. Percentage of released loaded peptide was high (70–90%); > 60% of released peptide was native octreotide. PLGA microspheres did not show peptide release for the first 10 days, after which it was released in a sustained manner over the next 90 days; > 75% of released peptides were acylated adducts. Conclusions PLHMGA microspheres are promising controlled systems for peptides with excellent control over release kinetics. Moreover, substantially less peptide modification occurred in PLHMGA than in PLGA microspheres. Electronic Supplementary Material The online version of this article (doi:10.1007/s11095-011-0517-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amir H Ghassemi
- Department of Pharmaceutics Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Preparation and characterization of poly(lactic-co-glycolic acid) microspheres loaded with a labile antiparkinson prodrug. Int J Pharm 2011; 409:289-96. [DOI: 10.1016/j.ijpharm.2011.02.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/27/2011] [Accepted: 02/21/2011] [Indexed: 11/23/2022]
|
43
|
Jeon O, Krebs M, Alsberg E. Controlled and sustained gene delivery from injectable, porous PLGA scaffolds. J Biomed Mater Res A 2011; 98:72-9. [DOI: 10.1002/jbm.a.33098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 11/11/2022]
|
44
|
Na DH. Effect of Peptide Charge on the Formation of Acylated Peptide Impurities in PLGA Formulations. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2011. [DOI: 10.4333/kps.2011.41.2.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE. Functional aliphatic polyesters for biomedical and pharmaceutical applications. J Control Release 2011; 152:168-76. [PMID: 21223989 DOI: 10.1016/j.jconrel.2010.12.016] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/08/2010] [Accepted: 12/23/2010] [Indexed: 11/28/2022]
Abstract
Functional aliphatic polyesters are biodegradable polymers with many possibilities to tune physico-chemical characteristics such as hydrophilicity and degradation rate as compared to traditional polyesters (e.g. PLLA, PLGA and PCL), making the materials suitable for drug delivery or as scaffolds for tissue engineering. Lately, a large number of polyesters have been synthesized by homopolymerization of functionalized monomers or co-polymerization with other monomers mainly via ring-opening polymerization (ROP) of cyclic esters. This review presents the recent trends in the synthesis of these materials and their application for protein delivery and tissue engineering.
Collapse
Affiliation(s)
- Hajar Seyednejad
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J Control Release 2010; 150:150-6. [PMID: 21115078 DOI: 10.1016/j.jconrel.2010.11.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 11/15/2010] [Accepted: 11/21/2010] [Indexed: 11/20/2022]
Abstract
In this work, carbohydrate nanoparticles were created to prolong the efficacy of antimicrobial peptide against pathogens. Nisin and Listeria monocytogenes were used as the peptide and pathogen models, respectively, and phytoglycogen (PG)-based nanoparticles were developed as carriers of nisin. PG from su1 mutant maize was subjected to β-amylolysis as well as subsequent succinate or octenyl succinate substitutions. The goal was to minimize the loss of peptide during storage and meanwhile realize an effective release in the presence of bacteria. The capabilities of PG derivatives as carriers of nisin were evaluated using centrifugal ultrafiltration, zeta-potential, and the initial availability of nisin against L. monocytogenes. All methods indicated that nisin loading was favored by a high degree of substitution (DS), presence of hydrophobic octenyl moiety, and β-amylolysis of PG nanoparticles. To evaluate the prolonged nisin efficacy, preparations containing nisin and PG derivatives were loaded into a BHI-agar deep-well model (mimicking nisin depletion at the nutrient-containing surface). The residual inhibitory activities of preparations against L. monocytogenes were monitored during 21 days of storage at 4 °C. The results showed that all PG derivatives led to the prolonged retention of nisin activity and the longest retention was associated with high DS, β-amylolysis, and octenyl succinate. Evidently, both electrostatic and hydrophobic interactions are the driving forces of nisin adsorption, and the glucan structure at the nanoparticle surface also affects nisin loading and retention during storage.
Collapse
|
47
|
Ghassemi AH, van Steenbergen MJ, Talsma H, van Nostrum CF, Crommelin DJA, Hennink WE. Hydrophilic polyester microspheres: effect of molecular weight and copolymer composition on release of BSA. Pharm Res 2010; 27:2008-17. [PMID: 20602152 PMCID: PMC2916118 DOI: 10.1007/s11095-010-0205-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/23/2010] [Indexed: 11/24/2022]
Abstract
Purpose To study the release of a model protein, bovine serum albumin (BSA), from microspheres of an hydroxylated aliphatic polyester, poly(lactic-co-hydroxymethyl glycolic acid) (PLHMGA). Methods BSA-loaded microspheres were prepared by a double emulsion solvent evaporation method. The effect of copolymer composition and the molecular weight of the copolymer on in vitro release and degradation were studied. The integrity of the released BSA was studied by fluorescence spectroscopy and size exclusion chromatography (SEC). Results Microspheres prepared from PLHMGA with 50% hydroxymethyl glycolic acid (HMG) showed a burst release followed by a sustained release in 5–10 days. PLHMGA microspheres prepared from a copolymer with 35% and 25% HMG showed a sustained release of BSA up to 80% for 30 and 60 days, respectively. The release of BSA was hardly affected by the molecular weight of the polymer. Fluorescence spectroscopy and SEC showed that the released BSA preserved its structural integrity. Microspheres were fully degradable, and the degradation time increased from ~20 days to 60 days when the HMG content decreased from 50% to 25%. Conclusions Taking the degradation and release data together, it can be concluded that the release of BSA from PLHMGA microspheres is governed by degradation of the microspheres.
Collapse
Affiliation(s)
- Amir H Ghassemi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, Sorbonnelaan 16, 3508 TB, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Separation of positional isomers of mono-poly(ethylene glycol)-modified octreotides by reversed-phase high-performance liquid chromatography. J Chromatogr A 2009; 1216:7793-7. [DOI: 10.1016/j.chroma.2009.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/02/2009] [Accepted: 09/09/2009] [Indexed: 11/21/2022]
|
49
|
Zhang Y, Sophocleous AM, Schwendeman SP. Inhibition of peptide acylation in PLGA microspheres with water-soluble divalent cationic salts. Pharm Res 2009; 26:1986-94. [PMID: 19533307 DOI: 10.1007/s11095-009-9914-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 05/20/2009] [Indexed: 11/26/2022]
Abstract
PURPOSE To test the potential of water-soluble divalent cationic salts to inhibit acylation of octreotide encapsulated in poly(D,L-lactic-co-glycolic acid)-star (PLGA) microspheres. METHODS The divalent cationic salts, calcium chloride and manganese chloride, previously shown to disrupt peptide sorption, were introduced in PLGA microspheres prepared by the double emulsion-solvent evaporation method. Peptide stability was monitored by reversed-phase high performance liquid chromatography (RP-HPLC) and identified by liquid chromatography coupled with mass spectrometry (LC-MS) during microsphere degradation under physiological conditions for 4 weeks. Microsphere morphology and salt content were examined by scanning electron microscopy (SEM) and inductively coupled plasma-optical emission spectroscopy (ICP-OES), respectively. RESULTS Addition of divalent cationic salts solely to the organic phase did not provide acylation inhibition. However, addition of the salt inhibitors to both the primary emulsion and the outer water phase resulted in improved drug and salt encapsulation efficiency as well as significantly decreased salt leaching and octreotide acylation. After 28 days, the extent of acylation inhibition afforded by divalent cations was > 58% relative to 13% for the NaCl control group. CONCLUSIONS Water-soluble divalent cationic salts represent a suitable class of stabilizer of peptide acylation in PLGA microspheres and this study provides an important formulation approach to maximize stabilizer potency.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|