1
|
Lawson JL, Sekar RP, Wright ARE, Wheeler G, Yanes J, Estridge J, Johansen CG, Farnsworth NL, Kumar P, Tay JW, Kumar R. The Spatial Distribution of Lipophilic Cations in Gradient Copolymers Regulates Polymer-pDNA Complexation, Polyplex Aggregation, and Intracellular pDNA Delivery. Biomacromolecules 2024; 25:6855-6870. [PMID: 39318335 DOI: 10.1021/acs.biomac.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Here, we demonstrate that the spatial distribution of lipophilic cations governs the complexation pathways, serum stability, and biological performance of polymer-pDNA complexes (polyplexes). Previous research focused on block/statistical copolymers, whereas gradient copolymers, where the density of lipophilic cations diminishes (gradually or steeply) along polymer backbones, remain underexplored. We engineered gradient copolymers that combine the polyplex colloidal stability of block copolymers with the transfection efficiency of statistical copolymers. We synthesized length- and compositionally equivalent gradient copolymers (G1-G3) along with statistical (S) and block (B) copolymers of 2-(diisopropylamino)ethyl methacrylate and 2-hydroxyethyl methacrylate. We mapped how polymer microstructure governs pDNA loading per polyplex, pDNA conformational changes, and polymer-pDNA binding thermodynamics via static light scattering, circular dichroism spectroscopy, and isothermal titration calorimetry, respectively. While gradient steepness is a powerful design handle to improve polyplex physical properties, augment pDNA delivery capacity, and attenuate polycation-triggered hemolysis, microstructural contrasts did not elicit differences in complement activation.
Collapse
Affiliation(s)
- Jessica L Lawson
- Materials Science, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ram Prasad Sekar
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Aryelle R E Wright
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Grant Wheeler
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jillian Yanes
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jordan Estridge
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Chelsea G Johansen
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Nikki L Farnsworth
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Praveen Kumar
- Shared Instrumentation Facility, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jian Wei Tay
- Biofrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Ramya Kumar
- Materials Science, Colorado School of Mines, Golden, Colorado 80401, United States
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Yun H, Wang K, Zhang J, Peng G, Zhao H. Construction of Peptide-Lipoic Acid Cationic Polymers with Redox Responsiveness and Low Toxicity for Gene Delivery. ACS OMEGA 2024; 9:3499-3506. [PMID: 38284089 PMCID: PMC10809251 DOI: 10.1021/acsomega.3c07194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024]
Abstract
As gene therapy continues to evolve, the development of safe and effective cationic polymer carriers is critical. In this work, three polymers have been prepared by ring-opening polymerization on the basis of peptide-lipoic acid monomers. By adjusting the sequence of the peptides, redox-responsive cationic polymers with different positive charge numbers were obtained, as well as investigating their performance as gene carriers. The results showed that the polymers complexed with negatively charged genes by electrostatic interaction and successfully transported the genes into the cells, additionally degrading and releasing the genes under glutathione (GSH) conditions. Furthermore, the polymers as gene carriers in different cell lines demonstrated lower cytotoxicity, with an excellent cell survival rate of 8 times higher than the "gold standard" polyethylenimine (PEI) at the same concentration. In vitro transfection experiments showed that the polymers successfully released and transfected genes into cells, demonstrating their immense potential in gene therapy.
Collapse
Affiliation(s)
- Hui Yun
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kang Wang
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Zhang
- Shandong
Pharmaceutical Glass Co., Ltd., Zibo 256100, China
| | - Guofeng Peng
- Shandong
Rike Chemical Co., Ltd, Changle 262400, China
| | - Hui Zhao
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Chen CW, Saubi N, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting HIV-1 P18I10 Peptide: Expression, Purification, Bio-Physical Properties and Immunogenicity in BALB/c Mice. Int J Mol Sci 2023; 24:ijms24098060. [PMID: 37175776 PMCID: PMC10179162 DOI: 10.3390/ijms24098060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Human papillomavirus (HPV) vaccines based on HPV L1 virus-like particles (VLPs) are already licensed but not accessible worldwide. About 38.0 million people were living with HIV in 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against both viruses are an urgent need. In this study, the HIV-1 P18I10 CTL peptide from the V3 loop of HIV-1 gp120 glycoprotein was inserted into the HPV16 L1 protein to construct chimeric HPV:HIV (L1:P18I10) VLPs. Instead of the traditional baculovirus expression vector/insect cell (BEVS/IC) system, we established an alternative mammalian 293F cell-based expression system using cost-effective polyethylenimine-mediated transfection for L1:P18I10 protein production. Compared with conventional ultracentrifugation, we optimized a novel chromatographic purification method which could significantly increase L1:P18I10 VLP recovery (~56%). Chimeric L1:P18I10 VLPs purified from both methods were capable of self-assembling to integral particles and shared similar biophysical and morphological properties. After BALB/c mice immunization with 293F cell-derived and chromatography-purified L1:P18I10 VLPs, almost the same titer of anti-L1 IgG (p = 0.6409) was observed as Gardasil anti-HPV vaccine-immunized mice. Significant titers of anti-P18I10 binding antibodies (p < 0.01%) and P18I10-specific IFN-γ secreting splenocytes (p = 0.0002) were detected in L1:P18I10 VLP-immunized mice in comparison with licensed Gardasil-9 HPV vaccine. Furthermore, we demonstrated that insertion of HIV-1 P18I10 peptide into HPV16 L1 capsid protein did not affect the induction in anti-L1 antibodies. All in all, we expected that the mammalian cell expression system and chromatographic purification methods could be time-saving, cost-effective, scalable platforms to engineer bivalent VLP-based vaccines against HPV and HIV-1.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Narcís Saubi
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| |
Collapse
|
5
|
Xu H, Moon C, Sahakijpijarn S, Dao HM, Alzhrani RF, Wang JL, Williams RO, Cui Z. Aerosolizable Plasmid DNA Dry Powders Engineered by Thin-film Freezing. Pharm Res 2023; 40:1141-1152. [PMID: 36703028 PMCID: PMC9879621 DOI: 10.1007/s11095-023-03473-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE This study was designed to test the feasibility of using thin-film freezing (TFF) to prepare aerosolizable dry powders of plasmid DNA (pDNA) for pulmonary delivery. METHODS Dry powders of pDNA formulated with mannitol/leucine (70/30, w/w) with various drug loadings, solid contents, and solvents were prepared using TFF, their aerosol properties (i.e., mass median aerodynamic diameter (MMAD) and fine particle fraction (FPF)) were determined, and selected powders were used for further characterization. RESULTS Of the nine dry powders prepared, their MMAD values were about 1-2 µm, with FPF values (delivered) of 40-80%. The aerosol properties of the powders were inversely correlated with the pDNA loading and the solid content in the pDNA solution before TFF. Powders prepared with Tris-EDTA buffer or cosolvents (i.e., 1,4-dioxane or tert-butanol in water), instead of water, showed slightly reduced aerosol properties. Ultimately, powders prepared with pDNA loading at 5% (w/w), 0.25% of solid content, with or without Tris-EDTA were selected for further characterization due to their overall good aerosol performance. The pDNA powders exhibited a porous matrix structure, with a moisture content of < 2% (w/w). Agarose gel electrophoresis confirmed the chemical integrity of the pDNA after it was subjected to TFF and after the TFF powder was actuated. A cell transfection study confirmed that the activity of the pDNA did not change after it was subjected to TFF. CONCLUSION It is feasible to use TFF to produce aerosolizable pDNA dry powder for pulmonary delivery, while preserving the integrity and activity of the pDNA.
Collapse
Affiliation(s)
- Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | | | - Huy M. Dao
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Riyad F. Alzhrani
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jie-liang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Robert O. Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
6
|
Gao D, Xu X, Liu L, Liu L, Zhang X, Liang X, Cen L, Liu Q, Yuan X, Yu Z. Combination of Peglated-H1/HGFK1 Nanoparticles and TAE in the Treatment of Hepatocellular Carcinoma. Appl Biochem Biotechnol 2023; 195:505-518. [PMID: 36094649 PMCID: PMC9832107 DOI: 10.1007/s12010-022-04153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/14/2023]
Abstract
Transarterial embolization (TAE) constitutes the gold standard for the treatment of hepatocellular carcinoma. The effect of combination of TAE and peglated-H1/HGFK1 nanoparticles was explored on hepatocellular carcinoma. MTT and Annexin V-FITC were used to determine the cell viability and apoptosis of HepG2, ml-1, LO2, and VX2 cells after the treatment of HGFK1. Next, the orthotopic rabbit was selected to establish the in situ models of VX2 hepatocellular carcinoma. Nanoparticles were synthesized with peglated-PH1 and used to deliver HGFK1 overexpressing plasmids. MRI was performed to monitor tumor volume after being treated with TAE. The protein expression levels of CD31, CD90, and Ki67 were determined by immunohistochemistry. H&E and TUNEL staining were used to determine the necrosis and apoptosis in vivo. HGFK1 significantly inhibited the proliferation and increased the apoptosis of HepG2 and ml-1 cells (P < 0.05). MRI on 14 days after modeling suggested that the tumor showed ring enhancement. MRI on 7 days and 14 days after interventional therapy showed that tumor volume was significantly inhibited after the treatment with TAE and HGFK1 (P < 0.05). The immunohistochemical results 7 days after interventional therapy indicated that the expressions of CD31, CD90, and Ki67 were significantly lower after treatment with TAE and HGFK1 (P < 0.05). TAE and HGFK1 all extended the survival period of rabbits (P < 0.05). PH1/HGFK1 nanoparticle is an innovative and effective embolic agent, which could limit angiogenesis post-TAE treatment. The combination of TAE with PH1/HGFK1 is a promising strategy and might alter the way that surgeons manage hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Dazhi Gao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029 China ,Department of Interventional Therapy, Jinling Hospital Affiliated to Nanjing University, Nanjing, 210002 China
| | - Xiangxian Xu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Ling Liu
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 China
| | - Li Liu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Xiang Zhang
- Medical Imaging College, Xuzhou Medical University, Xuzhou, 221004 China
| | - Xianxian Liang
- Medical Imaging College, Xuzhou Medical University, Xuzhou, 221004 China
| | - Lanqi Cen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Qian Liu
- Department of Pharmacy, Xuzhou Infectious Disease Hospital, Xuzhou, 221004 China
| | - Xiaoli Yuan
- Department of Psychiatry, Jinling Hospital Affiliated to Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu Province China
| | - Zhenghong Yu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029 China ,Department of Oncology, Jinling Hospital Affiliated to Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210029 Jiangsu Province China
| |
Collapse
|
7
|
Combined Magnetic Hyperthermia and Photothermia with Polyelectrolyte/Gold-Coated Magnetic Nanorods. Polymers (Basel) 2022; 14:polym14224913. [PMID: 36433039 PMCID: PMC9693010 DOI: 10.3390/polym14224913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Magnetite nanorods (MNRs) are synthesized based on the use of hematite nanoparticles of the desired geometry and dimensions as templates. The nanorods are shown to be highly monodisperse, with a 5:1 axial ratio, and with a 275 nm long semiaxis. The MNRs are intended to be employed as magnetic hyperthermia and photothermia agents, and as drug vehicles. To achieve a better control of their photothermia response, the particles are coated with a layer of gold, after applying a branched polyethyleneimine (PEI, 2 kDa molecular weight) shell. Magnetic hyperthermia is performed by application of alternating magnetic fields with frequencies in the range 118-210 kHz and amplitudes up to 22 kA/m. Photothermia is carried out by subjecting the particles to a near-infrared (850 nm) laser, and three monochromatic lasers in the visible spectrum with wavelengths 480 nm, 505 nm, and 638 nm. Best results are obtained with the 505 nm laser, because of the proximity between this wavelength and that of the plasmon resonance. A so-called dual therapy is also tested, and the heating of the samples is found to be faster than with either method separately, so the strengths of the individual fields can be reduced. Due to toxicity concerns with PEI coatings, viability of human hepatoblastoma HepG2 cells was tested after contact with nanorod suspensions up to 500 µg/mL in concentration. It was found that the cell viability was indistinguishable from control systems, so the particles can be considered non-cytotoxic in vitro. Finally, the release of the antitumor drug doxorubicin is investigated for the first time in the presence of the two external fields, and of their combination, with a clear improvement in the rate of drug release in the latter case.
Collapse
|
8
|
Hachim D, Zhao J, Bhankharia J, Nuñez-Toldra R, Brito L, Seong H, Becce M, Ouyang L, Grigsby CL, Higgins SG, Terracciano CM, Stevens MM. Polysaccharide-Polyplex Nanofilm Coatings Enhance Nanoneedle-Based Gene Delivery and Transfection Efficiency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202303. [PMID: 35770803 PMCID: PMC7615482 DOI: 10.1002/smll.202202303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Non-viral vectors represent versatile and immunologically safer alternatives for nucleic acid delivery. Nanoneedles and high-aspect ratio nanostructures are unconventional but interesting delivery systems, in which delivery is mediated by surface interactions. Herein, nanoneedles are synergistically combined with polysaccharide-polyplex nanofilms and enhanced transfection efficiency is observed, compared to polyplexes in suspension. Different polyplex-polyelectrolyte nanofilm combinations are assessed and it is found that transfection efficiency is enhanced when using polysaccharide-based polyanions, rather than being only specific for hyaluronic acid, as suggested in earlier studies. Moreover, results show that enhanced transfection is not mediated by interactions with the CD44 receptor, previously hypothesized as a major mechanism mediating enhancement via hyaluronate. In cardiac tissue, nanoneedles are shown to increase the transfection efficiency of nanofilms compared to flat substrates; while in vitro, high transfection efficiencies are observed in nanostructures where cells present large interfacing areas with the substrate. The results of this study demonstrate that surface-mediated transfection using this system is efficient and safe, requiring amounts of nucleic acid with an order of magnitude lower than standard culture transfection. These findings expand the spectrum of possible polyelectrolyte combinations that can be used for the development of suitable non-viral vectors for exploration in further clinical trials.
Collapse
Affiliation(s)
- Daniel Hachim
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Juzhi Zhao
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Jash Bhankharia
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Raquel Nuñez-Toldra
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Liliana Brito
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Hyejeong Seong
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Michele Becce
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Liliang Ouyang
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Christopher L. Grigsby
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 65, Sweden
| | - Stuart G. Higgins
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | | | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Shupe J, Zhang A, Odenwelder DC, Dobrowsky T. Gene therapy: challenges in cell culture scale-up. Curr Opin Biotechnol 2022; 75:102721. [DOI: 10.1016/j.copbio.2022.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
|
10
|
Chuang ST, Conklin B, Stein JB, Pan G, Lee KB. Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications. NANO CONVERGENCE 2022; 9:19. [PMID: 35482149 PMCID: PMC9047473 DOI: 10.1186/s40580-022-00310-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 05/24/2023]
Abstract
Immunotherapy has reached clinical success in the last decade, with the emergence of new and effective treatments such as checkpoint blockade therapy and CAR T-cell therapy that have drastically improved patient outcomes. Still, these therapies can be improved to limit off-target effects, mitigate systemic toxicities, and increase overall efficacies. Nanoscale engineering offers strategies that enable researchers to attain these goals through the manipulation of immune cell functions, such as enhancing immunity against cancers and pathogens, controlling the site of immune response, and promoting tolerance via the delivery of small molecule drugs or biologics. By tuning the properties of the nanomaterials, such as size, shape, charge, and surface chemistry, different types of immune cells can be targeted and engineered, such as dendritic cells for immunization, or T cells for promoting adaptive immunity. Researchers have come to better understand the critical role the immune system plays in the progression of pathologies besides cancer, and developing nanoengineering approaches that seek to harness the potential of immune cell activities can lead to favorable outcomes for the treatment of injuries and diseases.
Collapse
Affiliation(s)
- Skylar T Chuang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Joshua B Stein
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - George Pan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
11
|
Coelho F, Botelho C, Paris JL, Marques EF, Silva BF. Influence of the media ionic strength on the formation and in vitro biological performance of polycation-DNA complexes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Integrating disulfides into a polyethylenimine gene carrier selectively boosts significant transfection activity in lung tissue enabling robust IL-12 gene therapy against metastatic lung cancers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112358. [PMID: 34474905 DOI: 10.1016/j.msec.2021.112358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022]
Abstract
Bioreducible polyethylenimines (SSPEIs) are promising non-viral carriers for cancer gene therapy. However, the availability of significant gene transfection activity by SSPEIs remains a challenge. Herein, an essential step was taken to ascertain whether or not the disulfide bonds of SSPEIs play a critical role in promoting significant gene transfection activity in different tissues. Initially, a disulfide-linked linear polyethylenimine (denoted as SSLPEI) consisting of one 5.0 kDa LPEI main chain and three disulfide-linked 5.7 kDa LPEI grafts was designed and prepared to possess similar molecular weight with commercialized 25 kDa LPEI as a positive control. The SSLPEI could induce superior in vitro transfection activity in different cells to the LPEI control as well as low cytotoxicity. Notably, such enhanced in vitro transfection effect by the SSLPEI was more marked in type-II alveolar epithelial cells compared to different cancer cells. In a Balb/c nude mouse model bearing SKOV-3 tumor, the SSLPEI caused parallel level of transgene expression with the LPEI control in the tumor but significantly higher level in the mouse lung. Furthermore, the SSLPEI and LPEI groups afforded an identical antitumor efficacy against the SKOV-3 tumor via intravenous delivery of a shRNA for silencing VEGF expression in the tumor. However, via intravenous delivery of an interleukin-12 (IL-12) gene into metastatic lung cancers in a C57BL/6 mouse model, the SSLPEI group exerted markedly higher IL-12 expression level in the mouse lung and peripheral blood as compared to the LPEI group, thereby boosting IL-12 immunotherapy against the lung metastasis with longer medium survival time. The results of this work elicit that the disulfide bonds of SSPEIs play a pivotal role in enhancing gene transfection activity selectively in the lung tissue rather than solid tumor, enabling high translational potential of SSPEIs for non-viral gene therapy against metastatic lung cancers.
Collapse
|
13
|
Zelcak A, Unal YC, Mese G, Bulmus V. A diaminoethane motif bearing low molecular weight polymer as a new nucleic acid delivery agent. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
How Far Are Non-Viral Vectors to Come of Age and Reach Clinical Translation in Gene Therapy? Int J Mol Sci 2021; 22:ijms22147545. [PMID: 34299164 PMCID: PMC8304344 DOI: 10.3390/ijms22147545] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/10/2021] [Indexed: 01/14/2023] Open
Abstract
Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.
Collapse
|
15
|
Beaupre DM, Weiss RG. Thiol- and Disulfide-Based Stimulus-Responsive Soft Materials and Self-Assembling Systems. Molecules 2021; 26:3332. [PMID: 34206043 PMCID: PMC8199128 DOI: 10.3390/molecules26113332] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Properties and applications of synthetic thiol- and disulfide-based materials, principally polymers, are reviewed. Emphasis is placed on soft and self-assembling materials in which interconversion of the thiol and disulfide groups initiates stimulus-responses and/or self-healing for biomedical and non-biomedical applications.
Collapse
Affiliation(s)
| | - Richard G. Weiss
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA;
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
16
|
Terry TL, Givens BE, Adamcakova-Dodd A, Thorne PS, Rodgers VGJ, Salem AK. Encapsulating Polyethyleneimine-DNA Nanoplexes into PEGylated Biodegradable Microparticles Increases Transgene Expression In Vitro and Reduces Inflammatory Responses In Vivo. AAPS PharmSciTech 2021; 22:69. [PMID: 33565009 PMCID: PMC7872112 DOI: 10.1208/s12249-021-01932-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022] Open
Abstract
Encapsulating genetic material into biocompatible polymeric microparticles is a means to improving gene transfection while simultaneously decreasing the tendency for inflammatory responses; and can be advantageous in terms of delivering material directly to the lungs via aerosolization for applications such as vaccinations. In this study, we investigated the advantages of using polymeric microparticles carrying the luciferase reporter gene in increasing transfection efficiency in the readily transfectable HEK293 cell line and the difficult to transfect RAW264.7 cell line. The results indicated that there was a limit to the ratio of nitrogen in polyethylenimine (PEI) to phosphate in DNA (N/P ratio) beyond which further increases in transgene expression no longer, or only marginally, occurred. Microparticles encapsulating PEI:DNA nanoplexes induced cellular toxicity in a dose-dependent manner. PEGylation increased transgene expression, likely related to enhanced degradation of particles. Furthermore, intra-tracheal instillation in rats allowed us to investigate the inflammatory response in the lung as a function of PEGylation, porosity, and size. Porosity did not influence cell counts in bronchoalveolar lavage fluid in the absence of PEG, but in particles containing PEG, non-porous particles recruited fewer inflammatory cells than their porous counterparts. Finally, both 1 μm and 10 μm porous PLA-PEG particles recruited more neutrophils than 4 μm particles. Thus, we have shown that PEGylation and lack of porosity are advantageous for faster release of genetic cargo from microparticles and a reduced inflammatory response, respectively.
Collapse
|
17
|
Xing J, Jia J, Cong X, Liu Z, Li Q. N-Isopropylacrylamide-modified polyethylenimine-mediated miR-29a delivery to inhibit the proliferation and migration of lung cancer cells. Colloids Surf B Biointerfaces 2021; 198:111463. [DOI: 10.1016/j.colsurfb.2020.111463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
|
18
|
Hosseini S, Epple M. Suppositories with bioactive calcium phosphate nanoparticles for intestinal transfection and gene silencing. NANO SELECT 2020. [DOI: 10.1002/nano.202000150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Shabnam Hosseini
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CeNIDE) University of Duisburg‐Essen Essen Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CeNIDE) University of Duisburg‐Essen Essen Germany
| |
Collapse
|
19
|
Gantenbein B, Tang S, Guerrero J, Higuita-Castro N, Salazar-Puerta AI, Croft AS, Gazdhar A, Purmessur D. Non-viral Gene Delivery Methods for Bone and Joints. Front Bioeng Biotechnol 2020; 8:598466. [PMID: 33330428 PMCID: PMC7711090 DOI: 10.3389/fbioe.2020.598466] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Viral carrier transport efficiency of gene delivery is high, depending on the type of vector. However, viral delivery poses significant safety concerns such as inefficient/unpredictable reprogramming outcomes, genomic integration, as well as unwarranted immune responses and toxicity. Thus, non-viral gene delivery methods are more feasible for translation as these allow safer delivery of genes and can modulate gene expression transiently both in vivo, ex vivo, and in vitro. Based on current studies, the efficiency of these technologies appears to be more limited, but they are appealing for clinical translation. This review presents a summary of recent advancements in orthopedics, where primarily bone and joints from the musculoskeletal apparatus were targeted. In connective tissues, which are known to have a poor healing capacity, and have a relatively low cell-density, i.e., articular cartilage, bone, and the intervertebral disk (IVD) several approaches have recently been undertaken. We provide a brief overview of the existing technologies, using nano-spheres/engineered vesicles, lipofection, and in vivo electroporation. Here, delivery for microRNA (miRNA), and silencing RNA (siRNA) and DNA plasmids will be discussed. Recent studies will be summarized that aimed to improve regeneration of these tissues, involving the delivery of bone morphogenic proteins (BMPs), such as BMP2 for improvement of bone healing. For articular cartilage/osteochondral junction, non-viral methods concentrate on targeted delivery to chondrocytes or MSCs for tissue engineering-based approaches. For the IVD, growth factors such as GDF5 or GDF6 or developmental transcription factors such as Brachyury or FOXF1 seem to be of high clinical interest. However, the most efficient method of gene transfer is still elusive, as several preclinical studies have reported many different non-viral methods and clinical translation of these techniques still needs to be validated. Here we discuss the non-viral methods applied for bone and joint and propose methods that can be promising in clinical use.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Shirley Tang
- Department of Biomedical Engineering and Department of Orthopaedics, Spine Research Institute Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Julien Guerrero
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering and Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Ana I Salazar-Puerta
- Department of Biomedical Engineering and Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Andreas S Croft
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Devina Purmessur
- Department of Biomedical Engineering and Department of Orthopaedics, Spine Research Institute Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
20
|
Skandalis A, Uchman M, Štěpánek M, Kereı̈che S, Pispas S. Complexation of DNA with QPDMAEMA-b-PLMA-b-POEGMA Cationic Triblock Terpolymer Micelles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Sami Kereı̈che
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Purkynuv Ustav, Albertov 4, 128 01 Prague, Czech Republic
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
21
|
Haladjova E, Smolíček M, Ugrinova I, Momekova D, Shestakova P, Kroneková Z, Kronek J, Rangelov S. DNA delivery systems based on copolymers of poly (2‐methyl‐2‐oxazoline) and polyethyleneimine: Effect of polyoxazoline moieties on the endo‐lysosomal escape. J Appl Polym Sci 2020. [DOI: 10.1002/app.49400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Maroš Smolíček
- Department for Biomaterials ResearchPolymer Institute, Slovak Academy of Sciences Bratislava Slovakia
- Department of Inorganic Chemistry, Faculty of Natural SciencesComenius University Mlynská dolina Bratislava Slovakia
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences Sofia Bulgaria
| | | | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Zuzana Kroneková
- Department for Biomaterials ResearchPolymer Institute, Slovak Academy of Sciences Bratislava Slovakia
| | - Juraj Kronek
- Department for Biomaterials ResearchPolymer Institute, Slovak Academy of Sciences Bratislava Slovakia
| | | |
Collapse
|
22
|
Wang C, You J, Gao M, Zhang P, Xu G, Dou H. Bio-inspired gene carriers with low cytotoxicity constructed via the assembly of dextran nanogels and nano-coacervates. Nanomedicine (Lond) 2020; 15:1285-1296. [PMID: 32468909 DOI: 10.2217/nnm-2020-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: To achieve safe and biocompatible gene carriers. Materials & methods: A core/shell-structured hierarchical carrier with an internal peptide/gene coacervate 'core' and a dextran nanogel 'shell' on the surface has been designed. Results: The dextran nanogels shield coacervate (DNSC) can effectively condense genes and release them in reducing environments. The dextran nanogel-based 'shell' can effectively shield the positive charge of the peptide/gene coacervate 'core', thus reducing the side effects of cationic gene carriers. In contrast with the common nonviral gene carriers that had high cytotoxicities, the DNSC showed a high transfection efficiency while maintaining a low cytotoxicity. Conclusion: The DNSC provides an effective environmentally responsive gene carrier with potential applications in the fields of gene therapy and gene carrier development.
Collapse
Affiliation(s)
- Chenglong Wang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Miaomiao Gao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, PR China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
23
|
Chenglong W, Shuhan X, Jiayi Y, Wencai G, Guoxiong X, Hongjing D. Dextran-based coacervate nanodroplets as potential gene carriers for efficient cancer therapy. Carbohydr Polym 2020; 231:115687. [PMID: 31888837 DOI: 10.1016/j.carbpol.2019.115687] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022]
Abstract
The intractable toxicity of cationic polymers limits their applicability in gene transport and controlled release. In consideration of the good biocompatibility and biofunctionality of dextran, herein we design and synthesize two types of amino group-containing cationic copolymers based on dextran by the copolymerization of cationic monomers from dextran backbones. Additionally, allyl crosslinkers containing disulfide bonds were introduced into polymerization, that made the copolymer crosslinked by disulfide. The resultant coacervates were formed from the self-assembly of cationic coplymers and anionic genes, and redox-responsive disulfide branch points endow coacervates with reducing environment responsiveness. The in vitro experiments showed that the dextran-based coacervates were sensitive to the reducing environment and underwent cleavage, which resulted in an effective release, uptake, and transfection of the genes by 293T cells. In addition, dextran-based coacervates can be used to carry siRNA into cancer cells with a high transfection efficiency, demonstrating their potential applicability in treatment against cancer.
Collapse
Affiliation(s)
- Wang Chenglong
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiong Shuhan
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - You Jiayi
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Guan Wencai
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, PR China
| | - Xu Guoxiong
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, PR China.
| | - Dou Hongjing
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
24
|
Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar! Pharmaceutics 2020; 12:pharmaceutics12020183. [PMID: 32098191 PMCID: PMC7076396 DOI: 10.3390/pharmaceutics12020183] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/31/2023] Open
Abstract
Transfection by means of non-viral gene delivery vectors is the cornerstone of modern gene delivery. Despite the resources poured into the development of ever more effective transfectants, improvement is still slow and limited. Of note, the performance of any gene delivery vector in vitro is strictly dependent on several experimental conditions specific to each laboratory. The lack of standard tests has thus largely contributed to the flood of inconsistent data underpinning the reproducibility crisis. A way researchers seek to address this issue is by gauging the effectiveness of newly synthesized gene delivery vectors with respect to benchmarks of seemingly well-known behavior. However, the performance of such reference molecules is also affected by the testing conditions. This survey points to non-standardized transfection settings and limited information on variables deemed relevant in this context as the major cause of such misalignments. This review provides a catalog of conditions optimized for the gold standard and internal reference, 25 kDa polyethyleneimine, that can be profitably replicated across studies for the sake of comparison. Overall, we wish to pave the way for the implementation of standardized protocols in order to make the evaluation of the effectiveness of transfectants as unbiased as possible.
Collapse
|
25
|
Gene/paclitaxel co-delivering nanocarriers prepared by framework-induced self-assembly for the inhibition of highly drug-resistant tumors. Acta Biomater 2020; 103:247-258. [PMID: 31846802 DOI: 10.1016/j.actbio.2019.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
While drug resistance has been recognized as the main cause of unsuccessful chemotherapy, the efficient inhibition of highly drug-resistant tumors still remains a significant challenge, especially for in vivo treatments. Drug resistance has been associated with the high expression of the multi-drug resistance gene 1 (MDR1), which can encode an efflux transporter known as P-glycoprotein (P-gp) that is located in the cellular membrane. Therefore, the combined delivery of MDR1-inhibited genes and chemotherapeutic drugs is anticipated to enable the effective inhibition of drug-resistant tumors. Herein, highly paclitaxel (PTX)-resistant ovarian (OV) cancer with a drug resistance index reaching up to ~ 60 was chosen to evaluate the performance of an efficient gene/drug co-delivery nanocarrier. Inspired by the self-assembly that occurs in cells and exosomes, we designed a biomimetic lipid/dextran hybrid nanocarrier with a diameter of ~ 100 nm to enhance the endocytosis and the efficiency of drug/gene release within the cells. This nanocarrier was fabricated via the frame-guided self-assembly of lipid amphiphiles on the surfaces of redox-cleavable dextran-based nanogels. The anionic MDR1-siRNA and the hydrophobic drug PTX were respectively loaded into the cationic lipid shell and the hydrophobic internal core of the hybrid nanocarriers. MDR1-siRNA can knock down MDR1, promoting the accumulation of PTX in cells, and thus is expected to achieve an efficient inhibitory effect against highly PTX-resistant cancer cells. Both in vitro and in vivo studies revealed that this dual-delivery system significantly enhanced the therapeutic effect in comparison with that provided by a PTX-only system. Thus, the construction of gene/chemo co-delivered lipid/dextran nanocarriers provides a new strategy to inhibit highly drug-resistant tumors both in vitro and in vivo. In addition, this work will contribute toward the development of urgently needed tumor nanotherapy that is able to overcome drug resistance while also offering an unmatched range of effective therapeutic nanocarriers. STATEMENT OF SIGNIFICANCE: The biomimetic lipid/dextran hybrid nanocarrier with a diameter of ~ 100 nm, which was fabricated via the frame-guided self-assembly of lipid amphiphiles onto the surface of redox-cleavable dextran-based nanogels, provides a model carrier to co-deliver MDR1-siRNA and PTX. The MDR1-siRNA/PTX co-loaded biomimetic lipid/dextran hybrid nanocarriers demonstrate good capability in overcoming the PTX-resistance in highly chemo-resistant human ovarian (OV) cancer cells both in vitro and in vivo.
Collapse
|
26
|
Zhang M, Elango J, Guo X, Fan H, Cui M, Wang M, Liu K. Fe 3+-Coordinated Multifunctional Elastic Nanoplatform for Effective in Vivo Gene Transfection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3453-3464. [PMID: 31895537 DOI: 10.1021/acsami.9b19585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The common phenomenon that the nonviral vectors have much lower transfection efficiency in vivo than in vitro greatly restricts their further developments and applications. Possible reasons are lacking targeting ability, elimination by the reticuloendothelial system (RES), and insufficient nuclear transport. Here, a novel, flexible, and deformable polymer Fe@PEI-R12 (tLyp-1-NLS) is reported for shortening the gap between in vitro and in vivo gene transfection efficiency. The amorphous network structure Fe@PEI with deformation ability acquired by coordination cross-linking of Fe3+ and low-molecular-weight polyethylenimine (LMW-PEI) constructs the core and serves as the gene reservoir, and it can squeeze out through RES filter holes when trapped in the spleen. The bifunctional peptide R12 provided tumor targeting and enhanced nuclear delivery ability. Additionally, the Fe3+ from Fe@PEI-R12 could trigger endogenous hydrogen peroxide (H2O2) decomposition to produce O2, thereby reducing the adverse effects of tumor hypoxia. It is demonstrated that the Fe@PEI-R12/pDNA complexes could pass through membrane filters, subsequently achieving long circulation time, and Fe@PEI-R12 had a tendency to accumulate in tumor tissue and mediate pGL3-control expression. Therefore, the multifunctional nanoplatform has the potential for effective in vivo gene delivery.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Jeevithan Elango
- College of Food Science and Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Xinli Guo
- College of Food Science and Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Hua Fan
- Institut für Laboratoriumsmedizin , Charité-Universitätsmedizin Berlin , Campus Virchow Klinikum , Berlin 13353 , Germany
| | - Mingxiao Cui
- College of Food Science and Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Mingfu Wang
- College of Food Science and Technology , Shanghai Ocean University , Shanghai 201306 , China
- School of Biological Sciences , University of Hong Kong , Pokfulam Road , Hong Kong 999077 , China
| | - Kehai Liu
- College of Food Science and Technology , Shanghai Ocean University , Shanghai 201306 , China
| |
Collapse
|
27
|
TAT-functionalized PEI-grafting rice bran polysaccharides for safe and efficient gene delivery. Int J Biol Macromol 2019; 146:1076-1086. [PMID: 31726176 DOI: 10.1016/j.ijbiomac.2019.09.234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/22/2019] [Indexed: 01/17/2023]
Abstract
Polysaccharides are considered to be promising candidates for non-viral gene delivery because of their molecular diversity, which can be modified to fine-tune their physicochemical properties. In this work, transcriptional activator protein (TAT) functionalized PEI grafted polysaccharide polymer (PRBP) was prepared by using rice bran polysaccharide as the starting material, and characterized by various methods. The potential of TAT functionalized PRBP (PRBP-TAT) as gene vector was studied in vitro, including DNA loading capacity, DNA protection ability and biocompatibility. The cell uptake and transfection efficiency of the PRBP-TAT/pDNA polyplexes were studied. The results showed that PRBP-TAT could completely condense DNA at N/P 2. The PRBP-TAT/pDNA polyplexes could protect DNA from degrading by DNase and were efficiently internalized by cells. Biocompatibility result showed that PRBP-TAT had no significant cytotoxicity and effect on cell proliferation. At low N/P ratios of 1-3.5, PRBP-TAT showed higher transfection efficiency than PEI30k and PEI30k-grafted rice bran polysaccharide. PRBP-TAT and PEI showed the highest transfection efficiency of 42.8% and 28.1% when pDNA is 2 µg and N/P ratio is 1.5, respectively, while PRBP showed the highest transfection efficiency of 37.3% at N/P 2.5. These results indicate that PTA is a promising candidate vector for safe and efficient gene delivery.
Collapse
|
28
|
Lu C, Jiang L, Xu W, Yu F, Xia W, Pan M, Zhou W, Pan X, Wu C, Liu D. Poly(ethylene glycol) crosslinked multi-armed poly(ε-benzyloxycarbonyl-L-lysine)s as super-amphiphiles: Synthesis, self-assembly, and evaluation as efficient delivery systems for poorly water-soluble drugs. Colloids Surf B Biointerfaces 2019; 182:110384. [PMID: 31357126 DOI: 10.1016/j.colsurfb.2019.110384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/23/2019] [Accepted: 07/22/2019] [Indexed: 02/05/2023]
Abstract
Polymeric micelles with high thermodynamic stability and loading capacity are of tremendous significance for their potential applications in drug delivery. In the present study, super-amphiphiles in the form of poly(ethylene glycol)-crosslinked multi-armed polyethylenimine-g-poly(ε-benzyloxycarbonyl-L-lysine)s (PEZ-alt-PEG) were designed, synthesized, and optimized as nanocarriers for hydrophobic drugs. In an aqueous solution, the copolymer PEZ-alt-PEG self-assembled into sub-100-nm spherical shell crosslinked micelles with low toxicity in vitro and in vivo. The crosslinked super-amphiphilic structure of PEZ-alt-PEG could not only enhance the thermodynamic stability of polymeric micelles, but it could also significantly improve the loading capacity of hydrophobic drugs, such as curcumin (CUR). CUR-loaded PEZ-alt-PEG micelles could mediate effective drug delivery with sustained and complete CUR release. The use of PEZ-alt-PEG micellar nanocarriers remarkably improved the cellular uptake of CUR and therefore exhibited effective inhibitory activity on the growth of human hepatoma (HepG2) cells. Compared to free CUR, CUR-loaded polymeric micelles significantly accelerated the apoptosis rate of HepG2 cells. Therefore, PEZ-alt-PEG polymeric micelles, with their high thermodynamic stability, high drug-loading capacity, enhanced drug uptake and improved pharmacodynamic effects, could serve as efficient and promising nanocarriers for poorly water-soluble drugs.
Collapse
Affiliation(s)
- Chao Lu
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China; School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Ling Jiang
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Weijie Xu
- Department of Pharmacy, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, China
| | - Feiyuan Yu
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Wenquan Xia
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Wen Zhou
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China.
| |
Collapse
|
29
|
Gao Y, Jia L, Wang Q, Hu H, Zhao X, Chen D, Qiao M. pH/Redox Dual-Responsive Polyplex with Effective Endosomal Escape for Codelivery of siRNA and Doxorubicin against Drug-Resistant Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16296-16310. [PMID: 30997984 DOI: 10.1021/acsami.9b02016] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The enhanced endo-lysosomal sequestration still remains a big challenge in overcoming multidrug resistance (MDR). Herein, a dual-responsive polyplex with effective endo-lysosomal escape based on methoxypoly(ethylene glycol)-polylactide-polyhistidine-ss-oligoethylenimine (mPEG- b-PLA-PHis-ssOEI) was developed for codelivering MDR1 siRNA and doxorubicin (DOX). The polyplex showed good encapsulation of DOX and siRNA as well as triggered payload release in response to pH/redox stimuli because of the PHis protonation and the disulfide bond cleavage. The polyplex at an N/P ratio of 7 demonstrated a much higher payload delivery efficiency, MDR1 gene silence efficiency, cytotoxicity against MCF-7/ADR cell, and stronger MCF-7/ADR tumor growth inhibition than the polyplexes at higher N/P ratios. This was attributed to the stronger electrostatic attraction between siRNA and OEIs at higher N/P ratios that suppressed the release of MDR1 siRNA and OEIs, which played a dominant role in overcoming payload endo-lysosomal sequestration by the OEI-induced membrane permeabilization effect. Consequently, the polyplex with effective endo-lysosomal escape provides a rational approach for codelivery of siRNAs and chemotherapy agents for MDR reversal.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Doxorubicin/administration & dosage
- Doxorubicin/chemistry
- Drug Carriers/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Endosomes/chemistry
- Humans
- Hydrogen-Ion Concentration
- Lipids/chemistry
- MCF-7 Cells
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasms/drug therapy
- Neoplasms/pathology
- Polyesters/chemistry
- Polyethylene Glycols/chemistry
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
Collapse
Affiliation(s)
| | - Li Jia
- Department of Pharmacy , Heze Medical College , Heze 274000 , P. R. China
| | | | | | | | | | | |
Collapse
|
30
|
Craciun BF, Gavril G, Peptanariu D, Ursu LE, Clima L, Pinteala M. Synergistic Effect of Low Molecular Weight Polyethylenimine and Polyethylene Glycol Components in Dynamic Nonviral Vector Structure, Toxicity, and Transfection Efficiency. Molecules 2019; 24:E1460. [PMID: 31013863 PMCID: PMC6515267 DOI: 10.3390/molecules24081460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/17/2022] Open
Abstract
When studying polyethylenimine derivatives as nonviral vectors for gene delivery, among the important issues to be addressed are high toxicity, low transfection efficiency, and nucleic acid polyplex condensation. The molecular weight of polyethylenimine, PEGylation, biocompatibility and, also, supramolecular structure of potential carrier can all influence the nucleic acid condensation behavior, polyplex size, and transfection efficiency. The main challenge in building an efficient carrier is to find a correlation between the constituent components, as well as the synergy between them, to transport and to release, in a specific manner, different molecules of interest. In the present study, we investigated the synergy between components in dynamic combinatorial frameworks formed by connecting PEGylated squalene, poly-(ethyleneglycol)-bis(3-aminopropyl) and low molecular weight polyethylenimine components to 1,3,5-benzenetrialdehyde, via reversible imine bond, applying a dynamic combinatorial chemistry approach. We report comparative structural and morphological data, DNA binding affinity, toxicity and transfection efficiency concerning the ratio of polyethylenimine and presence or absence of poly-(ethyleneglycol)-bis(3-aminopropyl) in composition of dynamic combinatorial frameworks. In vitro biological assessments have revealed the fact that nonviral vectors containing poly-(ethyleneglycol)-bis(3-aminopropyl) and the lowest amount of polyethylenimine have significant transfection efficiency at N/P 50 ratio and display insignificant cytotoxicity on the HeLa cell line.
Collapse
Affiliation(s)
- Bogdan Florin Craciun
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Gabriela Gavril
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Dragos Peptanariu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Laura Elena Ursu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Lilia Clima
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| | - Mariana Pinteala
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley, 41 A, 700487 Iasi, Romania.
| |
Collapse
|
31
|
Mantz A, Rosenthal A, Farris E, Kozisek T, Bittrich E, Nazari S, Schubert E, Schubert M, Stamm M, Uhlmann P, Pannier AK. Free Polyethylenimine Enhances Substrate-Mediated Gene Delivery on Titanium Substrates Modified With RGD-Functionalized Poly(acrylic acid) Brushes. Front Chem 2019; 7:51. [PMID: 30792979 PMCID: PMC6374293 DOI: 10.3389/fchem.2019.00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/18/2019] [Indexed: 01/08/2023] Open
Abstract
Substrate mediated gene delivery (SMD) is a method of immobilizing DNA complexes to a substrate via covalent attachment or nonspecific adsorption, which allows for increased transgene expression with less DNA compared to traditional bolus delivery. It may also increase cells receptivity to transfection via cell-material interactions. Substrate modifications with poly(acrylic) acid (PAA) brushes may improve SMD by enhancing substrate interactions with DNA complexes via tailored surface chemistry and increasing cellular adhesion via moieties covalently bound to the brushes. Previously, we described a simple method to graft PAA brushes to Ti and further demonstrated conjugation of cell adhesion peptides (i.e., RGD) to the PAA brushes to improve biocompatibility. The objective of this work was to investigate the ability of Ti substrates modified with PAA-RGD brushes (PAA-RGD) to immobilize complexes composed of branched polyethyleneimine and DNA plasmids (bPEI-DNA) and support SMD in NIH/3T3 fibroblasts. Transfection in NIH/3T3 cells cultured on bPEI-DNA complexes immobilized onto PAA-RGD substrates was measured and compared to transfection in cells cultured on control surfaces with immobilized complexes including Flat Ti, PAA brushes modified with a control peptide (RGE), and unmodified PAA. Transfection was two-fold higher in cells cultured on PAA-RGD compared to those cultured on all control substrates. While DNA immobilization measured with radiolabeled DNA indicated that all substrates (PAA-RGD, unmodified PAA, Flat Ti) contained nearly equivalent amounts of loaded DNA, ellipsometric measurements showed that more total mass (i.e., DNA and bPEI, both complexed and free) was immobilized to PAA and PAA-RGD compared to Flat Ti. The increase in adsorbed mass may be attributed to free bPEI, which has been shown to improve transfection. Further transfection investigations showed that removing free bPEI from the immobilized complexes decreased SMD transfection and negated any differences in transfection success between cells cultured on PAA-RGD and on control substrates, suggesting that free bPEI may be beneficial for SMD in cells cultured on bPEI-DNA complexes immobilized on PAA-RGD grafted to Ti. This work demonstrates that substrate modification with PAA-RGD is a feasible method to enhance SMD outcomes on Ti and may be used for future applications such as tissue engineering, gene therapy, and diagnostics.
Collapse
Affiliation(s)
- Amy Mantz
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Alice Rosenthal
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Institute of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Eric Farris
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Tyler Kozisek
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eva Bittrich
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Saghar Nazari
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Eva Schubert
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Mathias Schubert
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE, United States
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Physics, Chemistry, and Biology, Linkoping University, Linkoping, Sweden
- Terahertz Materials Analysis Center (THeMAC), Linkoping University, Linkoping, Sweden
| | - Manfred Stamm
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Institute of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Angela K. Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
32
|
Multifunctional magnetic cargo-complexes with radical scavenging properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:608-618. [PMID: 30423746 DOI: 10.1016/j.msec.2018.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/31/2018] [Accepted: 10/02/2018] [Indexed: 11/22/2022]
Abstract
Core-shell magnetic nanoparticle synthesis offers the opportunity to engineering their physical properties for specific applications when the intrinsic magnetic properties can be associated with other interesting ones. The purpose of this study was to design, synthesize, and characterize core-shell magnetic nanoparticles that mimic superoxide dismutase activity offering the possibility of guidance and therapeutic action. We proposed, for the first time, the synthesis and characterization of the nanocarriers comprised of magnetite nanoparticles functionalized with branched polyethyleneimine of low molecular weight (1.8 kDa) permitting the loading of the protocatechuic acid or its inclusion complex with anionic sulfobutylether-β-cyclodextrin for active drug delivery, in order to combine the useful properties of the magnetite and the protocatechuic acid antioxidant effect. NMR and DSC analyses confirmed the formation of the inclusion complex between sulfobutylether-β-cyclodextrin and protocatechuic acid, while structural and compositional analyses (FT-IR, TEM, XRD) revealed the synthesis of the multifunctional magnetic systems. Due to the possibility of being formulated as blood system injectable suspensions, antioxidant activity (using DPPH test) and cytotoxicity (using MTS assay on normal human dermal fibroblasts cells) were also measured, showing adequate properties to be used in biomedical applications. Moreover, we proposed a nanocarrier that would be able to load unstable active principles and with very low solubility in biological fluids to increase their biological ability.
Collapse
|
33
|
Electrospun Polyvinyl Alcohol Nanofibers Containing Titanium Dioxide for Gas Sensor Applications. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3529-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Chen B, Yu L, Li Z, Wu C. Design of Free Triblock Polylysine-b-Polyleucine-b-Polylysine Chains for Gene Delivery. Biomacromolecules 2018; 19:1347-1357. [DOI: 10.1021/acs.biomac.8b00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Baizhu Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Lei Yu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhibo Li
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- The Hefei National Laboratory of Physical Science at Microscale and Department of Chemical Physics, The University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Haladjova E, Halacheva S, Momekova D, Moskova-Doumanova V, Topouzova-Hristova T, Mladenova K, Doumanov J, Petrova M, Rangelov S. Polyplex Particles Based on Comb-Like Polyethylenimine/Poly(2-ethyl-2-oxazoline) Copolymers: Relating Biological Performance with Morphology and Structure. Macromol Biosci 2018; 18:e1700349. [DOI: 10.1002/mabi.201700349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/30/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Emi Haladjova
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev St. 103A Sofia 1113 Bulgaria
| | - Silviya Halacheva
- Institute for Materials Research and Innovation; University of Bolton; Deane road Bolton Greater Manchester BL3 5AB UK
| | - Denitsa Momekova
- Faculty of Pharmacy; Medical University of Sofia; Sofia 1000 Bulgaria
| | | | | | - Kirilka Mladenova
- Faculty of Biology; Sofia University “St. Kliment Ohridski”; 1164 Sofia Bulgaria
| | - Jordan Doumanov
- Faculty of Biology; Sofia University “St. Kliment Ohridski”; 1164 Sofia Bulgaria
| | - Maria Petrova
- Institute of Molecular Biology; Bulgarian Academy of Sciences; Sofia 1113 Bulgaria
| | - Stanislav Rangelov
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev St. 103A Sofia 1113 Bulgaria
| |
Collapse
|
36
|
Zhu J, Qiao M, Wang Q, Ye Y, Ba S, Ma J, Hu H, Zhao X, Chen D. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA. Biomaterials 2018; 162:47-59. [PMID: 29432988 DOI: 10.1016/j.biomaterials.2018.01.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Abstract
Despite the extracellular barriers for siRNA delivery have been overcome by utilizing advanced nanoparticle delivery systems, the key intracellular barriers after internalization including efficient disassembly of siRNA and endosomal escape still remains challenging. To address the issues, we developed a unique pH- and redox potential-responsive polyplex delivery system based on the copolymer of mPEG-b-PLA-PHis-ssPEI1.8 k, which is composed of a pH-responsive copolymer of PEG-b-PLA-PHis (Mw 5 k) and a branched PEI (Mw1.8 k) linked with redox cleavable disulfide bond. The copolymer showed excellent siRNA complexation and protection abilities against endogenous substances at the relatively low N/P ratio of 6. The siRNA release from the polyplexes (N/P 6) was markedly increased from 13.62% to 58.67% under conditions simulating the endosomal microenvironment. Fluorescence resonance energy transfer (FRET) test also indicated a higher disassembly extent of siRNA from the copolymer. The accelerated siRNA release from the polyplexes was markedly restrained when the N/P ratio was raised above 10 due to the increasing of electrostatic interactions. The efficient endosomal escape of siRNA after internalization was confirmed by confocal microscopy, which was attributed to the cleavaged PEI chains inducing membrane destabilization, the "proton sponge effect" of PHis and PEI as well as the relative small size of after disassembly. The enhanced disassembly and endosomal escape were elucidated as the leading cause for polyplexes (N/P 6) showed more efficient Bcl-2 silencing (85.45%) than those polyplexes with higher N/P ratios (N/P 10 and 15). In vivo results further demonstrated that polyplexes (N/P 6) delivery of siBcl-2 significantly inhibited the MCF-7 breast tumor growth as compared to its counterparts. The incorporation of convertible non-electrical interactions at a balance with electrostatic interactions in complexation siRNA has been demonstrated as an effective strategy to achieve efficient disassembly from stable polyplexes. Moreover, polyplexes equipped with the enhanced disassembly and endosomal escape provides a new potential way to tackle the intracellular delivery bottleneck for siRNA delivery.
Collapse
Affiliation(s)
- Jia Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Qi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Yuqing Ye
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Shuang Ba
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Jingjing Ma
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, P.O. Box 42, Wenhua Road 103, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
37
|
Albuquerque LJC, Alavarse AC, Carlan da Silva MC, Zilse MS, Barth MT, Bellettini IC, Giacomelli FC. Sweet Vector for Gene Delivery: the Sugar Decoration of Polyplexes Reduces Cytotoxicity with a Balanced Effect on Gene Expression. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/09/2017] [Indexed: 01/22/2023]
Affiliation(s)
| | - Alex C. Alavarse
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; Santo André 09210-580 Brazil
| | - Maria C. Carlan da Silva
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; Santo André 09210-580 Brazil
| | - Morgana S. Zilse
- Departamento de Ciências Exatas e Educação; Universidade Federal de Santa Catarina; Blumenau 89036-256 Brazil
| | - Maitê T. Barth
- Departamento de Ciências Exatas e Educação; Universidade Federal de Santa Catarina; Blumenau 89036-256 Brazil
| | - Ismael C. Bellettini
- Departamento de Ciências Exatas e Educação; Universidade Federal de Santa Catarina; Blumenau 89036-256 Brazil
| | - Fernando C. Giacomelli
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; Santo André 09210-580 Brazil
| |
Collapse
|
38
|
Wang PY, Lian YS, Chang R, Liao WH, Chen WS, Tsai WB. Modulation of PEI-Mediated Gene Transfection through Controlling Cytoskeleton Organization and Nuclear Morphology via Nanogrooved Topographies. ACS Biomater Sci Eng 2017; 3:3283-3291. [PMID: 33445370 DOI: 10.1021/acsbiomaterials.7b00617] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of nanotopographies on cell adhesion, migration, proliferation, differentiation, and/or apoptosis have been studied over the last two decades. However, the effect of nanotopography on gene transfection of adhered cells is far from understood. One key phenomenon of using nanotopography is mimicry of native cell morphology in vitro such as in alignment of skeletal myoblasts on nanogrooves. The formation of focal adhesions, the cytoskeleton, and the morphology of cell nuclei are altered by underlying nanogrooves, but the role of these changes in gene transfection are not well understood. In this study, C2C12 skeletal myoblasts were transfected using polyethylenimine (PEI)/DNA complexes on nanogrooved patterns of two groove widths (400 and 800 nm) at three depths (50 nm and 400 or 500 nm). The results showed that the deep nanogrooved surfaces (i.e., 400/400 and 800/500) induced formation of aligned, parallel F-actin and elongated nucleus morphology. Gene transfection was also reduced on the deep nanogrooved surfaces. Disruption of F-actin organization using Cytochalasin D (Cyto-D) restored the nuclear morphology accompanied by higher transfection efficiency, demonstrating that the reduction in gene expression on deep nanogrooves was due to cytoskeletal stretching and nucleus elongation. Spatiotemporal images of fluorescent-labeled PEI/DNA complexes showed that endocytosis of PEI/DNA complexes was retarded and DNA trafficking into the cell nucleus was reduced. This study demonstrates for the first time the important role of cytoskeletal organization and nuclear morphology in PEI-mediated gene transfection to skeletal myoblasts using nanogrooved patterns. These findings are informative for in vitro studies and could potentially be useful in in vivo intramuscular (IM) administration.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia.,Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yen-Shiang Lian
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ray Chang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Haladjova E, Kyulavska M, Doumanov J, Topouzova-Hristova T, Petrov P. Polymeric vehicles for transport and delivery of DNA via cationic micelle template method. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4193-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Lu M, Xing H, Xun Z, Yang T, Ding P, Cai C, Wang D, Zhao X. Exosome-based small RNA delivery: Progress and prospects. Asian J Pharm Sci 2017; 13:1-11. [PMID: 32104373 PMCID: PMC7032220 DOI: 10.1016/j.ajps.2017.07.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/14/2017] [Accepted: 07/28/2017] [Indexed: 12/29/2022] Open
Abstract
RNA interfering (RNAi), mediated by small interfering RNAs and microRNAs, is currently one of the most promising tools of gene therapy. Small RNAs are capable of inducing specific post-transcriptional gene silencing, providing a potentially effective platform for the treatment of a wide array of diseases. However, similar to other nucleic acid-based drugs, the major hurdle of RNAi therapy is lack of efficient and non-immunogenic delivery vehicles. Currently, viruses, synthetic polymers, and lipid-based carriers are among the most widely studied vehicles for small RNA delivery. However, many drawbacks are reported to be associated with these delivery vehicles. There is a pressing need to replace them with more efficient and better-tolerated approaches. Exosomes secreted from the endocytic compartment of live cells, are a subtype of endogenous extracellular vesicles that transfer genetic and biochemical information among different cells, thus playing an important role in cell-cell communication. Recently, accumulating attention has been focused on harnessing exosomes as nanaocarriers for small RNAs delivery. Due to their natural role in shuttling endogenous nucleic acid in our body, exosomes may exhibit higher delivery efficiency, lower immunogenicity, and better compatibility than existing foreign RNA carriers. Importantly, exosomes own intrinsic homing capacity that can guide small RNAs across natural membranous barriers. Moreover, such a capacity can be further improved by adding appropriate targeting moieties. In this manuscript, we briefly review the progress and challenges of RNAi therapy, and discuss the potential of exosomes' applications in small RNA delivery with focus on the most recent advances in exosome-based small RNA delivery for disease therapy.
Collapse
Affiliation(s)
- Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhe Xun
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongkai Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
41
|
|
42
|
Recent advance of pH-sensitive nanocarriers targeting solid tumors. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0349-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Bellettini IC, Fayad SJ, Machado VG, Minatti E. Properties of polyplexes formed through interaction between hydrophobically-modified poly(ethylene imine)s and calf thymus DNA in aqueous solution. SOFT MATTER 2017; 13:2609-2619. [PMID: 28327732 DOI: 10.1039/c6sm02835g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polycationic polymers and DNA form soluble complexes in aqueous solution, which allows the transfer of genetic material into cells. Therefore, these chemically-modified polymers are of interest for use in studies aimed at better transfection efficiency and gene expression along with reduced cytotoxicity. In this study, branched poly(ethylene imine) (PEI) was modified by alkylation with n-alkyl groups (n = 4, 6, 8 and 12 carbons). The polyplexes formed through interaction of the modified PEIs and calf thymus DNA (ctDNA) were investigated using UV-Vis spectrophotometry, ethidium bromide fluorescence emission, circular dichroism spectroscopy, dynamic light scattering, and small-angle X-ray scattering techniques along with the determination of the zeta potential and viscosity. According to the results obtained, the formation of ctDNA-PEI polyplexes occurs in three steps. Firstly, when a small amount of polyelectrolyte is present the ctDNA chains are partially compacted. Subsequently, with the addition of more polyelectrolyte, the complexes have a null charge density and micrometric size. Lastly, with a higher concentration of PEI, the ctDNA is fully compacted by the PEI chains, leading to positively charged complexes with Rh values in the range of 52.0-86.0 nm. The viscosity and SAXS analysis suggested that the unmodified PEI exhibits the strongest interaction and promotes the best ctDNA condensation.
Collapse
Affiliation(s)
- I C Bellettini
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil.
| | - S J Fayad
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil.
| | - V G Machado
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil.
| | - E Minatti
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
44
|
Pan Z, Kang X, Zeng Y, Zhang W, Peng H, Wang J, Huang W, Wang H, Shen Y, Huang Y. A mannosylated PEI–CPP hybrid for TRAIL gene targeting delivery for colorectal cancer therapy. Polym Chem 2017. [DOI: 10.1039/c7py00882a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mannosylated, bioreducible Man-PEI5k–CPP/pTRAIL system was developed for treating colon cancer.
Collapse
Affiliation(s)
- Zhenzhen Pan
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
- Guangxi Colleges and Universities Key Laboratory of Chinese Medicine Extraction Purification and Quality Analysis
| | - Xuejia Kang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
- Guangzhou University of Chinese Medicine
| | - Yuaner Zeng
- Guangzhou University of Chinese Medicine
- Guangzhou 501450
- China
| | - Wenyuan Zhang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Huige Peng
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Jinyu Wang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
- School of Chemistry and Chemical Engineering
| | - Wei Huang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Youqing Shen
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
45
|
Hu J, Zhu M, Liu K, Fan H, Zhao W, Mao Y, Zhang Y. A Biodegradable Polyethylenimine-Based Vector Modified by Trifunctional Peptide R18 for Enhancing Gene Transfection Efficiency In Vivo. PLoS One 2016; 11:e0166673. [PMID: 27935984 PMCID: PMC5147860 DOI: 10.1371/journal.pone.0166673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022] Open
Abstract
Lack of capacity to cross the nucleus membrane seems to be one of the main reasons for the lower transfection efficiency of gene vectors observed in vivo study than in vitro. To solve this problem, a new non-viral gene vector was designed. First, a degradable polyethylenimine (PEI) derivate was synthesized by crosslinking low-molecular-weight (LMW) PEI with N-octyl-N-quaternary chitosan (OTMCS), and then adopting a designed trifunctional peptide (RGDC-TAT-NLS) with good tumor targeting, cell uptake and nucleus transport capabilities to modify OTMCS-PEI. The new gene vector was termed as OTMCS-PEI-R18 and characterized in terms of its chemical structure and biophysical parameters. Gene transfection efficiency and nucleus transport mechanism of this vector were also evaluated. The polymer showed controlled degradation and remarkable buffer capabilities with the particle size around 100–300 nm and the zeta potential ranged from 5 mV to 40 mV. Agraose gel electrophoresis showed that OTMCS-PEI-R18 could effectively condensed plasmid DNA at a ratio of 1.0. Besides, the polymer was stable in the presence of sodium heparin and could resist digestion by DNase I at a concentration of 63U DNase I/DNA. OTMCS-PEI-R18 also showed much lower cytotoxicity and better transfection rates compared to polymers OTMCS-PEI-R13, OTMCS-PEI and PEI 25 KDa in vitro and in vivo. Furthermore, OTMCS-PEI-R18/DNA complexes could accumulate in the nucleus well soon and not rely on mitosis absolutely due to the newly incorporated ligand peptide NLS with the specific nuclear delivery pathway indicating that the gene delivery system OTMCS-PEI-R18 could reinforce gene transfection efficiency in vivo.
Collapse
Affiliation(s)
- Jing Hu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Manman Zhu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
- * E-mail: ;
| | - Hua Fan
- Institut für Laboratoriumsmedizin, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Wenfang Zhao
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Yuan Mao
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Yaguang Zhang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| |
Collapse
|
46
|
Wu Z, Zhan S, Fan W, Ding X, Wu X, Zhang W, Fu Y, Huang Y, Huang X, Chen R, Li M, Xu N, Zheng Y, Ding B. Peptide-Mediated Tumor Targeting by a Degradable Nano Gene Delivery Vector Based on Pluronic-Modified Polyethylenimine. NANOSCALE RESEARCH LETTERS 2016; 11:122. [PMID: 26932761 PMCID: PMC4773318 DOI: 10.1186/s11671-016-1337-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/23/2016] [Indexed: 05/29/2023]
Abstract
Polyethylenimine (PEI) is considered to be a promising non-viral gene delivery vector. To solve the toxicity versus efficacy and tumor-targeting challenges of PEI used as gene delivery vector, we constructed a novel non-viral vector DR5-TAT-modified Pluronic-PEI (Pluronic-PEI-DR5-TAT), which was based on the attachment of low-molecular-weight polyethylenimine (LMW-PEI) to the amphiphilic polymer Pluronic to prepare Pluronic-modified LMW-PEI (Pluronic-PEI). This was then conjugated to a multifunctional peptide containing a cell-penetrating peptide (TAT) and a synthetic peptide that would bind to DR5-a receptor that is overexpressed in cancer cells. The vector showed controlled degradation, favorable DNA condensation and protection performance. The Pluronic-PEI-DR5-TAT/DNA complexes at an N/P ratio of 15:1 were spherical nanoparticles of 122 ± 11.6 nm and a zeta potential of about 22 ± 2.8 mV. In vitro biological characterization results indicated that Pluronic-PEI-DR5-TAT/DNA complexes had a higher specificity for the DR5 receptor and were taken up more efficiently by tumor cells than normal cells, compared to complexes formed with PEI 25 kDa or Pluronic-PEI. Thus, the novel complexes showed much lower cytotoxicity to normal cells and higher gene transfection efficiency in tumor cells than that exhibited by PEI 25 kDa and Pluronic-PEI. In summary, our novel, degradable non-viral tumor-targeting vector is a promising candidate for use in gene therapy.
Collapse
Affiliation(s)
- Zhaoyong Wu
- Department of Pharmacy, Jiaxing Maternal and Child Health Care Hospital, Affiliated Hospital of Jiaxing University, Jiaxing, People's Republic of China
| | - Shuyu Zhan
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Wei Fan
- Department of Pharmacy, The 425th Hospital of PLA, Sanya, People's Republic of China
| | - Xueying Ding
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xin Wu
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Shanghai, People's Republic of China
| | - Yinghua Fu
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Yueyan Huang
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Xuan Huang
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Rubing Chen
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Mingjuan Li
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Ningyin Xu
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China
| | - Yongxia Zheng
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China.
| | - Baoyue Ding
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, People's Republic of China.
| |
Collapse
|
47
|
Li Y, Humphries B, Wang Z, Lang S, Huang X, Xiao H, Jiang Y, Yang C. Complex Coacervation-Integrated Hybrid Nanoparticles Increasing Plasmid DNA Delivery Efficiency in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30735-30746. [PMID: 27781434 PMCID: PMC6457453 DOI: 10.1021/acsami.6b10306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many polycation-based gene delivery vehicles have limited in vivo transfection efficiency because of their excessive exterior positive charges and/or PEGylation, both of which could result in premature dissociation and poor cellular uptake and trafficking. Here, we reported novel hybrid PEGylated nanoparticles (HNPs) that are composed of (a) poly(ethylene glycol)-b-poly(aspartate)-adamantane (PEG-P(asp)-Ad) constituting the outer PEG layer to provide colloidal stability; (b) poly(ethylenimine)10K (PEI10K) forming complex coacervate with P(asp) as the cross-linked cage preventing premature dissociation; (c) cyclodextrin-decorated PEI10K (PEI10K-CD) forming the core with reporter plasmid DNA (pDNA). These HNPs exhibited an increased stability and higher in vitro transfection efficiency compared to traditional PEGylated nanoparticles (PEG-NP). Intratumoral injections further demonstrated that HNPs were able to successfully deliver pDNAs into tumors, while PEG-NP and PEI25K had only negligible delivery efficiencies. Moreover, HNPs' in vivo stability and pDNA delivery capability post intravenous injection were also confirmed by live animal bioluminescence and fluorescence image analysis. It is likely that the coacervation integration at the interface of PEI10K-CD/pDNA core and the PEG shell attributed to the significantly improved in vivo transfection efficiency of HNPs over PEG-NP and PEI25K. This study suggests that the HNP has the potential for in vivo gene delivery applications with significantly improved gene transfection efficiency.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Pharmaceutics, Institute of Medicinal Biotechnology, Peking Union Medical College, Beijing 100050, People’s Republic of China
- Department of Toxicology and Cancer Biology and Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Brock Humphries
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Cellular and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhishan Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Toxicology and Cancer Biology and Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Chengfeng Yang
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Toxicology and Cancer Biology and Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
- Cellular and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
- Corresponding Author Tel: +1-859-323-4641. Fax: +1-859-323-1059.
| |
Collapse
|
48
|
Encapsulation of RNA by negatively charged human serum albumin via physical interactions. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0094-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Sim T, Park G, Min H, Kang S, Lim C, Bae S, Lee ES, Youn YS, Oh KT. Development of a gene carrier using a triblock co-polyelectrolyte with poly(ethylene imine)-poly(lactic acid)-poly(ethylene glycol). J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516671154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The success of gene therapy mainly depends on the carriers for effective gene delivery. A non-viral vector using a cationic block co-polyelectrolyte, PEI-PLA-PEG polyethyleneimine-poly(lactic acid)-poly(ethylene glycol)) was developed as a potential gene carrier. The cationic PEI-PLA-PEG showed less toxicity compared to PEI and formed a gene nanocomplex (termed polyplex) by interaction with plasmid DNA or small interference RNA. The polyplex showed smaller particle size and greater positive zeta potential by increasing the high polymer nitrogen/DNA phosphate ratio. The polyplex with a nitrogen/DNA phosphate ratio of 16 or 32 demonstrated higher gene transfection by fluorescence imaging, flow cytometry measurement, and β-galactosidase activity. In particular, the polyplex with therapeutic histone deacetylase small interference RNA at nitrogen/DNA phosphate ratio 16 showed the most favorable properties with definite tumor growth inhibition. The synthetic PEI-PLA-PEG also showed less toxicity and would, therefore, be a great potential gene carrier, particularly given that small interference RNA delivery does not increase the charge density of small interference RNA due to the formation of a stable complex through conjugation with PLA-PEG.
Collapse
Affiliation(s)
- Taehoon Sim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Gayoung Park
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Soowon Kang
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Chaemin Lim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Sungmin Bae
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, SungKyunKwan University, Suwon, Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
50
|
Liu J, Feng M, Liang D, Yang J, Tang X. Vitamin E-Labeled Polyethylenimine for in vitro and in vivo Gene Delivery. Biomacromolecules 2016; 17:3153-3161. [DOI: 10.1021/acs.biomac.6b00776] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinxing Liu
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Mengke Feng
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Duanwei Liang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Jiali Yang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural
and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics
and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road Beijing, 100191, China
| |
Collapse
|