1
|
Hajian M, Erfani-Moghadam V, Arabi MS, Soltani A, Shahbazi M. A comparison between optimized PLGA and CS-Alg-PLGA microspheres for long-lasting release of glatiramer acetate. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
2
|
Damanik FR, Rothuizen CT, Lalai R, Khoenkhoen S, van Blitterswijk C, Rotmans JI, Moroni L. Long-Term Controlled Growth Factor Release Using Layer-by-Layer Assembly for the Development of In Vivo Tissue-Engineered Blood Vessels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28591-28603. [PMID: 35696386 PMCID: PMC9247980 DOI: 10.1021/acsami.2c05988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The development of a well-designed tissue-engineered blood vessel (TEBV) still remains a challenge. In recent years, approaches in which the host response to implanted biomaterials is used to generate vascular constructs within the patient's body have gained increasing interest. The delivery of growth factors to these in situ-engineered vascular grafts might enhance myofibroblast recruitment and the secretion of essential extracellular matrix proteins, thereby optimizing their functional properties. Layer-by-layer (LbL) coating has emerged as an innovative technology for the controlled delivery of growth factors in tissue engineering applications. In this study, we combined the use of surface-etched polymeric rods with LbL coatings to control the delivery of TGF-β1, PDGF-BB, and IGF-1 and steer the foreign body response toward the formation of a functional vascular graft. Results showed that the regenerated tissue is composed of elastin, glycosaminoglycans, and circumferentially oriented collagen fibers, without calcification or systemic spill of the released growth factors. Functional controlled delivery was observed, whereas myofibroblast-rich tissue capsules were formed with enhanced collagen and elastin syntheses using TGF-β1 and TGF-β1/PDGF-BB releasing rods, when compared to control rods that were solely surface-engineered by chloroform etching. By combining our optimized LbL method and surface-engineered rods in an in vivo bioreactor approach, we could regulate the fate and ECM composition of in situ-engineered vascular grafts to create a successful in vivo vascular tissue-engineered replacement.
Collapse
Affiliation(s)
- Febriyani
F. R. Damanik
- Tissue
Regeneration Department, MIRA Institute for Biomedical Technology
and Technical Medicine, University of Twente, Drienerlolaan 5, Zuidhorst 145, 7522 NB Enschede, The Netherlands
- Faculty
of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Carolien T. Rothuizen
- Department
of Internal Medicine, Leiden University
Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Reshma Lalai
- Department
of Internal Medicine, Leiden University
Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Sandhia Khoenkhoen
- Faculty
of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Clemens van Blitterswijk
- Tissue
Regeneration Department, MIRA Institute for Biomedical Technology
and Technical Medicine, University of Twente, Drienerlolaan 5, Zuidhorst 145, 7522 NB Enschede, The Netherlands
- Complex
Tissue Regeneration Department, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Joris I. Rotmans
- Department
of Internal Medicine, Leiden University
Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Lorenzo Moroni
- Tissue
Regeneration Department, MIRA Institute for Biomedical Technology
and Technical Medicine, University of Twente, Drienerlolaan 5, Zuidhorst 145, 7522 NB Enschede, The Netherlands
- Complex
Tissue Regeneration Department, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
3
|
Mahadik R, Kiptoo P, Tolbert T, Siahaan TJ. Immune Modulation by Antigenic Peptides and Antigenic Peptide Conjugates for Treatment of Multiple Sclerosis. MEDICAL RESEARCH ARCHIVES 2022; 10:10.18103/mra.v10i5.2804. [PMID: 36381196 PMCID: PMC9648198 DOI: 10.18103/mra.v10i5.2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The immune system defends our body by fighting infection from pathogens utilizing both the innate and adaptive immune responses. The innate immune response is generated rapidly as the first line of defense. It is followed by the adaptive immune response that selectively targets infected cells. The adaptive immune response is generated more slowly, but selectively, by targeting a wide range of foreign particles (i.e., viruses or bacteria) or molecules that enter the body, known as antigens. Autoimmune diseases are the results of immune system glitches, where the body's adaptive system recognizes self-antigens as foreign. Thus, the host immune system attacks the self-tissues or organs with a high level of inflammation and causes debilitation in patients. Many current treatments for autoimmune diseases (i.e., multiple sclerosis (MS), rheumatoid arthritis (RA)) have been effective but lead to adverse side effects due to general immune system suppression, which makes patients vulnerable to opportunistic infections. To counter these negative effects, many different avenues of antigen specific treatments are being developed to selectively target the autoreactive immune cells for a specific self-antigen or set of self-antigens while not compromising the general immune system. These approaches include soluble antigenic peptides, bifunctional peptide inhibitors (BPI) including IDAC and Fc-BPI, polymer conjugates, and peptide-drug conjugates. Here, various antigen-specific methods of potential treatments, their efficacy, and limitations will be discussed along with the potential mechanisms of action.
Collapse
Affiliation(s)
- Rucha Mahadik
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | | | - Tom Tolbert
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| |
Collapse
|
4
|
Wang H, Shang J, He Z, Zheng M, Jia H, Zhang Y, Yang W, Gao X, Gao F. Dual peptide nanoparticles platform for enhanced antigen-specific immune tolerance for treatment of experimental autoimmune encephalomyelitis. Biomater Sci 2022; 10:3878-3891. [DOI: 10.1039/d2bm00444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Current therapeutic strategies for autoimmune diseases including multiple sclerosis (MS) are directed toward nonspecific immunosuppression which has severe side effects. The induction of antigen-specific tolerance becomes an ideal therapy for...
Collapse
|
5
|
ICAM-1 Targeted Drug Combination Nanoparticles Enhanced Gemcitabine-Paclitaxel Exposure and Breast Cancer Suppression in Mouse Models. Pharmaceutics 2021; 14:pharmaceutics14010089. [PMID: 35056985 PMCID: PMC8779833 DOI: 10.3390/pharmaceutics14010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the availability of molecularly targeted treatments such as antibodies and small molecules for human epidermal growth factor receptor 2 (HER2), hormone receptor (HR), and programmed death-ligand 1 (PD-L1), limited treatment options are available for advanced metastatic breast cancer (MBC), which constitutes ~90% mortality. Many of these monotherapies often lead to drug resistance. Novel MBC-targeted drug-combination therapeutic approaches that may reduce resistance are urgently needed. We investigated intercellular adhesion molecule-1 (ICAM-1), which is abundant in MBC, as a potential target to co-localize two current drug combinations, gemcitabine (G) and paclitaxel (T), assembled in a novel drug-combination nanoparticle (GT DcNP) form. With an ICAM-1-binding peptide (referred to as LFA1-P) coated on GT DcNPs, we evaluated the role of the LFA1-P density in breast cancer cell localization in vitro and in vivo. We found that 1–2% LFA1-P peptide incorporated on GT DcNPs provided optimal cancer cell binding in vitro with ~4× enhancement compared to non-peptide GT DcNPs. The in vivo probing of GT DcNPs labeled with a near-infrared marker, indocyanine green, in mice by bio-imaging and G and T analyses indicated LFA1-P enhanced drug and GT DcNP localization in breast cancer cells. The target/healthy tissue (lung/gastrointestinal (GI)) ratio of particles increased by ~60× compared to the non-ligand control. Collectively, these data indicated that LFA1 on GT DcNPs may provide ICAM-1-targeted G and T drug combination delivery to advancing MBC cells found in lung tissues. As ICAM-1 is generally expressed even in breast cancers that are triple-negative phenotypes, which are unresponsive to inhibitors of nuclear receptors or HER2/estrogen receptor (ER) agents, ICAM-1-targeted LFA1-P-coated GT DcNPs should be considered for clinical development to improve therapeutic outcomes of MBCs.
Collapse
|
6
|
Bentley ER, Little SR. Local delivery strategies to restore immune homeostasis in the context of inflammation. Adv Drug Deliv Rev 2021; 178:113971. [PMID: 34530013 PMCID: PMC8556365 DOI: 10.1016/j.addr.2021.113971] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
Immune homeostasis is maintained by a precise balance between effector immune cells and regulatory immune cells. Chronic deviations from immune homeostasis, driven by a greater ratio of effector to regulatory cues, can promote the development and propagation of inflammatory diseases/conditions (i.e., autoimmune diseases, transplant rejection, etc.). Current methods to treat chronic inflammation rely upon systemic administration of non-specific small molecules, resulting in broad immunosuppression with unwanted side effects. Consequently, recent studies have developed more localized and specific immunomodulatory approaches to treat inflammation through the use of local biomaterial-based delivery systems. In particular, this review focuses on (1) local biomaterial-based delivery systems, (2) common materials used for polymeric-delivery systems and (3) emerging immunomodulatory trends used to treat inflammation with increased specificity.
Collapse
Affiliation(s)
- Elizabeth R Bentley
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15260, United States.
| | - Steven R Little
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15260, United States; Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, United States; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, United States; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, United States; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, United States.
| |
Collapse
|
7
|
Recent Advances in Antigen-Specific Immunotherapies for the Treatment of Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060333. [PMID: 32486045 PMCID: PMC7348736 DOI: 10.3390/brainsci10060333] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system and is considered to be the leading non-traumatic cause of neurological disability in young adults. Current treatments for MS comprise long-term immunosuppressant drugs and disease-modifying therapies (DMTs) designed to alter its progress with the enhanced risk of severe side effects. The Holy Grail for the treatment of MS is to specifically suppress the disease while at the same time allow the immune system to be functionally active against infectious diseases and malignancy. This could be achieved via the development of immunotherapies designed to specifically suppress immune responses to self-antigens (e.g., myelin antigens). The present study attempts to highlight the various antigen-specific immunotherapies developed so far for the treatment of multiple sclerosis (e.g., vaccination with myelin-derived peptides/proteins, plasmid DNA encoding myelin epitopes, tolerogenic dendritic cells pulsed with encephalitogenic epitopes of myelin proteins, attenuated autologous T cells specific for myelin antigens, T cell receptor peptides, carriers loaded/conjugated with myelin immunodominant peptides, etc), focusing on the outcome of their recent preclinical and clinical evaluation, and to shed light on the mechanisms involved in the immunopathogenesis and treatment of multiple sclerosis.
Collapse
|
8
|
Badawi AH, Kiptoo P, Siahaan TJ. Immune Tolerance Induction against Experimental Autoimmune Encephalomyelitis (EAE) Using A New PLP-B7AP Conjugate that Simultaneously Targets B7/CD28 Costimulatory Signal and TCR/MHC-II Signal. JOURNAL OF MULTIPLE SCLEROSIS 2015; 2:1000131. [PMID: 26140285 PMCID: PMC4484621 DOI: 10.4172/2376-0389.1000131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most of the current therapies used in the treatment of multiple sclerosis (MS) are either ineffective or have adverse side effects. As such, there is a need to develop better therapies that specifically target myelin-specific aberrant immune cells involved in CNS inflammation without compromising the general immune system. In the present study, we developed a new bifunctional peptide inhibitor (BPI) that is effective and specific. Our BPI (PLP-B7AP) is composed of an antigenic peptide from myelin proteolipid protein (PLP139-151) and a B7 antisense peptide (B7AP) derived from CD28 receptor. The main hypothesis is that PLP-B7AP simultaneously targets MHC-II and B7-costimulatory molecules on the surface of antigen presenting cells (APC) and possibly alters the differentiation of naïve T cells from inflammatory to regulatory phenotypes. Results showed that PLP-B7AP was very effective in suppressing experimental autoimmune encephalomyelitis (EAE) compared to various controls in a mouse model. PLP-B7AP was effective when administered both before and after disease induction. Secreted cytokines from splenocytes isolated during periods of high disease severity and remission indicated that PLP-B7AP treatment induced an increased production of anti-inflammatory cytokines and inhibited the production of pro-inflammatory cytokines. Further, analysis of cortical brain tissue sections showed that PLP-B7AP treated mice had significantly lower demyelination compared to the control group. All these taken together indicate that the T cell receptor (TCR) and the CD28 receptor can be targeted simultaneously to improve efficacy and specificity of potential MS therapeutics.
Collapse
Affiliation(s)
- Ahmed H Badawi
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
- KU Medical Center, The University of Kansas, Kansas City, KS 66160, USA
| | - Paul Kiptoo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
9
|
Abstract
Strategies to enhance, suppress, or qualitatively shape the immune response are of importance for diverse biomedical applications, such as the development of new vaccines, treatments for autoimmune diseases and allergies, strategies for regenerative medicine, and immunotherapies for cancer. However, the intricate cellular and molecular signals regulating the immune system are major hurdles to predictably manipulating the immune response and developing safe and effective therapies. To meet this challenge, biomaterials are being developed that control how, where, and when immune cells are stimulated in vivo, and that can finely control their differentiation in vitro. We review recent advances in the field of biomaterials for immunomodulation, focusing particularly on designing biomaterials to provide controlled immunostimulation, targeting drugs and vaccines to lymphoid organs, and serving as scaffolds to organize immune cells and emulate lymphoid tissues. These ongoing efforts highlight the many ways in which biomaterials can be brought to bear to engineer the immune system.
Collapse
Affiliation(s)
- Nathan A Hotaling
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine
- Parker H. Petit Institute for Bioengineering and Biosciences, and
| | - Li Tang
- Department of Materials Science and Engineering
- Department of Biological Engineering, and
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139
| | - Darrell J Irvine
- Department of Materials Science and Engineering
- Department of Biological Engineering, and
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Julia E Babensee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine
- Parker H. Petit Institute for Bioengineering and Biosciences, and
- Center for Immunoengineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| |
Collapse
|
10
|
Therapeutic applications of nanomedicine in autoimmune diseases: From immunosuppression to tolerance induction. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1003-18. [DOI: 10.1016/j.nano.2014.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 01/13/2023]
|
11
|
Thati S, Kuehl C, Hartwell B, Sestak J, Siahaan T, Forrest ML, Berkland C. Routes of administration and dose optimization of soluble antigen arrays in mice with experimental autoimmune encephalomyelitis. J Pharm Sci 2014; 104:714-21. [PMID: 25447242 DOI: 10.1002/jps.24272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 01/26/2023]
Abstract
Soluble antigen arrays (SAgAs) were developed for treating mice with experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. SAgAs are composed of hyaluronan with grafted EAE antigen and LABL peptide (a ligand of ICAM-1). SAgA dose was tested by varying injection volume, SAgA concentration, and administration schedule. Routes of administration were explored to determine the efficacy of SAgAs when injected intramuscularly, subcutaneously, intraperitoneally, intravenously, or instilled into lungs. Injections proximal to the central nervous system (CNS) were compared with distal injection sites. Intravenous dosing was included to determine if SAgA efficiency results from systemic exposure. Pulmonary instillation (p.i.) was included as reports suggest T cells are licensed in the lungs before moving to the CNS. Decreasing the volume of injection or SAgA dose reduced treatment efficacy. Treating mice with a single injection on day 4, 7, and 10 also reduced efficacy compared with injecting on all three days. Surprisingly, changing the injection site did not lead to a significant difference in efficacy. Intravenous administration showed efficacy similar to other routes, suggesting SAgAs act systemically. When SAgAs were delivered via p.i., however, EAE mice failed to develop any symptoms, suggesting a unique lung mechanism to ameliorate EAE in mice.
Collapse
Affiliation(s)
- Sharadvi Thati
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, 66047
| | | | | | | | | | | | | |
Collapse
|
12
|
Orian JM, Keating P, Downs LL, Hale MW, Jiang X, Pham H, LaFlamme AC. Deletion of IL-4Rα in the BALB/c mouse is associated with altered lesion topography and susceptibility to experimental autoimmune encephalomyelitis. Autoimmunity 2014; 48:208-21. [PMID: 25427822 DOI: 10.3109/08916934.2014.987344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The regulation of cytokine expression by immune deviation from a pro-inflammatory to anti-inflammatory or "regulatory" milieu is crucial to the prevention of permanent central nervous system (CNS) damage in neuroinflammation. Earlier studies in the murine experimental autoimmune encephalomyelitis (EAE) model pointed to an anti-inflammatory role for the Th2 cytokine, IL-4, which was not confirmed in IL-4Rα-deficient mice (IL-4Rα(-/-)). To examine the pathological consequences of loss of responsiveness to Th2 cytokines, we compared lesion evolution in IL-4Rα(-/-) and wild type (WT) BALB/c mice immunized with PLP180-199 and investigated how altering the magnitude of the antigen-specific autoimmune response in this model affected the pathology. We found that while changing the magnitude of the peripheral antigen-specific response differentially affected the incidence of clinical disease in WT BALB/c relative to IL-4Rα(-/-) mice, the differences in incidence did not correlate to differences in pro-inflammatory cytokine production. Additionally, although only approximately 75% of WT mice developed clinical disease, lesions were observed in 100% of the mice, principally in the cerebellum, mid-brain and cerebral hemispheres, and lesion load increased with increasing pro-inflammatory cytokine production. Despite being resistant to disease induction with increasing pro-inflammatory cytokine production, lesion incidence in IL-4Rα-deficient animals was equal to their WT counterparts. However, lesion severity in IL-4Rα-deficient animals was preferentially reduced in the mid-brain and cerebral hemispheres. From these studies, we conclude that signaling through IL-4Rα has little effect on regulating the peripheral pro-inflammatory cytokine profile in this EAE variant but has distinct effects on the determination of lesion topography.
Collapse
Affiliation(s)
- Jacqueline M Orian
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University , Bundoora, Victoria , Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD, Miller SD. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS NANO 2014; 8:2148-60. [PMID: 24559284 PMCID: PMC3990004 DOI: 10.1021/nn405033r] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Targeted immune tolerance is a coveted therapy for the treatment of a variety of autoimmune diseases, as current treatment options often involve nonspecific immunosuppression. Intravenous (iv) infusion of apoptotic syngeneic splenocytes linked with peptide or protein autoantigens using ethylene carbodiimide (ECDI) has been demonstrated to be an effective method for inducing peripheral, antigen-specific tolerance for treatment of autoimmune disease. Here, we show the ability of biodegradable poly(lactic-co-glycolic acid) (PLG) nanoparticles to function as a safe, cost-effective, and highly efficient alternative to cellular carriers for the induction of antigen-specific T cell tolerance. We describe the formulation of tolerogenic PLG particles and demonstrate that administration of myelin antigen-coupled particles both prevented and treated relapsing-remitting experimental autoimmune encephalomyelitis (R-EAE), a CD4 T cell-mediated mouse model of multiple sclerosis (MS). PLG particles made on-site with surfactant modifications surpass the efficacy of commercially available particles in their ability to couple peptide and to prevent disease induction. Most importantly, myelin antigen-coupled PLG nanoparticles are able to significantly ameliorate ongoing disease and subsequent relapses when administered at onset or at peak of acute disease, and minimize epitope spreading when administered during disease remission. Therapeutic treatment results in significantly reduced CNS infiltration of encephalitogenic Th1 (IFN-γ) and Th17 (IL-17a) cells as well as inflammatory monocytes/macrophages. Together, these data describe a platform for antigen display that is safe, low-cost, and highly effective at inducing antigen-specific T cell tolerance. The development of such a platform carries broad implications for the treatment of a variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Zoe Hunter
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Derrick P. McCarthy
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Woon Teck Yap
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher T. Harp
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Daniel R. Getts
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Address correspondence to
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
- Address correspondence to
| |
Collapse
|
14
|
Peine KJ, Guerau-de-Arellano M, Lee P, Kanthamneni N, Severin M, Probst GD, Peng H, Yang Y, Vangundy Z, Papenfuss TL, Lovett-Racke AE, Bachelder EM, Ainslie KM. Treatment of experimental autoimmune encephalomyelitis by codelivery of disease associated Peptide and dexamethasone in acetalated dextran microparticles. Mol Pharm 2014; 11:828-35. [PMID: 24433027 PMCID: PMC3993881 DOI: 10.1021/mp4005172] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system that can cause loss of motor function and is thought to result, in part, from chronic inflammation due to an antigen-specific T cell immune response. Current treatments suppress the immune system without antigen specificity, increasing the risks of cancer, chronic infection, and other long-term side effects. In this study, we show treatment of experimental autoimmune encephalomyelitis (EAE), a model of MS, by coencapsulating the immunodominant peptide of myelin oligodendrocyte glycoprotein (MOG) with dexamethasone (DXM) into acetalated dextran (Ac-DEX) microparticles (DXM/MOG/MPs) and administering the microparticles subcutaneously. The clinical score of the mice was reduced from 3.4 to 1.6 after 3 injections 3 days apart with the coencapsulated microparticulate formulation (MOG 17.6 μg and DXM 8 μg). This change in clinical score was significantly greater than observed with phosphate-buffered saline (PBS), empty MPs, free DXM and MOG, DXM/MPs, and MOG/MPs. Additionally, treatment with DXM/MOG/MPs significantly inhibited disease-associated cytokine (e.g., IL-17, GM-CSF) expression in splenocytes isolated in treated mice. Here we show a promising approach for the therapeutic treatment of MS using a polymer-based microparticle delivery platform.
Collapse
Affiliation(s)
- Kevin J Peine
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University , Columbus, Ohio, 43210, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Suppression of MOG- and PLP-induced experimental autoimmune encephalomyelitis using a novel multivalent bifunctional peptide inhibitor. J Neuroimmunol 2013; 263:20-7. [PMID: 23911075 DOI: 10.1016/j.jneuroim.2013.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 01/08/2023]
Abstract
Previously, bifunctional peptide inhibitors (BPI) with a single antigenic peptide have been shown to suppress experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner. In this study, a multivalent BPI (MVBMOG/PLP) with two antigenic peptides derived from myelin oligodendrocyte glycoprotein (MOG38-50) and myelin proteolipid protein (PLP139-151) was evaluated in suppressing MOG38-50- and PLP139-151-induced EAE. MVBMOG/PLP significantly suppressed both models of EAE even when there was some evidence of epitope spreading in the MOG38-50-induced EAE model. In addition, MVBMOG/PLP was found to be more effective than PLP-BPI and MOG-BPI in suppressing MOG38-50-induced EAE. Thus, the development of MVB molecules with broader antigenic targets can lead to suppression of epitope spreading in EAE.
Collapse
|
16
|
Büyüktimkin B, Manikwar P, Kiptoo PK, Badawi AH, Stewart JM, Siahaan TJ. Vaccinelike and prophylactic treatments of EAE with novel I-domain antigen conjugates (IDAC): targeting multiple antigenic peptides to APC. Mol Pharm 2012; 10:297-306. [PMID: 23148513 DOI: 10.1021/mp300440x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The objective of this work is to utilize novel I-domain antigenic-peptide conjugates (IDAC) for targeting antigenic peptides to antigen-presenting cells (APC) to simulate tolerance in experimental autoimmune encephalomyelitis (EAE). IDAC-1 and IDAC-3 molecules are conjugates between the I-domain protein and PLP-Cys and Ac-PLP-Cys-NH(2) peptides, respectively, tethered to N-terminus and Lys residues on the I-domain. The hypothesis is that the I-domain protein binds to ICAM-1 and PLP peptide binds to MHC-II on the surface of APC; this binding event inhibits the formation of the immunological synapse at the APC-T-cell interface to alter T-cell differentiation from inflammatory to regulatory phenotypes. Conjugation of peptides to the I-domain did not change the secondary structure of IDAC molecules as determined by circular dichroism spectroscopy. The efficacies of IDAC-1 and -3 were evaluated in EAE mice by administering iv or sc injections of IDAC in a prophylactic or a vaccinelike dosing schedule. IDAC-3 was better than IDAC-1 in suppressing and delaying the onset of EAE when delivered in prophylactic and vaccinelike manners. IDAC-3 also suppressed subsequent relapse of the disease. The production of IL-17 was lowered in the IDAC-3-treated mice compared to those treated with PBS. In contrast, the production of IL-10 was increased, suggesting that there is a shift from inflammatory to regulatory T-cell populations in IDAC-3-treated mice. In conclusion, the I-domain can effectively deliver antigenic peptides in a vaccinelike or prophylactic manner for inducing immunotolerance in the EAE mouse model.
Collapse
Affiliation(s)
- Barlas Büyüktimkin
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | | | | | | | | | | |
Collapse
|
17
|
Moon JJ, Huang B, Irvine DJ. Engineering nano- and microparticles to tune immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3724-46. [PMID: 22641380 PMCID: PMC3786137 DOI: 10.1002/adma.201200446] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Indexed: 05/13/2023]
Abstract
The immune system can be a cure or cause of disease, fulfilling a protective role in attacking cancer or pathogenic microbes but also causing tissue destruction in autoimmune disorders. Thus, therapies aimed to amplify or suppress immune reactions are of great interest. However, the complex regulation of the immune system, coupled with the potential systemic side effects associated with traditional systemic drug therapies, has presented a major hurdle for the development of successful immunotherapies. Recent progress in the design of synthetic micro- and nano-particles that can target drugs, deliver imaging agents, or stimulate immune cells directly through their physical and chemical properties is leading to new approaches to deliver vaccines, promote immune responses against tumors, and suppress autoimmunity. In addition, novel strategies, such as the use of particle-laden immune cells as living targeting agents for drugs, are providing exciting new approaches for immunotherapy. This progress report describes recent advances in the design of micro- and nano-particles for immunotherapies and diagnostics.
Collapse
Affiliation(s)
- James J Moon
- Dept. of Materials Science and Eng., Massachusetts Institute of Technology-MIT, Cambridge, MA, USA
| | | | | |
Collapse
|
18
|
Badawi AH, Siahaan TJ. Immune modulating peptides for the treatment and suppression of multiple sclerosis. Clin Immunol 2012; 144:127-38. [PMID: 22722227 DOI: 10.1016/j.clim.2012.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease in which the immune system recognizes proteins of the myelin sheath as antigenic, thus initiating an inflammatory reaction in the central nervous system. This leads to demyelination of the axons, breakdown of the blood-brain barrier, and lesion formation. Current therapies for the treatment of MS are generally non-specific and weaken the global immune system, thus making the individual susceptible to opportunistic infections. Antigenic peptides and their derivatives are becoming more prevalent for investigation as therapeutic agents for MS because they possess immune-specific characteristics. In addition, other peptides that target vital components of the inflammatory immune response have also been developed. Therefore, the objectives of this review are to (a) summarize the immunological basis for the development of MS, (b) discuss specific and non-specific peptides tested in EAE and in humans, and (c) briefly address some problems and potential solutions with these novel therapies.
Collapse
Affiliation(s)
- Ahmed H Badawi
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|
19
|
Manikwar P, Büyüktimkin B, Kiptoo P, Badawi AH, Galeva NA, Williams TD, Siahaan TJ. I-domain-antigen conjugate (IDAC) for delivering antigenic peptides to APC: synthesis, characterization, and in vivo EAE suppression. Bioconjug Chem 2012; 23:509-17. [PMID: 22369638 PMCID: PMC3311109 DOI: 10.1021/bc200580j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The objectives of this work are to characterize the identity of I-domain-antigen conjugate (IDAC) and to evaluate the in vivo efficacy of IDAC in suppressing experimental autoimmune encephalomyelitis (EAE) in mouse model. The hypothesis is that the I-domain delivers PLP(139-151) peptides to antigen-presenting cells (APC) and alters the immune system by simultaneously binding to ICAM-1 and MHC-II, blocking immunological synapse formation. IDAC was synthesized by derivatizing the lysine residues with maleimide groups followed by conjugation with PLP-Cys-OH peptide. Conjugation with PLP peptide does not alter the secondary structure of the protein as determined by CD. IDAC suppresses the progression of EAE, while I-domain and GMB-I-domain could only delay the onset of EAE. As a positive control, Ac-PLP-BPI-NH(2)-2 can effectively suppress the progress of EAE. The number of conjugation sites and the sites of conjugations in IDAC were determined using tryptic digest followed by LC-MS analysis. In conclusion, conjugation of I-domain with an antigenic peptide (PLP) resulted in an active molecule to suppress EAE in vivo.
Collapse
Affiliation(s)
- Prakash Manikwar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Barlas Büyüktimkin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Paul Kiptoo
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Ahmed H. Badawi
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Nadezhda A. Galeva
- Mass Spectrometry/Analytical Proteomics Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Todd D. Williams
- Mass Spectrometry/Analytical Proteomics Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
20
|
Büyüktimkin B, Wang Q, Kiptoo P, Stewart JM, Berkland C, Siahaan TJ. Vaccine-like controlled-release delivery of an immunomodulating peptide to treat experimental autoimmune encephalomyelitis. Mol Pharm 2012; 9:979-85. [PMID: 22375937 DOI: 10.1021/mp200614q] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The objective of this work is to use colloidal gel from alginate-chitosan-PLGA complex to deliver Ac-PLP-BPI-NH₂-2 peptide in a controlled-release manner as a vaccine-like therapeutic to suppress experimental autoimmune encephalomyelitis (EAE) in the mouse model. Oppositely charged PLGA nanoparticles were prepared by a solvent diffusion method. The carboxyl group of the alginate and the amine group of the chitosan coated the nanoparticles with negative and positive charges, respectively. The peptide (Ac-PLP-BPI-NH₂-2), designed to bind to MHC-II and ICAM-1 simultaneously, was formulated into the colloidal gel by physical mixture. Vaccine-like administration of the peptide-loaded colloidal gel (Ac-PLP-BPI-NH₂-2-NP) was achieved by subcutaneous (sc) injection to EAE mice. Disease severity was measured using clinical scoring and percent change in body weight. Cytokine production was determined using the splenocytes from Ac-PLP-BPI-NH₂-2-NP-treated mice and compared to that of controls. Ac-PLP-BPI-NH₂-2-NP suppressed and delayed the onset of EAE as well as Ac-PLP-BPI-NH₂-2 when delivered in a vaccine-like manner. IL-6 and IL-17 levels were significantly lower in the Ac-PLP-BPI-NH₂-2-NP-treated mice compared to the mouse group treated with blank colloidal gel, suggesting that the mechanism of suppression of EAE is due to a shift in the immune response away from Th17 production. The results of this study suggest that a one-time sc administration of Ac-PLP-BPI-NH₂-2 formulated in a colloidal gel can produce long-term suppression of EAE by reducing Th17 proliferation.
Collapse
Affiliation(s)
- Barlas Büyüktimkin
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas , Lawrence, Kansas, USA
| | | | | | | | | | | |
Collapse
|
21
|
Badawi AH, Kiptoo P, Wang WT, Choi IY, Lee P, Vines CM, Siahaan TJ. Suppression of EAE and prevention of blood-brain barrier breakdown after vaccination with novel bifunctional peptide inhibitor. Neuropharmacology 2011; 62:1874-81. [PMID: 22210333 DOI: 10.1016/j.neuropharm.2011.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/29/2011] [Accepted: 12/11/2011] [Indexed: 01/17/2023]
Abstract
The efficacy of bifunctional peptide inhibitor (BPI) in preventing blood-brain barrier (BBB) breakdown during onset of experimental autoimmune encephalomyelitis (EAE) and suppression of the disease was evaluated in mice. The mechanism that defines how BPI prevents the disease was investigated by measuring the in vitro cytokine production of splenocytes. Peptides were injected 5-11 days prior to induction of EAE, and the severity of the disease was monitored by a standard clinical scoring protocol and change in body weight. The BBB breakdown in diseased and treated mice was compared to that in normal control mice by determining deposition of gadolinium diethylenetriaminepentaacetate (Gd-DTPA) in the brain using magnetic resonance imaging (MRI). Mice treated with PLP-BPI showed no or low indication of EAE as well as normal increase in body weight. In contrast, mice treated with the control peptide or PBS showed a decrease in body weight and a high disease score. The diseased mice had high deposition of Gd-DTPA in the brain, indicating breakdown in the BBB. However, the deposition of Gd-DTPA in PLP-BPI-treated mice was similar to that in normal control mice. Thus, PLP-BPI can suppress EAE when administered as a peptide vaccine and maintain the integrity of the BBB.
Collapse
Affiliation(s)
- Ahmed H Badawi
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Khondee S, Baoum A, Siahaan TJ, Berkland C. Calcium condensed LABL-TAT complexes effectively target gene delivery to ICAM-1 expressing cells. Mol Pharm 2011; 8:788-98. [PMID: 21473630 DOI: 10.1021/mp100393j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeted gene delivery using nonviral vectors is a highly touted scheme to reduce the potential for toxic or immunological side effects by reducing dose. In previous reports, TAT polyplexes with DNA have shown relatively poor gene delivery. The transfection efficiency has been enhanced by condensing TAT/DNA complexes to a small particle size using calcium. To explore the targetability of these condensed TAT complexes, LABL peptide targeting intercellular cell-adhesion molecule-1 (ICAM-1) was conjugated to TAT peptide using a polyethylene glycol (PEG) spacer. PEGylation reduced the transfection efficiency of TAT, but TAT complexes targeting ICAM-1 expressing cells regained much of the lost transfection efficiency. Targeted block peptides properly formulated with calcium offer promise for gene delivery to ICAM-1 expressing cells at sites of injury or inflammation.
Collapse
Affiliation(s)
- Supang Khondee
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | |
Collapse
|