1
|
Keser S, Maravić-Vlahoviček G, Lovrić J, Vanić Ž. Vesicular phospholipid gels: A new strategy to improve topical antimicrobial dermatotherapy. Int J Pharm 2024; 667:124931. [PMID: 39522836 DOI: 10.1016/j.ijpharm.2024.124931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Therapeutically effective and biocompatible dermal formulations that can ensure localization of a high level of antimicrobial drug at the site of action for an appropriate duration, while at the same time providing intrinsic reepithelization properties, are of particular importance for the treatment of infected and injured skin. The current research aimed to explore the potentials of using vesicular phospholipid gels (VPGs), semisolid formulations consisting of tightly packed liposomes (100-200 nm), as innovative local depot drug vehicles for advanced topical dermatotherapy. Ciprofloxacin hydrocholoride (CPX) was selected as a model hydrophilic antibacterial drug and was loaded into several VPGs, differing in their composition. Various CPX-loaded VPGs (CPX-VPGs) were evaluated in vitro for the rheological and physicochemical characteristics, drug release profile, stability under in vivo mimicked conditions and during storage, skin permeability, biocompatibility with the epidermal cells, antibacterial efficacy and wound healing assay, to determine the optimal CPX-VPG for topical dermatotherapy. Viscosity and bilayers fluidity of VPGs affected the release of CPX from CPX-VPGs and its skin localization, limiting CPX percutaneous absorption. All CPX-VPGs exhibited even a 2-fold increase in anti-biofilm activity against both Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA) clinical isolate compared to the free drug, while showing no toxic effects on human keratinocytes in vitro. Based on the pronounced proliferative effects on keratinocytes, superior in vitro wound healing effect and drug localization on/inside the skin, CPX-VPGs containing chitosan and hydrogenated phospholipid proved to be the most promising for topical dermatotherapy. These findings, along with increased bioadhesiveness and the slow drug release, with CPX concentrations significantly above the minimum biofilm inhibitory concentrations for bacteria typical in infected wounds, would contribute not only to the improvement of the antimicrobial dermatotherapy, but also to reduction of the frequency of the drug administration.
Collapse
Affiliation(s)
- Sabina Keser
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Gordana Maravić-Vlahoviček
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Jasmina Lovrić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Željka Vanić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Koehler JK, Schmager S, Bender V, Steiner D, Massing U. Preparation of Nanosized Pharmaceutical Formulations by Dual Centrifugation. Pharmaceuticals (Basel) 2023; 16:1519. [PMID: 38004385 PMCID: PMC10675754 DOI: 10.3390/ph16111519] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Dual centrifugation (DC) is an innovative in-vial homogenization and in-vial nanomilling technique that has been in use for the preparation of liposomes for more than one decade. Since then, DC has continuously been developed for preparing various liposomes and other lipid nanoparticles including emulsions and solid lipid nanoparticles (SLNs) as well as polymersomes and nanocrystals. Improvements in equipment technology have been achieved over the past decade, so that DC is now on its way to becoming the quasi-standard for the simple, fast, and aseptic production of lipid nanoparticles and nanocrystals in small and medium batch sizes, including the possibility of simple and fast formulation screening or bedside preparations of therapeutic nanoparticles. More than 68 publications in which DC was used to produce nanoparticles have appeared since then, justifying an initial review of the use of DC for pharmaceutical nanotechnology.
Collapse
Affiliation(s)
- Jonas K. Koehler
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.K.K.); (S.S.); (V.B.)
| | - Stefanie Schmager
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.K.K.); (S.S.); (V.B.)
| | - Valentin Bender
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.K.K.); (S.S.); (V.B.)
| | - Denise Steiner
- Department of Pharmaceutical Technology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Ulrich Massing
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.K.K.); (S.S.); (V.B.)
- Andreas Hettich GmbH & Co. KG, 78532 Tuttlingen, Germany
| |
Collapse
|
3
|
Sharma R, Yadav S, Yadav V, Akhtar J, Katari O, Kuche K, Jain S. Recent advances in lipid-based long-acting injectable depot formulations. Adv Drug Deliv Rev 2023; 199:114901. [PMID: 37257756 DOI: 10.1016/j.addr.2023.114901] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Long-acting injectable (LAIs) delivery systems sustain the drug therapeutic action in the body, resulting in reduced dosage regimen, toxicity, and improved patient compliance. Lipid-based depots are biocompatible, provide extended drug release, and improve drug stability, making them suitable for systemic and localized treatment of various chronic ailments, including psychosis, diabetes, hormonal disorders, arthritis, ocular diseases, and cancer. These depots include oil solutions, suspensions, oleogels, liquid crystalline systems, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, phospholipid phase separation gel, vesicular phospholipid gel etc. This review summarizes recent advancements in lipid-based LAIs for delivering small and macromolecules, and their potential in managing chronic diseases. It also provides an overview of the lipid depots available in market or clinical phase, as well as patents for lipid-based LAIs. Furthermore, this review critically discusses the current scenario of using in vitro release methods to establish IVIVC and highlights the challenges involved in developing lipid-based LAIs.
Collapse
Affiliation(s)
- Reena Sharma
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sheetal Yadav
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Vivek Yadav
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Oly Katari
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Kaushik Kuche
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sanyog Jain
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India.
| |
Collapse
|
4
|
Koehler JK, Gedda L, Wurster L, Schnur J, Edwards K, Heerklotz H, Massing U. Tailoring the Lamellarity of Liposomes Prepared by Dual Centrifugation. Pharmaceutics 2023; 15:pharmaceutics15020706. [PMID: 36840028 PMCID: PMC9961234 DOI: 10.3390/pharmaceutics15020706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Dual centrifugation (DC) is a new and versatile technique for the preparation of liposomes by in-vial homogenization of lipid-water mixtures. Size, size distribution, and entrapping efficiencies are strongly dependent on the lipid concentration during DC-homogenization. In this study, we investigated the detailed structure of DC-made liposomes. To do so, an assay to determine the ratio of inner to total membrane surfaces of liposomes (inaccessible surface) was developed based on either time-resolved or steady-state fluorescence spectroscopy. In addition, cryogenic electron microscopy (cryo-EM) was used to confirm the lamellarity results and learn more about liposome morphology. One striking result leads to the possibility of producing a novel type of liposome-small multilamellar vesicles (SMVs) with low PDI, sizes of the order of 100 nm, and almost completely filled with bilayers. A second particularly important finding is that VPGs can be prepared to contain open bilayer structures that will close spontaneously when, after storage, more aqueous phase is added and liposomes are formed. Through this process, a drug can effectively be entrapped immediately before application. In addition, dual centrifugation at lower lipid concentrations is found to produce predominantly unilamellar vesicles.
Collapse
Affiliation(s)
- Jonas K. Koehler
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Correspondence: (J.K.K.); (U.M.)
| | - Lars Gedda
- Department of Chemistry-Ångström, Uppsala University, 75237 Uppsala, Sweden
| | - Leonie Wurster
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Johannes Schnur
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Katarina Edwards
- Department of Chemistry-Ångström, Uppsala University, 75237 Uppsala, Sweden
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Signaling Research Centers BIOSS and CIBBS, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Ulrich Massing
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Andreas Hettich GmbH & Co. KG, 78532 Tuttlingen, Germany
- Correspondence: (J.K.K.); (U.M.)
| |
Collapse
|
5
|
Aleandri S, Rahnfeld L, Chatzikleanthous D, Bergadano A, Bühr C, Detotto C, Fuochi S, Weber-Wilk K, Schürch S, van Hoogevest P, Luciani P. Development and in vivo validation of phospholipid-based depots for the sustained release of bupivacaine. Eur J Pharm Biopharm 2022; 181:300-309. [PMID: 36427675 DOI: 10.1016/j.ejpb.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
By direct deposition of the drug at the local site of action, injectable depot formulations - intended for treatment of a local disease or for local intervention - are designed to limit the immediate exposure of the active principle at a systemic level and to reduce the frequency of administration. To overcome known drawbacks in the production of some marketed phospholipid-based depots, here we propose to manufacture drug-loaded negatively charged liposomes through conventional technologies and to control their aggregation mixing a solution of divalent cations prior to administration. We identified phosphatidylglycerol (PG) as the most suitable phospholipid for controlled aggregation of the liposomes and to modulate the release of the anesthetic bupivacaine (BUP) from liposomal depots. In vivo imaging of the fluorescently-labelled liposomes showed a significantly higher retention of the PG liposomes at the injection site with respect to zwitterionic ones. In situ mixing of PG liposomes with calcium salts significantly extended the area under the curve of BUP in plasma compared to the non-depot system. Overall, controlling the aggregation of negatively charged liposomes with divalent cations not only modulated the particle clearance from the injection site but also the release in vivo of a small amphipathic drug such as BUP.
Collapse
Affiliation(s)
- Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| | - Lisa Rahnfeld
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland; Institute of Pharmacy, Faculty of Biosciences, Friedrich Schiller University, Jena, Germany
| | - Despo Chatzikleanthous
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| | | | - Claudia Bühr
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| | - Carlotta Detotto
- Experimental Animal Center (EAC), University of Bern, Switzerland
| | - Sara Fuochi
- Experimental Animal Center (EAC), University of Bern, Switzerland
| | - Kevin Weber-Wilk
- Experimental Animal Center (EAC), University of Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| | | | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland; Institute of Pharmacy, Faculty of Biosciences, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
6
|
Novel Gels: An Emerging Approach for Delivering of Therapeutic Molecules and Recent Trends. Gels 2022; 8:gels8050316. [PMID: 35621614 PMCID: PMC9140900 DOI: 10.3390/gels8050316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Gels are semisolid, homogeneous systems with continuous or discrete therapeutic molecules in a suitable lipophilic or hydrophilic three-dimensional network base. Innovative gel systems possess multipurpose applications in cosmetics, food, pharmaceuticals, biotechnology, and so forth. Formulating a gel-based delivery system is simple and the delivery system enables the release of loaded therapeutic molecules. Furthermore, it facilitates the delivery of molecules via various routes as these gel-based systems offer proximal surface contact between a loaded therapeutic molecule and an absorption site. In the past decade, researchers have potentially explored and established a significant understanding of gel-based delivery systems for drug delivery. Subsequently, they have enabled the prospects of developing novel gel-based systems that illicit drug release by specific biological or external stimuli, such as temperature, pH, enzymes, ultrasound, antigens, etc. These systems are considered smart gels for their broad applications. This review reflects the significant role of advanced gel-based delivery systems for various therapeutic benefits. This detailed discussion is focused on strategies for the formulation of different novel gel-based systems, as well as it highlights the current research trends of these systems and patented technologies.
Collapse
|
7
|
Modulation of Paracellular-like Drug Transport across an Artificial Biomimetic Barrier by Osmotic Stress-Induced Liposome Shrinking. Pharmaceutics 2022; 14:pharmaceutics14040721. [PMID: 35456555 PMCID: PMC9027509 DOI: 10.3390/pharmaceutics14040721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Various types of artificial biomimetic barriers are widely utilized as in vitro tools to predict the passive “transcellular” transport of drug compounds. The current study investigated if the sandwich barrier PermeaPad®, which is composed of tightly packed phospholipid vesicles enclosed between two support sheets, contributes to a transport mechanism that is paracellular-like, representing one of the alternative pathways of passive transport in vivo, primarily of relevance for hydrophilic drug compounds. To this end, we pretreated the commercial PermeaPad® barrier with NaCl solutions of either high or low osmolality prior to permeation experiments on reversed Franz cell setups with hydrophilic model compounds calcein and acyclovir and hydrophobic model compounds hydrocortisone and celecoxib. Our starting hypothesis was that the liposomes formed in the barrier during the hydration step should either shrink or swell upon contact with test media (drug solutions) due to osmotic pressure difference as compared to the pretreatment solutions. Apparent permeabilities for calcein and acyclovir across the PermeaPad® barrier were found to increase approximately 2.0 and 1.7 fold, respectively, upon hypo-osmotic pretreatment (soaking in hypotonic medium, while the permeation of hydrocortisone and celecoxib remained unchanged. A control experiment with lipid-free barriers (support sheets) indicated that the permeation of all the compounds was virtually unchanged upon hypo-osmotic pretreatment. In conclusion, soaking PermeaPad® in a medium of lower osmotic pressure than that used during the permeation study appears to induce the osmotic shrinking of the lipid vesicles in the barrier, leaving wider water channels between the vesicles and, thus, allowing hydrophilic compounds to pass the barrier in a paracellular-like manner.
Collapse
|
8
|
Koehler JK, Schnur J, Heerklotz H, Massing U. Screening for Optimal Liposome Preparation Conditions by Using Dual Centrifugation and Time-Resolved Fluorescence Measurements. Pharmaceutics 2021; 13:pharmaceutics13122046. [PMID: 34959327 PMCID: PMC8703806 DOI: 10.3390/pharmaceutics13122046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Dual centrifugation (DC) is a novel in-vial homogenization technique for the preparation of liposomes in small batch sizes under gentle and sterile conditions which allows encapsulation efficiencies (EE) for water soluble compounds of >50%. Since liposome size, size distribution (PDI), and EE depend on the lipid concentration used in the DC process, a screening method to find optimal lipid concentrations for a defined lipid composition was developed. Four lipid mixtures consisting of cholesterol, hydrogenated or non-hydrogenated egg PC, and/or PEG-DSPE were screened and suitable concentration ranges could be identified for optimal DC homogenization. In addition to the very fast and parallel liposome preparation of up to 40 samples, the screening process was further accelerated by the finding that DC generates homogeneously mixed liposomes from a macroscopic lipid mixture without the need to initially prepare a molecularly mixed lipid film from an organic solution of all components. This much simpler procedure even works for cholesterol containing lipid blends, which could be explained by a nano-milling of the cholesterol crystals during DC homogenization. Furthermore, EE determination was performed by time-resolved fluorescence measurements of calcein-loaded liposomes without removing the non-entrapped calcein. The new strategy allows the rapid characterization of a certain lipid composition for the preparation of liposomes within a working day.
Collapse
Affiliation(s)
- Jonas K. Koehler
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.S.); (H.H.)
- Correspondence: (J.K.K.); (U.M.)
| | - Johannes Schnur
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.S.); (H.H.)
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.S.); (H.H.)
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79085 Freiburg im Breisgau, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Ulrich Massing
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (J.S.); (H.H.)
- Andreas Hettich GmbH & Co. KG, 78523 Tuttlingen, Germany
- Correspondence: (J.K.K.); (U.M.)
| |
Collapse
|
9
|
Tavakoli S, Peynshaert K, Lajunen T, Devoldere J, Del Amo EM, Ruponen M, De Smedt SC, Remaut K, Urtti A. Ocular barriers to retinal delivery of intravitreal liposomes: Impact of vitreoretinal interface. J Control Release 2020; 328:952-961. [PMID: 33091527 DOI: 10.1016/j.jconrel.2020.10.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022]
Abstract
Drug delivery to the posterior segment of the eye is challenging due to several anatomical and physiological barriers. Thus, there is a need for prolonged action and targeted drug delivery to treat retinal diseases. Intravitreal injections avoid anterior eye barriers, but the vitreoretinal interface and inner limiting membrane (ILM) may prevent access of drug delivery systems to the retina. Existing data on retinal permeation of intravitreal nanoparticles are sparse and probably misleading due to the inter-species differences of retinal structures in rodents and humans. To bridge this gap, retinal permeation of light-activated liposomes was studied in an ex vivo bovine explant system that simulates the structure of vitreoretinal interface and intact ILM. Our findings indicate that the particle size plays a significant role in determining the retinal penetration as the liposomes of >100 nm sized failed to overcome the ILM and could not permeate into the retina. In addition, our results demonstrate the impact of surface charge and PEG-coating on retinal penetration. Small (≈ 50 nm) anionic liposomes with PEG coating showed the most extensive distribution and cellular localization in the retina. In summary, this study extends understanding of ocular barriers, and provides valuable information to augment design of retinal drug delivery systems.
Collapse
Affiliation(s)
- Shirin Tavakoli
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Tatu Lajunen
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Science, Tokyo University of Pharmacy & Life Sciences, 1432-1 Hachioji, 192-0392 Tokyo, Japan
| | - Joke Devoldere
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Eva M Del Amo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Arto Urtti
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Institute of Chemistry, St Petersburg State University, Petergoff, St Petersburg, Russian Federation
| |
Collapse
|
10
|
Chung EP, Wells AR, Kiamco MM, Leung KP. Dual Asymmetric Centrifugation Efficiently Produces a Poloxamer-Based Nanoemulsion Gel for Topical Delivery of Pirfenidone. AAPS PharmSciTech 2020; 21:265. [PMID: 33006045 PMCID: PMC7529632 DOI: 10.1208/s12249-020-01798-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
This study used dual asymmetric centrifugation (DAC) to produce a topical vehicle for Pirfenidone (Pf; 5-methyl-1-phenyl-2[1H]-pyridone)—a Food and Drug Administration-approved antifibrotic drug indicated for idiopathic fibrosis treatment. Pf was loaded (8 wt%) in a poloxamer nanoemulsion gel (PNG) formulation consisting of water (47.8 wt%), triacetin (27.6 wt%), poloxamer 407 (P407, 13.8 wt%), polysorbate 80 (1.8 wt%), and benzyl alcohol (0.9 wt%). To our knowledge, poloxamer gels are typically processed with either high-shear methods or temperature regulation and have not been emulsified using DAC. Using a single-step emulsification process, 2 min mixed at 2500 RPM resulted in the lowest Pf loading variability with a relative standard deviation (RSD) of 0.96% for a 1.5 g batch size. Batch sizes of 15 g and 100 g yield higher RSD of 4.18% and 3.05%, respectively, but still in compliance with USP guidelines. Ex vivo permeation in full thickness porcine skin after 24 h showed total Pf permeation of 404.90 ± 67.07 μg/cm2. Tested in vitro on human dermal fibroblasts stimulated with transforming growth factor-beta 1 (TGF-β1), Pf-PNG resulted in a > 2 fold decrease in α-SMA expression over vehicle control demonstrating that formulated Pf retained its biological activity. One-month stability testing at 25°C/60% relative humidity (RH) and 40°C/75% RH showed that % drug content, release kinetics, and biological activity were largely unchanged for both conditions; however, pH decreased from 6.7 to 5.5 (25°C/60% RH) and 4.5 (40°C/75% RH) after 1 month. Overall, these data demonstrate the utility of DAC to rapidly and reproducibly prepare lab-scale batches of emulsified gels for pharmaceutical formulation development.
Collapse
|
11
|
Zhang P, Chen D, Tian Y, Li H, Gong T, Luo J, Ruan J, Gong T, Zhang Z. Comparison of three in-situ gels composed of different oil types. Int J Pharm 2020; 587:119707. [PMID: 32739391 DOI: 10.1016/j.ijpharm.2020.119707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/07/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
A phospholipid-based phase separation in-situ gel (PPSG) system, which consists of phospholipids, medium chain oil (triglyceride) and ethanol as basic ingredients, has been previously developed in our lab. In addition, glycerol monooleate (monoglyceride) and glycerol dioleate (diglyceride) were also reported to be able to form liquid crystal gels. Monoglyceride, diglyceride and triglyceride have different degrees of hydroxyl substitution in glycerol and therefore different amphiphilic properties, which may cause different properties of gels composed of them. In this experiment, glycerol monooleate (GMO), glycerol dioleate (GDO) and glycerol trioleate (GTO) were selected to prepare three kinds of PPSGs. We systematically studied their in-vitro and in-vivo physicochemical properties and investigated their drug release behavior with octreotide (OCT) as the model drug. The results showed that PPSG composed of GTO (GTO-gel) had a different microstructure, a slower solvent diffusion speed and the less irritation to skin. In addition, the drug release result showed that the GTO-gel group had a lower initial release rate and a more stable release profile. All results above indicated that GTO-gel had a greater potential as a drug delivery system.
Collapse
Affiliation(s)
- Pei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Dan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | | | - Haohuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Ting Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Jingwen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Jinghua Ruan
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China.
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
Breitsamer M, Stulz A, Heerklotz HH, Winter G. Do interactions between protein and phospholipids influence the release behavior from lipid-based exenatide depot systems? Eur J Pharm Biopharm 2019; 142:61-69. [PMID: 31195130 DOI: 10.1016/j.ejpb.2019.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/28/2019] [Accepted: 06/10/2019] [Indexed: 11/27/2022]
Abstract
The release mechanism for proteins and peptides from vesicular phospholipid gels (VPGs) is very complex. Drug release proceeds via a combination of erosion of the gel and diffusion of the drug out of it. This diffusion can be retarded by a slow permeation of the drug across the lipid bilayers in the gel as well as by its direct binding or adsorption to the lipid bilayers. Finally, the viscosity and homogeneity of the formulation may affect the release behavior. So far a direct correlation between one of these parameters and the release kinetics is not possible. In the present study, we aimed to investigate the contribution of drug-membrane interactions to the release kinetics of exenatide from differently composed VPGs (POPC, POPG and mixtures of both). To this end, in vitro release of exenatide as well as in vitro release of the phospholipids was monitored. Binding affinities were determined by microscale thermophoresis (MST). The sustained release behavior of exenatide could not simply be correlated to high viscosity of the VPG formulation. Release of exenatide from VPGs of anionic membranes containing POPG proceeded with a half-life of the order of 5 days and it seems to be controlled by the erosion of the gel. Its rate is unaffected by the initial pH inside the gel, independently of the strong impact of pH on exenatide binding to the membrane. At pH 4.5, exenatide is cationic and binds to membranes containing anionic POPG with a high affinity (Kd ≈ 10-30 µM). No high affinity membrane binding of exenatide is detected in this at pH 7.4, where exenatide is anionic, and to zwitterionic membranes composed of POPC. Exenatide release from the latter has a significantly longer half-life of 30 to 55 days. That means, these VPGs are much more resistant to erosion and show a very slow diffusional release. In this case, diffusion should be slowed down by the barrier function of the membranes rather than membrane affinity. In conclusion, erosion of the VPG matrix and membrane permeability of the drug are the major parameters influencing the release of exenatide from VPGs of POPC-POPG, whereas drug binding to the membranes had a minor effect only.
Collapse
Affiliation(s)
- Michaela Breitsamer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstraße 5, 81377 Munich, Germany.
| | - Anja Stulz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, 79104 Freiburg i. Br., Germany
| | - Heiko H Heerklotz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, 79104 Freiburg i. Br., Germany; Signalling Research Centers CIBBS and BIOSS, Albert-Ludwigs-Universität Freiburg, Schänzlestraße 18, 79104 Freiburg i. Br. Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, Canada
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstraße 5, 81377 Munich, Germany
| |
Collapse
|
13
|
Abstract
Supplemental Digital Content is Available in the Text. Pharmacological blockade of FKBP51 can reduce established persistent pain states across sexes. It is well established that FKBP51 regulates the stress system by modulating the sensitivity of the glucocorticoid receptor to stress hormones. Recently, we have demonstrated that FKBP51 also drives long-term inflammatory pain states in male mice by modulating glucocorticoid signalling at spinal cord level. Here, we explored the potential of FKBP51 as a new pharmacological target for the treatment of persistent pain across the sexes. First, we demonstrated that FKBP51 regulates long-term pain states of different aetiologies independently of sex. Deletion of FKBP51 reduced the mechanical hypersensitivity seen in joint inflammatory and neuropathic pain states in female and male mice. Furthermore, FKBP51 deletion also reduced the hypersensitivity seen in a translational model of chemotherapy-induced pain. Interestingly, these 3 pain states were associated with changes in glucocorticoid signalling, as indicated by the increased expression, at spinal cord level, of the glucocorticoid receptor isoform associated with glucocorticoid resistance, GRβ, and increased levels of plasma corticosterone. These pain states were also accompanied by an upregulation of interleukin-6 in the spinal cord. Crucially, we were able to pharmacologically reduce the severity of the mechanical hypersensitivity seen in these 3 models of persistent pain with the unique FKBP51 ligand SAFit2. When SAFit2 was combined with a state-of-the-art vesicular phospholipid gel formulation for slow release, a single injection of SAFit2 offered pain relief for at least 7 days. We therefore propose the pharmacological blockade of FKBP51 as a new approach for the treatment of persistent pain across sexes, likely in humans as well as rodents.
Collapse
|
14
|
Peynshaert K, Devoldere J, Minnaert AK, De Smedt SC, Remaut K. Morphology and Composition of the Inner Limiting Membrane: Species-Specific Variations and Relevance toward Drug Delivery Research. Curr Eye Res 2019; 44:465-475. [PMID: 30638413 DOI: 10.1080/02713683.2019.1565890] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The inner limiting membrane (ILM) represents the structural boundary between the vitreous and the retina, and is suggested to act as a barrier for a wide range of retinal therapies. While it is widely acknowledged that the morphology of the human ILM exhibits regional variations and undergoes age-related changes, insight into its structure in laboratory animals is very limited. Besides presenting a detailed overview of the morphology and composition of the human ILM, this review specifically reflects on the species-specific differences in ILM structure. With these differences in mind, we furthermore summarize the most relevant reports on the barrier role of the ILM with regard to viral vectors, nanoparticles, anti-VEGF medication and stem cells. Overall, this review aims to deliberate on the impact of species-specific ILM variations on drug delivery research as well as to pinpoint knowledge gaps which future basic research should resolve.
Collapse
Affiliation(s)
- Karen Peynshaert
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - Joke Devoldere
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - An-Katrien Minnaert
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - Stefaan C De Smedt
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| | - Katrien Remaut
- a Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium.,b Ghent Research Group on Nanomedicines , Ghent University , Ghent , Belgium
| |
Collapse
|
15
|
Breitsamer M, Winter G. Vesicular phospholipid gels as drug delivery systems for small molecular weight drugs, peptides and proteins: State of the art review. Int J Pharm 2018; 557:1-8. [PMID: 30572079 DOI: 10.1016/j.ijpharm.2018.12.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Lipid-based drug delivery has been investigated for a long time when it comes to liposomes and solid-lipid implants or solid-lipid nanoparticles. The promising, characteristic properties of these systems have led to the development of newer lipid-based drug delivery systems for the sustained release of drugs like liposomes for sustained delivery of substances, DepoFoam™ technology, phospholipid-based phase separation gels and vesicular phospholipid gels. Vesicular phospholipid gels (VPGs) are highly concentrated, viscous dispersions of high amounts of phospholipids in aqueous drug solution. The easy, solvent-free manufacturing process, high biocompatibility and various applications, as depot formulation for the sustained delivery of drugs and as a storage form of small unilamellar vesicles make VPGs highly attractive as drug carriers. Over the last years, the solvent free preparation process has advanced from high pressure homogenization to dual centrifugation (DC). Thereby a very simple one step process has been established for the preparation of VPGs. The semisolid VPG was first described in 1997 by Brandl et al. Since then, many formulations have been developed, encapsulating small molecular weight drugs like 5-FU (2003), cetrorelix (2005), cytarabine (2012) and exenatide (2015). In 2010, the first pharmaceutical protein, erythropoietin, was encapsulated in VPGs and sustained release of the substance was shown in vitro. In 2015, G-CSF was encapsulated in VPGs and tested in vivo for rotator cuff repair in a rat model and for PEGylated IFN-β-1b sustained release from vesicular phospholipid gels was demonstrated in vitro. Further, a very elegant administration technique for VPGs via needle-free injection was established. However this promising drug delivery system does still leave space for improvement and optimization. This review summarizes information about lipid-based depot systems in general and focuses on the historical development of VPGs. It emphasizes the advantages and drawbacks of VPGs as drug delivery device. Additionally, novel preparation methods and applications of VPGs will be discussed. A focus will be set on delivery of pharmaceutical proteins and peptides.
Collapse
Affiliation(s)
- Michaela Breitsamer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
16
|
Nanaki S, Barmpalexis P, Iatrou A, Christodoulou E, Kostoglou M, Bikiaris DN. Risperidone Controlled Release Microspheres Based on Poly(Lactic Acid)-Poly(Propylene Adipate) Novel Polymer Blends Appropriate for Long Acting Injectable Formulations. Pharmaceutics 2018; 10:E130. [PMID: 30104505 PMCID: PMC6161267 DOI: 10.3390/pharmaceutics10030130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022] Open
Abstract
The present study evaluates the preparation of risperidone controlled release microspheres as appropriate long-acting injectable formulations based on a series of novel biodegradable and biocompatible poly(lactic acid)⁻poly(propylene adipate) (PLA/PPAd) polymer blends. Initially, PPAd was synthesized using a two-stage melt polycondensation method (esterification and polycondensation) and characterized by 1H-NMR, differential scanning calorimetry (DSC), and powder X-ray diffraction (XRD) analyses. DSC and XRD results for PLA/PPAd blends (prepared by the solvent evaporation method) showed that these are immiscible, while enzymatic hydrolysis studies performed at 37 °C showed increased mass loss for PPAd compared to PLA. Risperidone-polyester microparticles prepared by the oil⁻water emulsification/solvent evaporation method showed smooth spherical surface with particle sizes from 1 to 15 μm. DSC, XRD, and Fourier-transformed infrared (FTIR) analyses showed that the active pharmaceutical ingredient (API) was dispersed in the amorphous phase within the polymer matrices, whereas in vitro drug release studies showed risperidone controlled release rates in all PLA/PPAd blend formulations. Finally, statistical moment analysis showed that polyester hydrolysis had a major impact on API release kinetics, while in PLA/PPAd blends with high PLA content, drug release was mainly controlled by diffusion.
Collapse
Affiliation(s)
- Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Alexandros Iatrou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
17
|
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018; 10:E57. [PMID: 29783687 PMCID: PMC6027495 DOI: 10.3390/pharmaceutics10020057] [Citation(s) in RCA: 2037] [Impact Index Per Article: 291.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
Lipid-based drug delivery systems, or lipidic carriers, are being extensively employed to enhance the bioavailability of poorly-soluble drugs. They have the ability to incorporate both lipophilic and hydrophilic molecules and protecting them against degradation in vitro and in vivo. There is a number of physical attributes of lipid-based nanocarriers that determine their safety, stability, efficacy, as well as their in vitro and in vivo behaviour. These include average particle size/diameter and the polydispersity index (PDI), which is an indication of their quality with respect to the size distribution. The suitability of nanocarrier formulations for a particular route of drug administration depends on their average diameter, PDI and size stability, among other parameters. Controlling and validating these parameters are of key importance for the effective clinical applications of nanocarrier formulations. This review highlights the significance of size and PDI in the successful design, formulation and development of nanosystems for pharmaceutical, nutraceutical and other applications. Liposomes, nanoliposomes, vesicular phospholipid gels, solid lipid nanoparticles, transfersomes and tocosomes are presented as frequently-used lipidic drug carriers. The advantages and limitations of a range of available analytical techniques used to characterize lipidic nanocarrier formulations are also covered.
Collapse
Affiliation(s)
- M Danaei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - M Dehghankhold
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - S Ataei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - F Hasanzadeh Davarani
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - R Javanmard
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - A Dokhani
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - S Khorasani
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| |
Collapse
|
18
|
Chen T, Gong T, Zhao T, Liu X, Fu Y, Zhang Z, Gong T. Paclitaxel loaded phospholipid-based gel as a drug delivery system for local treatment of glioma. Int J Pharm 2017; 528:127-132. [DOI: 10.1016/j.ijpharm.2017.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/01/2017] [Accepted: 06/04/2017] [Indexed: 11/28/2022]
|
19
|
Ingebrigtsen SG, Didriksen A, Johannessen M, Škalko-Basnet N, Holsæter AM. Old drug, new wrapping − A possible comeback for chloramphenicol? Int J Pharm 2017; 526:538-546. [DOI: 10.1016/j.ijpharm.2017.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/07/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
|
20
|
|
21
|
Ingebrigtsen SG, Škalko-Basnet N, de Albuquerque Cavalcanti Jacobsen C, Holsæter AM. Successful co-encapsulation of benzoyl peroxide and chloramphenicol in liposomes by a novel manufacturing method - dual asymmetric centrifugation. Eur J Pharm Sci 2017; 97:192-199. [DOI: 10.1016/j.ejps.2016.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
|
22
|
Breitsamer M, Winter G. Needle-Free Injection of Vesicular Phospholipid Gels-A Novel Approach to Overcome an Administration Hurdle for Semisolid Depot Systems. J Pharm Sci 2016; 106:968-972. [PMID: 28041969 DOI: 10.1016/j.xphs.2016.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/14/2016] [Accepted: 12/14/2016] [Indexed: 11/28/2022]
Abstract
Vesicular phospholipid gels (VPGs) are depot formulations for the sustained release of drugs which are characterized by a high amount of phospholipids in the formulation. They consist of physiological excipients only and therefore display high biocompatibility. Their manufacture is simple, cheap, solvent free, and ideal for the processing of proteins and peptides because of the low stress on the molecule, for example, by elevated temperatures. One major hurdle of VPGs is their high viscosity which makes them hard to almost impossible to inject with conventional, thin needles used for subcutaneous administration. However, so far no data are published to overcome this administration challenge. In the present study, needle-free injection was investigated and successfully applied as a technology for the easy and elegant administration of VPGs. VPGs with different phospholipid content were injected with a Biojector 2000 into gelatin blocks and full thickness pig skin postmortem as in vitro models and the injection depth was determined after injection. The release behavior was tested after shearing the VPG with the device to evaluate the effect of shearing on the drug release from the formulation. No differences were observed when compared to an ejection with needle and syringe.
Collapse
Affiliation(s)
- Michaela Breitsamer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Munich 81377, Germany.
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Munich 81377, Germany
| |
Collapse
|
23
|
Patel S, Gualtieri AP, Lu HH, Levine WN. Advances in biologic augmentation for rotator cuff repair. Ann N Y Acad Sci 2016; 1383:97-114. [PMID: 27750374 DOI: 10.1111/nyas.13267] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022]
Abstract
Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue. Therefore, various biological augmentation approaches have been investigated to improve rotator cuff repair healing. This review highlights recent advances in three fundamental approaches for biological augmentation for functional and integrative tendon-bone repair. First, the exploration, application, and delivery of growth factors to improve regeneration of native tissue are discussed. Second, applications of stem cell and other cell-based therapies to replenish damaged tissue for better healing are covered. Finally, this review will highlight the development and applications of compatible biomaterials to both better recapitulate the tendon-bone interface and improve delivery of biological factors for enhanced integrative repair.
Collapse
Affiliation(s)
- Sahishnu Patel
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Anthony P Gualtieri
- Department of Orthopedic Surgery, New York Presbyterian/Columbia University Medical Center, New York, New York
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - William N Levine
- Department of Orthopedic Surgery, New York Presbyterian/Columbia University Medical Center, New York, New York
| |
Collapse
|
24
|
Long D, Gong T, Zhang Z, Ding R, Fu Y. Preparation and evaluation of a phospholipid-based injectable gel for the long term delivery of leuprolide acetaterrh. Acta Pharm Sin B 2016; 6:329-35. [PMID: 27471673 PMCID: PMC4951586 DOI: 10.1016/j.apsb.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/03/2016] [Accepted: 04/15/2016] [Indexed: 11/24/2022] Open
Abstract
A phospholipid-based injectable gel was developed for the sustained delivery of leuprolide acetate (LA). The gel system was prepared using biocompatible materials (SPME), including soya phosphatidyl choline (SPC), medium chain triglyceride (MCT) and ethanol. The system displayed a sol state with low viscosity in vitro and underwent in situ gelation in vivo after subcutaneous injection. An in vitro release study was performed using a dialysis setup with different release media containing different percentages of ethanol. The stability of LA in the SPME system was investigated under different temperatures and in the presence of various antioxidants. In vivo studies in male rats were performed to elucidate the pharmacokinetic profiles and pharmacodynamic efficacy. A sustained release of LA for 28 days was observed without obvious initial burst in vivo. The pharmacodynamic study showed that once-a-month injection of LA-loaded SPME (SPME-LA) led to comparable suppression effects on the serum testosterone level as observed in LA solution except for the onset time. These findings demonstrate excellent potential for this novel SPME system as a sustained release delivery system for LA.
Collapse
|
25
|
Ingebrigtsen SG, Škalko-Basnet N, Holsæter AM. Development and optimization of a new processing approach for manufacturing topical liposomes-in-hydrogel drug formulations by dual asymmetric centrifugation. Drug Dev Ind Pharm 2016; 42:1375-83. [DOI: 10.3109/03639045.2015.1135940] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Zhang Y, Zhong Y, Hu M, Xiang N, Fu Y, Gong T, Zhang Z. In vitro and in vivo sustained release of exenatide from vesicular phospholipid gels for type II diabetes. Drug Dev Ind Pharm 2015; 42:1042-9. [PMID: 26558908 DOI: 10.3109/03639045.2015.1107090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diabetes is a chronic disease that requires daily treatment to maintain a stable blood glucose level. Sustained-release formulations can thus benefit the treatment of diabetes by reducing the repeated administration of therapeutics. Our study aimed to develop a sustained-release platform for exenatide that is biocompatible and capable of mass production. Vesicular phospholipid gels (VPGs) are semisolid phospholipid dispersions with controlled release profiles. Exenatide-VPGs prepared via simple magnetic stirring showed excellent biocompatibility with an average particle size of about 15 μm after redispersion. VPGs were shown to achieve sustained release for up to 21 days in vitro with no obvious burst effect. The in vivo release study showed that VPGs sustained the release of the exenatide for up to 11 days. Moreover, after subcutaneous injection of the exenatide-VPGs in the diabetic rats, the hypoglycemic effect lasted for 10 days compared with exenatide solution. In sum, the exenatide-VPGs system represents a promising sustained-release formulation for exenatide with a long-acting therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Yu Zhang
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| | - Ying Zhong
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| | - Mei Hu
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| | - Nanxi Xiang
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| | - Yao Fu
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| | - Tao Gong
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| | - Zhirong Zhang
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| |
Collapse
|
27
|
Djekic L, Krajisnik D, Micic Z. Polyphenolics-Phospholipid Complexes as Natural Cosmetic Ingredients: Properties and Application. TENSIDE SURFACT DET 2015. [DOI: 10.3139/113.110364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Phospholipids and polyphenolic phytoconstituents may form specific molecular complexes (polyphenolics-phospholipid complexes, phyto-phospholipid complexes) with definite chemical structure, solubility, thermal and spectroscopic characteristics. Furthermore, such specific molecular entities may self-associate into spherical unilamellar vesicles (phyto-vesicles, herbosomes) with size at nano- or microscale. Phyto-phospholipid complexation was recognised as a promising strategy to improve formulation performances and enhance efficiency of herbal polyphenolics with cosmetic relevance in comparison with pure phytoconstituents. This concise review summarizes the current knowledge on preparation methods, physico-chemical properties and aspects of application of the selected phyto-complexes as cosmetic active ingredients.
Collapse
Affiliation(s)
- Ljiljana Djekic
- University of Belgrade – Faculty of Pharmacy , Department of Pharmaceutical technology and Cosmetology, Belgrade , Serbia
| | - Danina Krajisnik
- University of Belgrade – Faculty of Pharmacy , Department of Pharmaceutical technology and Cosmetology, Belgrade , Serbia
| | - Zorica Micic
- Evropa lek d.o.o./GlaxoSmithKline Export Ltd. Representative Office , Belgrade , Serbia
| |
Collapse
|
28
|
Buchmann S, Sandmann GH, Walz L, Reichel T, Beitzel K, Wexel G, Tian W, Battmann A, Vogt S, Winter G, Imhoff AB. Growth factor release by vesicular phospholipid gels: in-vitro results and application for rotator cuff repair in a rat model. BMC Musculoskelet Disord 2015; 16:82. [PMID: 25888096 PMCID: PMC4417541 DOI: 10.1186/s12891-015-0542-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/27/2015] [Indexed: 02/06/2023] Open
Abstract
Background Biological augmentation of rotator cuff repair is of growing interest to improve biomechanical properties and prevent re-tearing. But intraoperative single shot growth factor application appears not sufficient to provide healing support in the physiologic growth factor expression peaks. The purpose of this study was to establish a sustained release of granulocyte-colony stimulating factor (G-CSF) from injectable vesicular phospholipid gels (VPGs) in vitro and to examine biocompatibility and influence on histology and biomechanical behavior of G-CSF loaded VPGs in a chronic supraspinatus tear rat model. Methods G-CSF loaded VPGs were produced by dual asymmetric centrifugation. In vitro the integrity, stability and release rate were analyzed. In vivo supraspinatus tendons of 60 rats were detached and after 3 weeks a transosseous refixation with G-CSF loaded VPGs augmentation (n = 15; control, placebo, 1 and 10 μg G-CSF/d) was performed. 6 weeks postoperatively the healing site was analyzed histologically (n = 9; H&E by modified MOVIN score/Collagen I/III) and biomechanically (n = 6). Results In vitro testing revealed stable proteins after centrifugation and a continuous G-CSF release of up to 4 weeks. Placebo VPGs showed histologically no negative side effects on the healing process. Histologically in vivo testing demonstrated significant advantages for G-CSF 1 μg/d but not for G-CSF 10 μg/d in Collagen III content (p = 0.035) and a higher Collagen I/III ratio compared to the other groups. Biomechanically G-CSF 1 μg/d revealed a significant higher load to failure ratio (p = 0.020) compared to control but no significant differences in stiffness. Conclusions By use of VPGs a continuous growth factor release could be obtained in vitro. The in vivo results demonstrate an improvement of immunohistology and biomechanical properties with a low dose G-CSF application via VPG. The VPG itself was well tolerated and had no negative influence on the healing behavior. Due to the favorable properties (highly adhesive, injectable, biocompatible) VPGs are a very interesting option for biologic augmentation. The study may serve as basis for further research in growth factor application models.
Collapse
Affiliation(s)
- Stefan Buchmann
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaningerstr., 81675, Munich, Germany.
| | - Gunther H Sandmann
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaningerstr., 81675, Munich, Germany. .,Department of Traumatology, Klinikum rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany.
| | - Lars Walz
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaningerstr., 81675, Munich, Germany. .,Clinical Trial Unit, University Hospital Basel, Schanzenstr. 55, Basel, Switzerland.
| | - Thomas Reichel
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaningerstr., 81675, Munich, Germany.
| | - Knut Beitzel
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaningerstr., 81675, Munich, Germany.
| | - Gabriele Wexel
- Department of Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany.
| | - Weiwei Tian
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilians University, Butenandstr. 5-13, 81377, Munich, Germany.
| | - Achim Battmann
- Institute for Pathology and Cytodiagnostics, Urselerstr. 33, 61348, Bad Homburg, v.d.H, Germany.
| | - Stephan Vogt
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaningerstr., 81675, Munich, Germany. .,Clinic for Orthopaedic Sports Medicine and arthroscopic Surgery, Orthopaedic Hospital Hessing Stiftung, Hessingstraße 17, 86199, Augsburg, Germany.
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilians University, Butenandstr. 5-13, 81377, Munich, Germany.
| | - Andreas B Imhoff
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaningerstr., 81675, Munich, Germany.
| |
Collapse
|
29
|
Zhang T, Peng Q, San FY, Luo JW, Wang MX, Wu WQ, Gong T, Zhang ZR. A high-efficiency, low-toxicity, phospholipids-based phase separation gel for long-term delivery of peptides. Biomaterials 2015; 45:1-9. [DOI: 10.1016/j.biomaterials.2014.12.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/10/2014] [Accepted: 12/20/2014] [Indexed: 01/30/2023]
|
30
|
Akash MSH, Rehman K, Chen S. Polymeric-based particulate systems for delivery of therapeutic proteins. Pharm Dev Technol 2015; 21:367-78. [DOI: 10.3109/10837450.2014.999785] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Muhammad Sajid Hamid Akash
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China,
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan, and
| | - Kanwal Rehman
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan, and
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Shuqing Chen
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China,
| |
Collapse
|
31
|
Parmentier J, Hofhaus G, Thomas S, Cuesta LC, Gropp F, Schröder R, Hartmann K, Fricker G. Improved Oral Bioavailability of Human Growth Hormone by a Combination of Liposomes Containing Bio-Enhancers and Tetraether Lipids and Omeprazole. J Pharm Sci 2014; 103:3985-3993. [DOI: 10.1002/jps.24215] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 01/08/2023]
|
32
|
Sustained delivery of cytarabine-loaded vesicular phospholipid gels for treatment of xenografted glioma. Int J Pharm 2014; 472:48-55. [PMID: 24914829 DOI: 10.1016/j.ijpharm.2014.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/23/2014] [Accepted: 06/06/2014] [Indexed: 11/23/2022]
Abstract
This study described the development of vesicular phospholipid gels (VPGs) for sustained delivery of cytarabine (Ara-C) for the treatment of xenografted glioma. Ara-C-loaded VPGs in the state of a semisolid phospholipid dispersion looked like numerous vesicles tightly packing together under the freeze-fracture electron microscopy (FF-TEM), their release profiles displayed sustained drug release up to 384 h in vitro. The biodistribution of Ara-C in the rat brain showed that Ara-C-loaded VPGs could maintain therapeutic concentrations up to 5mm distance from the implantation site in brain tissue within 28 days. At the same time, fluorescence micrograph confirmed drug distribution in brain tissue visually. Furthermore, after single administration, Ara-C-loaded VPGs group significantly inhibited the U87-MG glioma growth in right flank in comparison with Ara-C solution (p<0.01). It was explained that the entrapped drug in VPGs could avoid degradation from cytidine deaminase and sustained release of drug from Ara-C-loaded VPGs could maintain the effective therapeutic levels for a long time around the tumor. In conclusion, Ara-C-loaded VPGs, with the properties of sustained release, high penetration capacity, nontoxicity and no shape restriction of the surgical cavity, are promising local delivery systems for post-surgical sustained chemotherapy against glioma.
Collapse
|
33
|
Elnaggar YSR, El-Refaie WM, El-Massik MA, Abdallah OY. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications. J Control Release 2014; 180:10-24. [PMID: 24531009 DOI: 10.1016/j.jconrel.2014.02.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 12/18/2022]
Abstract
Conventional carriers for skin delivery encounter obstacles of drug leakage, scanty permeation and low entrapment efficiency. Phospholipid nanogels have recently been recognized as prominent delivery systems to circumvent such obstacles and impart easier application. The current review provides an overview on different types of lecithin nanostructured gels, with particular emphasis on liposomal versus microemulsion gelled systems. Liposomal gels investigated encompassed classic liposomal hydrogel, modified liposomal gels (e.g. Transferosomal, Ethosomal, Pro-liposomal and Phytosomal gels), Microgel in liposomes (M-i-L) and Vesicular phospholipid gel (VPG). Microemulsion gelled systems encompassed Lecithin microemulsion-based organogels (LMBGs), Pluronic lecithin organogels (PLOs) and Lecithin-stabilized microemulsion-based hydrogels. All systems were reviewed regarding matrix composition, state of art, characterization and updated applications. Different classes of lecithin nanogels exhibited crucial impact on transdermal delivery regarding drug permeation, drug loading and stability aspects. Future perspectives of this theme issue are discussed based on current laboratory studies.
Collapse
Affiliation(s)
- Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Magda A El-Massik
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
34
|
Dong R, Wu J, Dong S, Song S, Tian F, Hao J. Interconvertible Self-Assembly and Rheological Properties of Planar Bilayers and Vesicle Gels in Anionic/Nonionic (CF/CH) Surfactant Solutions. Chem Asian J 2013; 8:1863-72. [DOI: 10.1002/asia.201300134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/20/2013] [Indexed: 01/07/2023]
|
35
|
Tenambergen F, Maruiama CH, Mäder K. Dual asymmetric centrifugation as an alternative preparation method for parenteral fat emulsions in preformulation development. Int J Pharm 2013; 447:31-7. [DOI: 10.1016/j.ijpharm.2013.02.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 01/27/2023]
|
36
|
Toward a detailed characterization of oil adsorbates as "solid liquids". Eur J Pharm Biopharm 2012; 84:172-82. [PMID: 23275113 DOI: 10.1016/j.ejpb.2012.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/04/2012] [Accepted: 12/09/2012] [Indexed: 11/21/2022]
Abstract
Solid lipid formulation systems are used to overcome oral bioavailability problems of poorly water-soluble drugs. One promising process is the conversion of a liquid lipid system in a free flowing powder by use of adsorbing excipients. The aim of this study was the detailed characterization of solid-liquid interactions in oil adsorbed to Fujicalin and Neusilin which were manufactured by means of dual asymmetric centrifugation or conventional mortar/pestle blending. The adsorption strength of the excipients was investigated by Benchtop-NMR and ESR spectroscopy revealing the highest adsorption power for the Neusilin products. The adsorbate production methods as well as the storage of the excipients impact their adsorption properties. Environmental scanning electron microscopy (ESEM) and confocal laser scanning microscopy (CLSM) show that dual asymmetric centrifugation leads to a smoothing of the particle surface, whereas the mortar/pestle blending results in an uneven surface and particle destruction. The oil distribution at the particles is inhomogeneous for both production methods. The micropolarity of the adsorbed oil was investigated by ESR spectroscopy and multispectral fluorescence imaging. The adsorbing process on Neusilin leads to an increased micropolarity of the oil component. The release of the oil component in aqueous media could be verified by Benchtop-NMR and multispectral fluorescence imaging.
Collapse
|
37
|
In-vivo biodegradation of extruded lipid implants in rabbits. J Control Release 2012; 163:195-202. [DOI: 10.1016/j.jconrel.2012.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/15/2012] [Accepted: 08/24/2012] [Indexed: 11/23/2022]
|
38
|
Qi N, Tang X, Lin X, Gu P, Cai C, Xu H, He H, Zhang Y. Sterilization stability of vesicular phospholipid gels loaded with cytarabine for brain implant. Int J Pharm 2012; 427:234-41. [PMID: 22349049 DOI: 10.1016/j.ijpharm.2012.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/19/2011] [Accepted: 02/05/2012] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the sterilization stability of cytarabine (Ara-C) loaded vesicular phospholipid gels (VPGs). VPGs were prepared by high pressure homogenization method intended for the treatment of glioblastoma multiforme (GBM) in brain as injectable implant. The particle size of VPGs after redispersion was 119.6 ± 66.24 nm, and entrapment efficiency (EE) was 32.6 ± 2.1%. Drug release in vitro from VPGs sustained for 80 h with 48.1% initial release within 1h, and rheological studies demonstrated a gel-like behavior. Comparatively, after autoclaved sterilization, increased particle size and EE were obtained as 165.6 ± 71.89 nm and 62.6 ± 2.3%, respectively. Additionally, characteristics of drug release were significantly altered with obviously prolonged release time to 450 h and remarkable reduced initial release to 24.7%. Also, the viscoelasticity was reinforced with clearly decreased fluidity. This result could be explained by the fusion of small vesicles witnessed in TEM observation, which resulted in percentages change of vesicle groups with different size. However, reduced Ara-C and increased lysophosphatidylcholine (LPC) were observed. Among the stabilizers, addition of sodium sulfite showed best effects with high stability of Ara-C and phospholipids. This may be explained by the presence of SO(3)(-), free radicals produced by sodium sulfite. Being an hydroxyl radical scavenger, it can reduce the generation of HO free radicals. These results show that, with addition of appropriate stabilizers, VPGs can be autoclaved with high stability, and it is a promising dosage form for treatment of GBM after injection into resectable or nonresectable neoplasms with sustained release properties.
Collapse
Affiliation(s)
- Na Qi
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | | | | | | | |
Collapse
|