1
|
Rivero-Buceta E, Bernal-Gómez A, Vidaurre-Agut C, Lopez Moncholi E, María Benlloch J, Moreno Manzano V, David Vera Donoso C, Botella P. Prostate cancer chemotherapy by intratumoral administration of Docetaxel-Mesoporous silica nanomedicines. Int J Pharm 2024; 664:124623. [PMID: 39191333 DOI: 10.1016/j.ijpharm.2024.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Docetaxel (DTX) is a recommended treatment in patients with metastasic prostate cancer (PCa), despite its therapeutic efficacy is limited by strong systemic toxicity. However, in localized PCa, intratumoral (IT) administration of DTX could be an alternative to consider that may help to overcome the disadvantages of conventional intravenous (IV) therapy. In this context, we here present the first in vivo preclinical study of PCa therapy with nanomedicines of mesoporous silica nanoparticles (MSN) and DTX by IT injection over a xenograft mouse model bearing human prostate adenocarcinoma tumors. The efficacy and tolerability, the biodistribution and the histopathology after therapy have been investigated for the DTX nanomedicine and the free drug, and compared with the IV administration of DTX. The obtained results demonstrate that IT injection of DTX and DTX nanomedicines allows precise and selective therapy of non-metastatic PCa and minimize systemic diffusion of the drug, showing superior activity than IV route. This allows reducing the therapeutic dose by one order and widens substantially the therapeutic window for this drug. Furthermore, the use of DTX nanomedicines as IT injection promotes strong antitumor efficacy and drug accumulation at the tumor site, improving the results obtained with the free drug by the same route.
Collapse
Affiliation(s)
- Eva Rivero-Buceta
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 València, Spain
| | - Adrián Bernal-Gómez
- Escuela de Doctorado, Universidad Católica de Valencia, Plaza de San Agustín 3, 46001 Valencia, Spain; Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Carla Vidaurre-Agut
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 València, Spain
| | - Eric Lopez Moncholi
- Centro Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Jose María Benlloch
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | | | - César David Vera Donoso
- Escuela de Doctorado, Universidad Católica de Valencia, Plaza de San Agustín 3, 46001 Valencia, Spain; Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Pablo Botella
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
2
|
Wei Z, Wang Y, Bi Z, Feng L, Sun Y, Zhang H, Song X, Zhang S. Thermoresponsive and Substrate Self-Cycling Nanoenzyme System for Efficient Tumor Therapy. ACS APPLIED BIO MATERIALS 2024; 7:5337-5344. [PMID: 38968606 DOI: 10.1021/acsabm.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/07/2024]
Abstract
Cerium oxide (CeO2-x) performs well in photothermal and catalytic properties due to its abundance of oxygen vacancies. Based on this, we designed a thermosensitive therapeutic nanoplatform to achieve continuous circular drug release in tumor. It can solve the limitation caused by insufficient substrate in the process of tumor treatment. Briefly, CeO2-x and camptothecin (CPT) were wrapped in an agarose hydrogel, which could be melted by the photothermal effect of CeO2-x. At the same time, the local temperature increase provided photothermal treatment, which could induce the apoptosis of tumor cell. After that, CPT was released to damage the DNA in tumor cells to realize chemical treatment. In addition, CPT could active nicotinamide adenine dinucleotide oxidase to react with O2 to increase the intracellular H2O2. After that, the exposed CeO2-x could catalyze H2O2 to generate cytotoxic reactive oxygen species for chemodynamic therapy. More importantly, CeO2-x could catalyze H2O2 to produce O2, which could combine with the catalytic action of CPT to construct a substrate self-cycling nanoenzyme system. Overall, this self-cycling nanoplatform released hypoxia in the tumor microenvironment and built a multimode tumor treatment, which achieved an ideal antitumor affect.
Collapse
Affiliation(s)
- Zizhen Wei
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yuqi Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhiru Bi
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Lu Feng
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yongbiao Sun
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Huairong Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xinyue Song
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| |
Collapse
|
3
|
Qureshi M, Viegas C, Duarte SOD, Girardi M, Shehzad A, Fonte P. Camptothecin-loaded mesoporous silica nanoparticles functionalized with CpG oligodeoxynucleotide as a new approach for skin cancer treatment. Int J Pharm 2024; 660:124340. [PMID: 38878838 DOI: 10.1016/j.ijpharm.2024.124340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
The therapeutic efficacy of camptothecin (CPT), a potent antitumor alkaloid, is hindered by its hydrophobic nature and instability, limiting its clinical use in treating cutaneous squamous cell carcinoma (SCC). This study introduces a novel nano drug delivery system (NDDS) utilizing functionalized mesoporous silica nanoparticles (FMSNs) for efficient CPT delivery. The FMSNs were loaded with CPT and subsequently coated with chitosan (CS) for enhanced stability and bioadhesion. Importantly, CpG oligodeoxynucleotide (CpG ODN) was attached onto the CS-coated FMSNs to leverage the immunostimulatory properties of CpG ODN, augmenting the chemotherapy's efficacy. The final formulation FMSN-CPT-CS-CpG displayed an average size of 241 nm and PDI of 0.316 with an encapsulation efficiency of 95 %. Comprehensive in vitro and in vivo analyses, including B16F10 cells and DMBA/TPA-induced SCC murine model, demonstrated that the FMSN-CPT-CS-CpG formulation significantly enhanced cytotoxicity against B16F10 cells and induced complete regression in 40 % of the in vivo subjects, surpassing the efficacy of standard CPT and FMSN-CPT treatments. This study highlights the potential of combining chemotherapeutic and immunotherapeutic agents in an NDDS for targeted, efficient skin cancer treatment.
Collapse
Affiliation(s)
- Munibah Qureshi
- Department of Biomedical Engineering and Sciences, SMME, NUST, Islamabad, Pakistan
| | - Cláudia Viegas
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal; Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Sofia O D Duarte
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Michael Girardi
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Adeeb Shehzad
- Department of Biomedical Engineering and Sciences, SMME, NUST, Islamabad, Pakistan.
| | - Pedro Fonte
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Universidade do Algarve, Gambelas Campus, 8005-139 Faro, Portugal.
| |
Collapse
|
4
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Alotaibi G, Alharthi S, Basu B, Ash D, Dutta S, Singh S, Prajapati BG, Bhattacharya S, Chidrawar VR, Chitme H. Nano-Gels: Recent Advancement in Fabrication Methods for Mitigation of Skin Cancer. Gels 2023; 9:gels9040331. [PMID: 37102943 PMCID: PMC10137892 DOI: 10.3390/gels9040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
In the 21st century, melanoma and non-melanoma skin cancers have become an epidemic outbreak worldwide. Therefore, the exploration of all potential preventative and therapeutic measures based on either physical or bio-chemical mechanisms is essential via understanding precise pathophysiological pathways (Mitogen-activated protein kinase, Phosphatidylinositol 3-kinase Pathway, and Notch signaling pathway) and other aspects of such skin malignancies. Nano-gel, a three-dimensional polymeric cross-linked porous hydrogel having a diameter of 20-200 nm, possesses dual properties of both hydrogel and nanoparticle. The capacity of high drug entrapment efficiency with greater thermodynamic stability, remarkable solubilization potential, and swelling behavior of nano-gel becomes a promising candidate as a targeted drug delivery system in the treatment of skin cancer. Nano-gel can be either synthetically or architectonically modified for responding to either internal or external stimuli, including radiation, ultrasound, enzyme, magnetic, pH, temperature, and oxidation-reduction to achieve controlled release of pharmaceuticals and several bio-active molecules such as proteins, peptides, genes via amplifying drug aggregation in the active targeted tissue and reducing adverse pharmacological effects. Several drugs, such as anti-neoplastic biomolecules having short biological half-lives and prompt enzyme degradability capacity, must be appropriate for administration employing either chemically bridged or physically constructed nano-gel frameworks. The comprehensive review summarizes the advancement in the preparation and characterization methods of targeted nano-gel with enhanced pharmacological potential and preserved intracellular safety limits for the mitigation of skin malignancies with a special emphasize on skin cancer inducing pathophysiological pathways and prospective research opportunities for skin malignancy targeted nano-gels.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Biswajit Basu
- Department of Pharmaceutical Technology, Global College of Pharmaceutical Technology, Krishnagar 741102, West Bengal, India
| | - Dipanjana Ash
- Department of Pharmaceutics, BCDA College of Pharmacy & Technology, Kolkata 700127, West Bengal, India
| | - Swarnali Dutta
- Department of Pharmacology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-Be University, Shirpur 425405, Maharashtra, India
| | - Vijay R Chidrawar
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Ananthapuramu 515721, Andhra Pradesh, India
| | - Havagiray Chitme
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| |
Collapse
|
6
|
Nanoparticles loaded with pharmacologically active plant-derived natural products: Biomedical applications and toxicity. Colloids Surf B Biointerfaces 2023; 225:113214. [PMID: 36893664 DOI: 10.1016/j.colsurfb.2023.113214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Pharmacologically active natural products have played a significant role in the history of drug development. They have acted as sources of therapeutic drugs for various diseases such as cancer and infectious diseases. However, most natural products suffer from poor water solubility and low bioavailability, limiting their clinical applications. The rapid development of nanotechnology has opened up new directions for applying natural products and numerous studies have explored the biomedical applications of nanomaterials loaded with natural products. This review covers the recent research on applying plant-derived natural products (PDNPs) nanomaterials, including nanomedicines loaded with flavonoids, non-flavonoid polyphenols, alkaloids, and quinones, especially their use in treating various diseases. Furthermore, some drugs derived from natural products can be toxic to the body, so the toxicity of them is discussed. This comprehensive review includes fundamental discoveries and exploratory advances in natural product-loaded nanomaterials that may be helpful for future clinical development.
Collapse
|
7
|
Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Dnyanesh Saindane
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Rahul Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Bhupendra G. Prajapati
- Dept. of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S.K.Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, India
| |
Collapse
|
8
|
Cámara-Sánchez P, Díaz-Riascos ZV, García-Aranda N, Gener P, Seras-Franzoso J, Giani-Alonso M, Royo M, Vázquez E, Schwartz S, Abasolo I. Selectively Targeting Breast Cancer Stem Cells by 8-Quinolinol and Niclosamide. Int J Mol Sci 2022; 23:ijms231911760. [PMID: 36233074 PMCID: PMC9570236 DOI: 10.3390/ijms231911760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2022] Open
Abstract
Cancer maintenance, metastatic dissemination and drug resistance are sustained by cancer stem cells (CSCs). Triple negative breast cancer (TNBC) is the breast cancer subtype with the highest number of CSCs and the poorest prognosis. Here, we aimed to identify potential drugs targeting CSCs to be further employed in combination with standard chemotherapy in TNBC treatment. The anti-CSC efficacy of up to 17 small drugs was tested in TNBC cell lines using cell viability assays on differentiated cancer cells and CSCs. Then, the effect of 2 selected drugs (8-quinolinol -8Q- and niclosamide -NCS-) in the cancer stemness features were evaluated using mammosphere growth, cell invasion, migration and anchorage-independent growth assays. Changes in the expression of stemness genes after 8Q or NCS treatment were also evaluated. Moreover, the potential synergism of 8Q and NCS with PTX on CSC proliferation and stemness-related signaling pathways was evaluated using TNBC cell lines, CSC-reporter sublines, and CSC-enriched mammospheres. Finally, the efficacy of NCS in combination with PTX was analyzed in vivo using an orthotopic mouse model of MDA-MB-231 cells. Among all tested drug candidates, 8Q and NCS showed remarkable specific anti-CSC activity in terms of CSC viability, migration, invasion and anchorage independent growth reduction in vitro. Moreover, specific 8Q/PTX and NCS/PTX ratios at which both drugs displayed a synergistic effect in different TNBC cell lines were identified. The sole use of PTX increased the relative presence of CSCs in TNBC cells, whereas the combination of 8Q and NCS counteracted this pro-CSC activity of PTX while significantly reducing cell viability. In vivo, the combination of NCS with PTX reduced tumor growth and limited the dissemination of the disease by reducing circulating tumor cells and the incidence of lung metastasis. The combination of 8Q and NCS with PTX at established ratios inhibits both the proliferation of differentiated cancer cells and the viability of CSCs, paving the way for more efficacious TNBC treatments.
Collapse
Affiliation(s)
- Patricia Cámara-Sánchez
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Zamira V. Díaz-Riascos
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Natalia García-Aranda
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Petra Gener
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Joaquin Seras-Franzoso
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Micaela Giani-Alonso
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Miriam Royo
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institute for Advanced Chemistry (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Esther Vázquez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Simó Schwartz
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ibane Abasolo
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
9
|
Fernández Y, Movellan J, Foradada L, Giménez V, García‐Aranda N, Mancilla S, Armiñán A, Borgos SE, Hyldbakk A, Bogdanska A, Gobbo OL, Prina‐Mello A, Ponti J, Calzolai L, Zagorodko O, Gallon E, Niño‐Pariente A, Paul A, Schwartz Jr S, Abasolo I, Vicent MJ. In Vivo Antitumor and Antimetastatic Efficacy of a Polyacetal-Based Paclitaxel Conjugate for Prostate Cancer Therapy. Adv Healthc Mater 2022; 11:e2101544. [PMID: 34706167 DOI: 10.1002/adhm.202101544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa), one of the leading causes of cancer-related deaths, currently lacks effective treatment for advanced-stage disease. Paclitaxel (PTX) is a highly active chemotherapeutic drug and the first-line treatment for PCa; however, conventional PTX formulation causes severe hypersensitivity reactions and limits PTX use at high concentrations. In the pursuit of high molecular weight, biodegradable, and pH-responsive polymeric carriers, one conjugates PTX to a polyacetal-based nanocarrier to yield a tert-Ser-PTX polyacetal conjugate. tert-Ser-PTX conjugate provides sustained release of PTX over 2 weeks in a pH-responsive manner while also obtaining a degree of epimerization of PTX to 7-epi-PTX. Serum proteins stabilize tert-Ser-PTX, with enhanced stability in human serum versus PBS (pH 7.4). In vitro efficacy assessments in PCa cells demonstrate IC50 values above those for the free form of PTX due to the differential cell trafficking modes; however, in vivo tolerability assays demonstrate that tert-Ser-PTX significantly reduces the systemic toxicities associated with free PTX treatment. tert-Ser-PTX also effectively inhibits primary tumor growth and hematologic, lymphatic, and coelomic dissemination, as confirmed by in vivo and ex vivo bioluminescence imaging and histopathological evaluations in mice carrying orthotopic LNCaP tumors. Overall, the results suggest the application of tert-Ser-PTX as a robust antitumor/antimetastatic treatment for PCa.
Collapse
Affiliation(s)
- Yolanda Fernández
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Julie Movellan
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Laia Foradada
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Vanessa Giménez
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Natalia García‐Aranda
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Sandra Mancilla
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Sven Even Borgos
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim NO‐7465 Norway
| | - Astrid Hyldbakk
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim NO‐7465 Norway
| | - Anna Bogdanska
- Laboratory for Biological Characterization of Advanced Materials (LBCAM) Trinity Translational Medicine Institute Trinity College Dublin Dublin D08 W9RT Ireland
- Trinity St James's Cancer Institute Trinity College Dublin the University of Dublin Dublin D08 W9RT Ireland
| | - Oliviero L. Gobbo
- Trinity St James's Cancer Institute Trinity College Dublin the University of Dublin Dublin D08 W9RT Ireland
- School of Pharmacy and Pharmaceutical Sciences Trinity College Dublin Dublin D02 R590 Ireland
| | - Adriele Prina‐Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM) Trinity Translational Medicine Institute Trinity College Dublin Dublin D08 W9RT Ireland
- Trinity St James's Cancer Institute Trinity College Dublin the University of Dublin Dublin D08 W9RT Ireland
| | - Jessica Ponti
- European Commission Joint Research Centre (JRC) via Fermi 2749 Ispra 21027 Italy
| | - Luigi Calzolai
- European Commission Joint Research Centre (JRC) via Fermi 2749 Ispra 21027 Italy
| | - Oleksandr Zagorodko
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Elena Gallon
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Amaya Niño‐Pariente
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Alison Paul
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Simó Schwartz Jr
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Ibane Abasolo
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
10
|
Corma A, Botella P, Rivero-Buceta E. Silica-Based Stimuli-Responsive Systems for Antitumor Drug Delivery and Controlled Release. Pharmaceutics 2022; 14:pharmaceutics14010110. [PMID: 35057006 PMCID: PMC8779356 DOI: 10.3390/pharmaceutics14010110] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
The administration of cytotoxic drugs in classical chemotherapy is frequently limited by water solubility, low plasmatic stability, and a myriad of secondary effects associated with their diffusion to healthy tissue. In this sense, novel pharmaceutical forms able to deliver selectively these drugs to the malign cells, and imposing a space-time precise control of their discharge, are needed. In the last two decades, silica nanoparticles have been proposed as safe vehicles for antitumor molecules due to their stability in physiological medium, high surface area and easy functionalization, and good biocompatibility. In this review, we focus on silica-based nanomedicines provided with specific mechanisms for intracellular drug release. According to silica nature (amorphous, mesostructured, and hybrids) nanocarriers responding to a variety of stimuli endogenously (e.g., pH, redox potential, and enzyme activity) or exogenously (e.g., magnetic field, light, temperature, and ultrasound) are proposed. Furthermore, the incorporation of targeting molecules (e.g., monoclonal antibodies) that interact with specific cell membrane receptors allows a selective delivery to cancer cells to be carried out. Eventually, we present some remarks on the most important formulations in the pipeline for clinical approval, and we discuss the most difficult tasks to tackle in the near future, in order to extend the use of these nanomedicines to real patients.
Collapse
|
11
|
Enhanced Stability and Bioactivity of Natural Anticancer Topoisomerase I Inhibitors through Cyclodextrin Complexation. Pharmaceutics 2021; 13:pharmaceutics13101609. [PMID: 34683902 PMCID: PMC8537677 DOI: 10.3390/pharmaceutics13101609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
The use of cyclodextrins as drug nano-carrier systems for drug delivery is gaining importance in the pharmaceutical industry due to the interesting pharmacokinetic properties of the resulting inclusion complexes. In the present work, complexes of the anti-cancer alkaloids camptothecin and luotonin A have been prepared with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. These cyclodextrin complexes were characterized by nuclear magnetic resonance spectroscopy (NMR). The variations in the 1H-NMR and 13C-NMR chemical shifts allowed to establish the inclusion modes of the compounds into the cyclodextrin cavities, which were supported by docking and molecular dynamics studies. The efficiency of the complexation was quantified by UV-Vis spectrophotometry and spectrofluorimetry, which showed that the protonation equilibria of camptothecin and luotonin A were drastically hampered upon formation of the inclusion complexes. The stabilization of camptothecin towards hydrolysis inside the cyclodextrin cavity was verified by the quantitation of the active lactone form by reverse phase liquid chromatography fluorimetric detection, both in basic conditions and in the presence of serum albumin. The antitumor activity of luotonin A and camptothecin complexes were studied in several cancer cell lines (breast, lung, hepatic carcinoma, ovarian carcinoma and human neuroblastoma) and an enhanced activity was found compared to the free alkaloids, particularly in the case of hydroxypropyl-β-cyclodextrin derivatives. This result shows that the cyclodextrin inclusion strategy has much potential towards reaching the goal of employing luotonin A or its analogues as stable analogues of camptothecin.
Collapse
|
12
|
Abu-Serie MM, Andrade F, Cámara-Sánchez P, Seras-Franzoso J, Rafael D, Díaz-Riascos ZV, Gener P, Abasolo I, Schwartz S. Pluronic F127 micelles improve the stability and enhance the anticancer stem cell efficacy of citral in breast cancer. Nanomedicine (Lond) 2021; 16:1471-1485. [PMID: 34160295 DOI: 10.2217/nnm-2021-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Improving the stability and anti-cancer stem cell (CSC) activity of citral, a natural ALDH1A inhibitor. Materials & methods: Citral-loaded micelles (CLM) were obtained using Pluronic® F127 and its efficacy tested on the growth of four breast cancer cell lines. The impact of the CLM on the growth and functional hallmarks of breast CSCs were also evaluated using mammosphere and CSC reporter cell lines. Results: CLM improved the stability and growth inhibitory effects of citral. Importantly, CLM fully blocking the stemness features of CSCs (self-renewal, differentiation and migration) and in combination with paclitaxel CLM sensitized breast cancer cells to the chemotherapy. Conclusion: Targeting CSCs with CLM could improve the treatment of advanced breast cancer in combination with the standard chemotherapy.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, & Biotechnology Research Institute, City of Scientific Research & Technological Applications (SRTA-City), New Borg EL-Arab, 21934, Alexandria, Egypt
| | - Fernanda Andrade
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain
| | - Patricia Cámara-Sánchez
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain.,Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Joaquin Seras-Franzoso
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain
| | - Diana Rafael
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain
| | - Zamira V Díaz-Riascos
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain.,Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Petra Gener
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain
| | - Ibane Abasolo
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain.,Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Simó Schwartz
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 08035, Barcelona, Spain
| |
Collapse
|
13
|
Ghanbari-Movahed M, Kaceli T, Mondal A, Farzaei MH, Bishayee A. Recent Advances in Improved Anticancer Efficacies of Camptothecin Nano-Formulations: A Systematic Review. Biomedicines 2021; 9:480. [PMID: 33925750 PMCID: PMC8146681 DOI: 10.3390/biomedicines9050480] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Camptothecin (CPT), a natural plant alkaloid, has indicated potent antitumor activities via targeting intracellular topoisomerase I. The promise that CPT holds in therapies is restricted through factors that include lactone ring instability and water insolubility, which limits the drug oral solubility and bioavailability in blood plasma. Novel strategies involving CPT pharmacological and low doses combined with nanoparticles have indicated potent anticancer activity in vitro and in vivo. This systematic review aims to provide a comprehensive and critical evaluation of the anticancer ability of nano-CPT in various cancers as a novel and more efficient natural compound for drug development. Studies were identified through systematic searches of PubMed, Scopus, and ScienceDirect. Eligibility checks were performed based on predefined selection criteria. Eighty-two papers were included in this systematic review. There was strong evidence for the association between antitumor activity and CPT treatment. Furthermore, studies indicated that CPT nano-formulations have higher antitumor activity in comparison to free CPT, which results in enhanced efficacy for cancer treatment. The results of our study indicate that CPT nano-formulations are a potent candidate for cancer treatment and may provide further support for the clinical application of natural antitumor agents with passive targeting of tumors in the future.
Collapse
Affiliation(s)
- Maryam Ghanbari-Movahed
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
- Department of Biology, Faculty of Science, University of Guilan, Rasht 4193833697, Iran
| | - Tea Kaceli
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731123, India;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| |
Collapse
|
14
|
Checa-Chavarria E, Rivero-Buceta E, Sanchez Martos MA, Martinez Navarrete G, Soto-Sánchez C, Botella P, Fernández E. Development of a Prodrug of Camptothecin for Enhanced Treatment of Glioblastoma Multiforme. Mol Pharm 2021; 18:1558-1572. [PMID: 33645231 PMCID: PMC8482753 DOI: 10.1021/acs.molpharmaceut.0c00968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
![]()
A novel therapeutic approach for
glioblastoma multiforme (GBM)
therapy has been carried out through in vitro and in vivo testing by using the prodrug camptothecin-20-O-(5-aminolevulinate) (CPT-ALA). The incorporation of ALA
to CPT may promote uptake of the cytotoxic molecule by glioblastoma
cells where the heme synthesis pathway is active, improving the therapeutic
action and reducing the side effects over healthy tissue. The antitumor
properties of CPT-ALA have been tested on different GBM cell lines
(U87, U251, and C6) as well as in an orthotopic GBM model in rat,
where potential toxicity in central nervous system cells was analyzed. In vitro results indicated no significant differences in
the cytotoxic effect over the different GBM cell lines for CPT and
CPT-ALA, albeit cell mortality induced by CPT over normal cell lines
was significantly higher than CPT-ALA. Moreover, intracranial GBM
in rat was significantly reduced (30% volume) with 2 weeks of CPT-ALA
treatment with no significant side effects or alterations to the well-being
of the animals tested. 5-ALA moiety enhances CPT diffusion into tumors
due to solubility improvement and its metabolic-based targeting, increasing
the CPT cytotoxic effect on malignant cells while reducing CPT diffusion
to other proliferative healthy tissue. We demonstrate that CPT-ALA
blocks proliferation of GBM cells, reducing the infiltrative capacity
of GBM and promoting the success of surgical removal, which improves
life expectancy by reducing tumor recurrence.
Collapse
Affiliation(s)
- Elisa Checa-Chavarria
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain and Centre for Network Biomedical Research (CIBER-BBN), Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Eva Rivero-Buceta
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Miguel Angel Sanchez Martos
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain and Centre for Network Biomedical Research (CIBER-BBN), Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Gema Martinez Navarrete
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain and Centre for Network Biomedical Research (CIBER-BBN), Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Cristina Soto-Sánchez
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain and Centre for Network Biomedical Research (CIBER-BBN), Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Pablo Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Eduardo Fernández
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain and Centre for Network Biomedical Research (CIBER-BBN), Avenida de la Universidad s/n, 03202 Elche, Spain
| |
Collapse
|
15
|
Tomsen-Melero J, Passemard S, García-Aranda N, Díaz-Riascos ZV, González-Rioja R, Nedergaard Pedersen J, Lyngsø J, Merlo-Mas J, Cristóbal-Lecina E, Corchero JL, Pulido D, Cámara-Sánchez P, Portnaya I, Ionita I, Schwartz S, Veciana J, Sala S, Royo M, Córdoba A, Danino D, Pedersen JS, González-Mira E, Abasolo I, Ventosa N. Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7825-7838. [PMID: 33583172 DOI: 10.1021/acsami.0c16871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/12/2023]
Abstract
Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients. An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells. However, low colloidal stability and limited enzyme entrapment efficiency could hinder the further pharmaceutical development and the clinical translation of these nanoformulations. Herein, the incorporation of the cationic miristalkonium chloride (MKC) surfactant to RGD nanovesicles is explored, comparing two different nanosystems-quatsomes and hybrid liposomes. In both systems, the positive surface charge introduced by MKC promotes electrostatic interactions between the enzyme and the nanovesicles, improving the loading capacity and colloidal stability. The presence of high MKC content in quatsomes practically abolishes GLA enzymatic activity, while low concentrations of the surfactant in hybrid liposomes stabilize the enzyme without compromising its activity. Moreover, hybrid liposomes show improved efficacy in cell cultures and a good in vitro/in vivo safety profile, ensuring their future preclinical and clinical development.
Collapse
Affiliation(s)
- Judit Tomsen-Melero
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Solène Passemard
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Natalia García-Aranda
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, and Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Zamira Vanessa Díaz-Riascos
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, and Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Ramon González-Rioja
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Jeppe Lyngsø
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Josep Merlo-Mas
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Edgar Cristóbal-Lecina
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain
| | - José Luis Corchero
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Daniel Pulido
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain
| | - Patricia Cámara-Sánchez
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, and Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Irina Portnaya
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Inbal Ionita
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Simó Schwartz
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Santi Sala
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Miriam Royo
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain
| | - Alba Córdoba
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Dganit Danino
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
- Faculty of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Daxue Road, Shantou 515063, Guangdong Province, China
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Elisabet González-Mira
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ibane Abasolo
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, and Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
16
|
Najahi-Missaoui W, Arnold RD, Cummings BS. Safe Nanoparticles: Are We There Yet? Int J Mol Sci 2020; 22:ijms22010385. [PMID: 33396561 PMCID: PMC7794803 DOI: 10.3390/ijms22010385] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022] Open
Abstract
The field of nanotechnology has grown over the last two decades and made the transition from the benchtop to applied technologies. Nanoscale-sized particles, or nanoparticles, have emerged as promising tools with broad applications in drug delivery, diagnostics, cosmetics and several other biological and non-biological areas. These advances lead to questions about nanoparticle safety. Despite considerable efforts to understand the toxicity and safety of these nanoparticles, many of these questions are not yet fully answered. Nevertheless, these efforts have identified several approaches to minimize and prevent nanoparticle toxicity to promote safer nanotechnology. This review summarizes our current knowledge on nanoparticles, their toxic effects, their interactions with mammalian cells and finally current approaches to minimizing their toxicity.
Collapse
Affiliation(s)
- Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
- Correspondence: ; Tel.: +1-706-542-6552; Fax: +70-6542-5358
| | - Robert D. Arnold
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Brian S. Cummings
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
17
|
Lakade SH, Harde MT, Deshmukh PK. Synthesis of mesoporous alumina: an impact of surface chemistry on release behavior. PARTICULATE SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/02726351.2019.1666947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sameer H. Lakade
- Department of Pharmaceutics, RMD Institute of Pharmaceutical Education & Research, Pune, India
| | - Minal T. Harde
- Department of Pharmaceutical Chemistry, PES’s Modern College of Pharmacy, Pune, India
| | - Prashant K. Deshmukh
- Post Graduate Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
18
|
Oliveira ADS, Rivero-Buceta EM, Vidaurre-Agut C, Misturini A, Moreno V, Jordá JL, Sastre G, Pergher SBC, Botella P. Sequential pore wall functionalization in covalent organic frameworks and application to stable camptothecin delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111263. [PMID: 32919629 DOI: 10.1016/j.msec.2020.111263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/05/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/28/2022]
Abstract
Post-synthetic modification of covalent organic frameworks (COFs) is strongly demanded in order to provide additional functionalities to their structures. However, the introduction of functional groups during the synthesis of two dimensional COFs (2D COFs) is highly discouraged, as they can interfere with the π-π stacking forces, compromising framework integrity. Here, we show that direct incorporation of nucleophyllic groups (e.g., primary amines) on pore wall during the synthesis of a 2D-COF (COF-5) is possible by sequential substitution of original monomers. Subsequent bonding of the antitumor drug camptothecin results in a stable hydrophobic drug delivery system. Water adsorption isotherms modelling indicates that the insertion of CPT ligand in the framework promotes a hydrophobic effect that protects a region of COF chain from boronate ester hydrolysis and resulting degradation, which is also proven by stability testing in physiological conditions. Furthermore, this hydrophobic nature favors cell internalization kinetics by promoting interactions with the lipophilic cell membrane. To the best of our knowledge, this is the first case of a stable drug delivery system based on covalently conjugated COFs.
Collapse
Affiliation(s)
- Artur De Santana Oliveira
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain; Universidade Federal do Rio Grande do Norte, Laboratório de Peneiras Moleculares, Instituto de Química, 59078-970 Natal, RN, Brazil
| | - Eva María Rivero-Buceta
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Carla Vidaurre-Agut
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain; Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alechania Misturini
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Victoria Moreno
- Centro Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Jose Luis Jordá
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Germán Sastre
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Sibele Berenice Castellã Pergher
- Universidade Federal do Rio Grande do Norte, Laboratório de Peneiras Moleculares, Instituto de Química, 59078-970 Natal, RN, Brazil
| | - Pablo Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
19
|
Zhang YH, Zhang YM, Sheng X, Wang J, Liu Y. Enzyme-responsive fluorescent camptothecin prodrug/polysaccharide supramolecular assembly for targeted cellular imaging and in situ controlled drug release. Chem Commun (Camb) 2020; 56:1042-1045. [DOI: 10.1039/c9cc08491f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
An enzyme-responsive polysaccharide assembly was constructed, which possesses low cytotoxicity, targeted imaging and controlled drug release, while providing a concurrent means for the real-time tracking of drug delivery.
Collapse
Affiliation(s)
- Yu-Hui Zhang
- College of Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- P. R. China
- Department of Chemistry
| | - Ying-Ming Zhang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xianliang Sheng
- College of Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- P. R. China
| | - Jie Wang
- College of Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
20
|
Solanki P, Patel S, Devkar R, Patel A. Camptothecin encapsulated into functionalized MCM-41: In vitro release study, cytotoxicity and kinetics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1014-1021. [DOI: 10.1016/j.msec.2019.01.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/22/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
21
|
Simon A, Dutta D, Chattopadhyay A, Ghosh SS. Copper Nanocluster-Doped Luminescent Hydroxyapatite Nanoparticles for Antibacterial and Antibiofilm Applications. ACS OMEGA 2019; 4:4697-4706. [PMID: 31459656 PMCID: PMC6648608 DOI: 10.1021/acsomega.8b03076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/05/2018] [Accepted: 02/13/2019] [Indexed: 05/29/2023]
Abstract
Novel strategies in the field of nanotechnology for the development of suitable multifunctional drug delivery vehicles have been pursued with promising upshots. Luminescent copper nanocluster-doped hydroxyapatite nanoparticles (HAP NPs) were synthesized and applied for the delivery of antibacterial drug kanamycin. The negatively charged doped HAP NPs could electrostatically interact with the positively charged kanamycin. The kanamycin-loaded doped HAP NPs showed pronounced activity in the case of Gram-negative bacteria compared to that in Gram-positive bacteria. Upon interaction with the bacteria, kanamycin could probably generate harmful agents such as hydroxyl radical that leads to bacterial cell damage. After being incorporated with copper nanoclusters (Cu NCs), the doped HAP NPs were applied for the bioimaging of bacterial cells. The biocompatibility of doped HAP NPs was also studied in HeLa cells. As compared to copper nanoclusters, the doped HAP NPs showed excellent biocompatibility even at higher concentrations of copper. The kanamycin-loaded doped HAP NPs were further applied toward Pseudomonas aeruginosa biofilm eradication. Thus, the as-synthesized copper nanocluster-doped HAP NPs were applied as nanocarriers for antibiotic drug delivery, bioimaging, and antibiofilm applications.
Collapse
Affiliation(s)
- Anitha
T. Simon
- Centre
for Nanotechnology, Department of Biosciences and Bioengineering, and Department of
Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, India
| | - Deepanjalee Dutta
- Centre
for Nanotechnology, Department of Biosciences and Bioengineering, and Department of
Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, India
| | - Arun Chattopadhyay
- Centre
for Nanotechnology, Department of Biosciences and Bioengineering, and Department of
Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, India
| | - Siddhartha Sankar Ghosh
- Centre
for Nanotechnology, Department of Biosciences and Bioengineering, and Department of
Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, India
| |
Collapse
|
22
|
Cabrera-García A, Checa-Chavarria E, Rivero-Buceta E, Moreno V, Fernández E, Botella P. Amino modified metal-organic frameworks as pH-responsive nanoplatforms for safe delivery of camptothecin. J Colloid Interface Sci 2019; 541:163-174. [PMID: 30685611 DOI: 10.1016/j.jcis.2019.01.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
Abstract
MIL-100(Fe) and MIL-101(Fe) metal-organic frameworks (MOFs) are excellent vehicles for drug delivery systems (DDSs) due to their high biocompatibility and stability in physiological fluids, as well as their pore diameter in the mesoporous range. Although they are appropriate for the internal diffusion of 20-(S)-camptothecin (CPT), a strongly cytotoxic molecule with excellent antitumor activity, no stable delivery system has been proposed so far for this drug based in MOFs. We here present novel DDSs based in amine functionalized MIL-100(Fe) and MIL-101(Fe) nanoMOFs with covalently bonded CPT. These CPT nanoplatforms are able to incorporate almost 20% of this molecule and show high stability at physiological pH, with no non-specific release. Based on their surface charge, some of these CPT loaded nanoMOFs present improved cell internalization in in vitro experiments. Moreover, a strong response to acid pH is observed, with up to four fold drug discharge at pH 5, which boost intracellular release by endosomolytic activity. These novel DDSs will help to achieve safe delivery of the very cytotoxic CPT, allowing to reduce the therapeutic dose and minimizing drug secondary effects.
Collapse
Affiliation(s)
- Alejandro Cabrera-García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Elisa Checa-Chavarria
- Institute of Bioengineering, Universidad Miguel Hernández Elche, Spain and Centre for Network Biomedical Research (CIBER-BBN), Spain
| | - Eva Rivero-Buceta
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Victoria Moreno
- Neuronal and Tissue Regeneration Lab, Research Centre "Principe Felipe", Valencia, Spain
| | - Eduardo Fernández
- Institute of Bioengineering, Universidad Miguel Hernández Elche, Spain and Centre for Network Biomedical Research (CIBER-BBN), Spain
| | - Pablo Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
23
|
Dramou P, Fizir M, Taleb A, Itatahine A, Dahiru NS, Mehdi YA, Wei L, Zhang J, He H. Folic acid-conjugated chitosan oligosaccharide-magnetic halloysite nanotubes as a delivery system for camptothecin. Carbohydr Polym 2018; 197:117-127. [DOI: 10.1016/j.carbpol.2018.05.071] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2018] [Revised: 04/15/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
|
24
|
Castillo PM, Jimenez-Ruiz A, Carnerero JM, Prado-Gotor R. Exploring Factors for the Design of Nanoparticles as Drug Delivery Vectors. Chemphyschem 2018; 19:2810-2828. [DOI: 10.1002/cphc.201800388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Paula M. Castillo
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| | - Aila Jimenez-Ruiz
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| | - Jose M. Carnerero
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| | - Rafael Prado-Gotor
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| |
Collapse
|
25
|
Abstract
The field of nanotechnology has grown exponentially during the last few decades, due in part to the use of nanoparticles in many manufacturing processes, as well as their potential as clinical agents for treatment of diseases and for drug delivery. This has created several new avenues by which humans can be exposed to nanoparticles. Unfortunately, investigations assessing the toxicological impacts of nanoparticles (i.e. nanotoxicity), as well as their possible risks to human health and the environment, have not kept pace with the rapid rise in their use. This has created a gap-in-knowledge and a substantial need for more research. Studies are needed to help complete our understanding of the mechanisms of toxicity of nanoparticles, as well as the mechanisms mediating their distribution and accumulation in cells and tissues and their elimination from the body. This review summarizes our knowledge on nanoparticles, including their various applications, routes of exposure, their potential toxicity and risks to human health.
Collapse
|
26
|
Macchione MA, Biglione C, Strumia M. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers (Basel) 2018; 10:E527. [PMID: 30966561 PMCID: PMC6415435 DOI: 10.3390/polym10050527] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Hybrid nanomaterials based on inorganic nanoparticles and polymers are highly interesting structures since they combine synergistically the advantageous physical-chemical properties of both inorganic and polymeric components, providing superior functionality to the final material. These unique properties motivate the intensive study of these materials from a multidisciplinary view with the aim of finding novel applications in technological and biomedical fields. Choosing a specific synthetic methodology that allows for control over the surface composition and its architecture, enables not only the examination of the structure/property relationships, but, more importantly, the design of more efficient nanodevices for therapy and diagnosis in nanomedicine. The current review categorizes hybrid nanomaterials into three types of architectures: core-brush, hybrid nanogels, and core-shell. We focus on the analysis of the synthetic approaches that lead to the formation of each type of architecture. Furthermore, most recent advances in therapy and diagnosis applications and some inherent challenges of these materials are herein reviewed.
Collapse
Affiliation(s)
- Micaela A Macchione
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| | - Catalina Biglione
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Miriam Strumia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| |
Collapse
|
27
|
Cabrera-García A, Checa-Chavarria E, Pacheco-Torres J, Bernabeu-Sanz Á, Vidal-Moya A, Rivero-Buceta E, Sastre G, Fernández E, Botella P. Engineered contrast agents in a single structure for T 1-T 2 dual magnetic resonance imaging. NANOSCALE 2018; 10:6349-6360. [PMID: 29560985 DOI: 10.1039/c7nr07948f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/08/2023]
Abstract
The development of contrast agents (CAs) for Magnetic Resonance Imaging (MRI) with T1-T2 dual-mode relaxivity requires the accurate assembly of T1 and T2 magnetic centers in a single structure. In this context, we have synthesized a novel hybrid material by monitoring the formation of Prussian Blue analogue Gd(H2O)4[Fe(CN)6] nanoparticles with tailored shape (from nanocrosses to nanorods) and size, and further protection with a thin and homogeneous silica coating through hydrolysis and polymerization of silicate at neutral pH. The resulting Gd(H2O)4[Fe(CN)6]@SiO2 magnetic nanoparticles are very stable in biological fluids. Interestingly, this combination of Gd and Fe magnetic centers closely packed in the crystalline network promotes a magnetic synergistic effect, which results in significant improvement of longitudinal relaxivity with regards to soluble Gd3+ chelates, whilst keeping the high transversal relaxivity inherent to the iron component. As a consequence, this material shows excellent activity as MRI CA, improving positive and negative contrasts in T1- and T2-weighted MR images, both in in vitro (e.g., phantom) and in vivo (e.g., Sprague-Dawley rats) models. In addition, this hybrid shows a high biosafety profile and has strong ability to incorporate organic molecules on the surface with variable functionality, displaying great potential for further clinical application.
Collapse
Affiliation(s)
- Alejandro Cabrera-García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Elisa Checa-Chavarria
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain and Centro de Investigación Biomédica en Red (CIBER-BBN), Spain
| | - Jesús Pacheco-Torres
- Unidad de Resonancia Magnética Funcional, Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
| | | | - Alejandro Vidal-Moya
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Eva Rivero-Buceta
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Germán Sastre
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Eduardo Fernández
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain and Centro de Investigación Biomédica en Red (CIBER-BBN), Spain
| | - Pablo Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
28
|
Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29193848 DOI: 10.1002/adhm.201700831] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE Suite 103 Albuquerque NM 87106 USA
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| | - Abdulaziz Almalik
- Life sciences and Environment Research Institute; Center of Excellence in Nanomedicine (CENM); King Abdulaziz City for Science and Technology (KACST); Riyadh 11461 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| |
Collapse
|
29
|
Rocas P, Fernández Y, García-Aranda N, Foradada L, Calvo P, Avilés P, Guillén MJ, Schwartz S, Rocas J, Albericio F, Abasolo I. Improved pharmacokinetic profile of lipophilic anti-cancer drugs using ανβ3-targeted polyurethane-polyurea nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:257-267. [PMID: 29127040 DOI: 10.1016/j.nano.2017.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/11/2017] [Revised: 09/04/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Glutathione degradable polyurethane-polyurea nanoparticles (PUUa NP) with a disulfide-rich multiwalled structure and a cyclic RGD peptide as a targeting moiety were synthesized, incorporating a very lipophilic chemotherapeutic drug named Plitidepsin. In vitro studies indicated that encapsulated drug maintained and even improved its cytotoxic activity while in vivo toxicity studies revealed that the maximum tolerated dose (MTD) of Plitidepsin could be increased three-fold after encapsulation. We also found that pharmacokinetic parameters such as maximum concentration (Cmax), area under the curve (AUC) and plasma half-life were significantly improved for Plitidepsin loaded in PUUa NP. Moreover, biodistribution assays in mice showed that RGD-decorated PUUa NP accumulate less in spleen and liver than non-targeted conjugates, suggesting that RGD-decorated nanoparticles avoid sequestration by macrophages from the reticuloendothelial system. Overall, our results indicate that polyurethane-polyurea nanoparticles represent a very valuable nanoplatform for the delivery of lipophilic drugs by improving their toxicological, pharmacokinetic and whole-body biodistribution profiles.
Collapse
Affiliation(s)
- Pau Rocas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Nanobiotechnological Polymers Division, Ecopol Tech S.L., L'Arboç, Spain
| | - Yolanda Fernández
- Functional Validation & Preclinical Research (FVPR), Drug Delivery and Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Natalia García-Aranda
- Functional Validation & Preclinical Research (FVPR), Drug Delivery and Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Laia Foradada
- Functional Validation & Preclinical Research (FVPR), Drug Delivery and Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Pilar Calvo
- PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | | | | | - Simó Schwartz
- Functional Validation & Preclinical Research (FVPR), Drug Delivery and Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Josep Rocas
- Nanobiotechnological Polymers Division, Ecopol Tech S.L., L'Arboç, Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Department of Organic Chemistry, University of Barcelona, Barcelona, Spain; School of Chemistry & Physics, University of Kwazulu-Natal, Durban, South Africa
| | - Ibane Abasolo
- Functional Validation & Preclinical Research (FVPR), Drug Delivery and Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
30
|
Mu S, Liu Y, Wang T, Zhang J, Jiang D, Yu X, Zhang N. Unsaturated nitrogen-rich polymer poly(l-histidine) gated reversibly switchable mesoporous silica nanoparticles using "graft to" strategy for drug controlled release. Acta Biomater 2017; 63:150-162. [PMID: 28873341 DOI: 10.1016/j.actbio.2017.08.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/08/2023]
Abstract
A novel and intelligent pH-controlled system having an "on-off" switch based on poly(l-histidine) (PLH) and poly(ethylene glycol) (PEG) coated mesoporous silica nanoparticles (MSNs) (MSNs-PLH-PEG) was designed and evaluated for tumor specific drug release. The unsaturated nitrogen-rich polymer, PLH, which can change its solubility at different pH values, was employed for establishing the reversible "on-off" switch. In vitro drug release results demonstrated that MSNs-PLH-PEG has a pH-controlled "on-off" profile with the change of pH value between pH 7.4 and 5.0. Furthermore, in vitro cellular uptake study results showed that the entrapped drug could be efficiently released from MSNs-PLH-PEG under acidic endosome/lysosome. In vitro cell cytotoxicity and in vivo antitumor studies results indicated that sorafenib loaded MSNs-PLH-PEG exhibited good anti-proliferation and tumor growth inhibition effects. Haemolysis assay and histological analysis of MSNs-PLH-PEG showed negligible haemolysis activity and no visible tissue toxicity at the test dose. This study represents a promising and intelligent pH-controlled intelligent system for drug delivery and controlled release. STATEMENT OF SIGNIFICANCE A novel pH-controlled intelligent and reversible "on-off" switch system based on poly(l-histidine) and poly(ethylene glycol) coated mesoporous silica nanoparticles (MSNs-PLH-PEG) by "graft to" synthesis method was constructed for tumor specific drug release. The unsaturated nitrogen-rich pH-sensitive polymer, PLH, which can change its solubility in different pH values, was employed as the reversible "on-off" switch in MSNs for the first time. The pH-controlled "on-off" switch manner was observed in the drug release results in vitro. In the in vivo antitumor studies, sorafenib loaded MSNs-PLH-PEG could effectively suppressed tumor growth in H22 tumor bearing mice. It is expected that the pH-controlled intelligent "on-off" switch system we designed holds remarkable promise and provides valuable strategy for possible applications in cancer therapy.
Collapse
Affiliation(s)
- Shengjun Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Ji'nan, Shandong, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Ji'nan, Shandong, People's Republic of China
| | - Tianqi Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Ji'nan, Shandong, People's Republic of China
| | - Jing Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Ji'nan, Shandong, People's Republic of China
| | - Dandan Jiang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Ji'nan, Shandong, People's Republic of China
| | - Xiaoyue Yu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Ji'nan, Shandong, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Ji'nan, Shandong, People's Republic of China.
| |
Collapse
|
31
|
Affiliation(s)
- Eduardo Fernández
- Bioengineering Institute; Miguel Hernández University of Elche and CIBER BBN; Elche 03202 Spain
| | - Pablo Botella
- Instituto de Tecnología Química; Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas; Valencia 46022 Spain
| |
Collapse
|
32
|
Wu T, Tang M. Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 2017; 38:25-40. [DOI: 10.1002/jat.3499] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| |
Collapse
|
33
|
More MP, Ganguly PR, Pandey AP, Dandekar PP, Jain RD, Patil PO, Deshmukh PK. Development of surface engineered mesoporous alumina nanoparticles: drug release aspects and cytotoxicity assessment. IET Nanobiotechnol 2017. [DOI: 10.1049/iet-nbt.2016.0225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Mahesh P. More
- Post Graduate Department of PharmaceuticsH. R. Patel Institute of Pharmaceutical Education and ResearchShirpur, District‐DhuleM.S.India
- Department of Chemical EngineeringInstitute of Chemical TechnologyMatunga MumbaiIndia
| | - Payal R. Ganguly
- Department of Chemical EngineeringInstitute of Chemical TechnologyMatunga MumbaiIndia
- Leeds Institute of Rheumatic and Musculoskeletal MedicineUniversity of LeedsLeedsUK
| | - Abhijeet P. Pandey
- Post Graduate Department of PharmaceuticsH. R. Patel Institute of Pharmaceutical Education and ResearchShirpur, District‐DhuleM.S.India
| | - Prajakta P. Dandekar
- Department of Pharmaceutical Science and TechnologyInstitute of Chemical TechnologyMatunga MumbaiIndia
| | - Ratnesh D. Jain
- Department of Chemical EngineeringInstitute of Chemical TechnologyMatunga MumbaiIndia
| | - Pravin O. Patil
- Department of Pharmaceutical ChemistryH. R. Patel Institute of Pharmaceutical Education and ResearchShirpur, District‐DhuleM.S.India
| | - Prashant K. Deshmukh
- Post Graduate Department of PharmaceuticsH. R. Patel Institute of Pharmaceutical Education and ResearchShirpur, District‐DhuleM.S.India
| |
Collapse
|
34
|
Zhan H, Jagtiani T, Liang JF. A new targeted delivery approach by functionalizing drug nanocrystals through polydopamine coating. Eur J Pharm Biopharm 2017; 114:221-229. [PMID: 28161549 DOI: 10.1016/j.ejpb.2017.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 12/25/2022]
Abstract
Tumor target specificity via chemotherapy is widely considered to be very effective on tumor treatment. For an ideal chemotherapeutic agent like Camptothecin (CPT) (CPT is the abbreviation for Camptothecin), improved therapeutic efficacy and high selectivity are equally important. Inspired by adhesive proteins in mussels, here we developed a novel tumor targeting peptide XQ1 grafted CPT nanocrystals with polydopamine coating as a spacer. In this study, CPT nanocrystals were coated by polymerization of dopamine that was induced by plasma-activated water under an acidic environment, and then the tumor targeting peptide was grafted onto polydopamine (PDA) (PDA is the abbreviation for polydopamine) coated CPT nanocrystals through catechol chemistry. The PDA layer had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties, improved dissolution rate and drug stability by preventing water hydrolysis. More importantly, tumor targeting peptide XQ1 facilitated a rapid cross-membrane translocation of drug nanocrystals via receptor-mediated endocytosis, leading to efficient intracellular drug delivery. Moreover, this novel drug formulation demonstrated more potent anti-cancer activity against tumor cells in comparison with free CPT and naked CPT nanocrystals and exhibited high selectivity, all of which are attributed to the tumor target specificity property and inherent pH-dependent drug release behavior.
Collapse
Affiliation(s)
- Honglei Zhan
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Tina Jagtiani
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jun F Liang
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| |
Collapse
|
35
|
Yesil-Celiktas O, Pala C, Cetin-Uyanikgil EO, Sevimli-Gur C. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells. Anal Biochem 2017; 519:1-7. [DOI: 10.1016/j.ab.2016.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2016] [Revised: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 01/28/2023]
|
36
|
Botella P, Rivero-Buceta E. Safe approaches for camptothecin delivery: Structural analogues and nanomedicines. J Control Release 2016; 247:28-54. [PMID: 28027948 DOI: 10.1016/j.jconrel.2016.12.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Twenty-(S)-camptothecin is a strongly cytotoxic molecule with excellent antitumor activity over a wide spectrum of human cancers. However, the direct formulation is limited by its poor water solubility, low plasmatic stability and severe toxicity, which currently limits its clinical use. As a consequence, two strategies have been developed in order to achieve safe and efficient delivery of camptothecin to target cells: structural analogues and nanomedicines. In this review, we summarize recent advances in the design, synthesis and development of camptothecin molecular derivatives and supramolecular vehicles, following a systematic classification according to structure-activity relationships (structural analogues) or chemical nature (nanomedicines). A series of organic, inorganic and hybrid materials are presented as nanoplatforms to overcome camptothecin restrictions in administration, biodistribution, pharmacokinetics and toxicity. Nanocarriers which respond to a variety of stimuli endogenously (e.g., pH, redox potential, enzyme activity) or exogenously (e.g., magnetic field, light, temperature, ultrasound) seem the best positioned therapeutic materials for optimal spatial and temporal control over drug release. The main goal of this review is to be used as a source of relevant literature for others interested in the field of camptothecin-based therapeutics. To this end, final remarks on the most important formulations currently under clinical trial are provided.
Collapse
Affiliation(s)
- Pablo Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Eva Rivero-Buceta
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
37
|
Design of chalcogen-containing norepinephrines: efficient GPx mimics and strong cytotoxic agents against HeLa cells. Future Med Chem 2016; 8:2185-2195. [PMID: 27845568 DOI: 10.4155/fmc-2016-0139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
AIM Numerous chronic diseases exhibit multifactorial etiologies, so focusing on a single therapeutic target is usually an inadequate treatment; instead, multi-target drugs are preferred. Herein, a panel of phenolic thioureas and selenoureas were designed as new prototypes against multifactorial diseases concerning antioxidation and cytotoxicity, as a pro-oxidant environment is usually found in such diseases. RESULTS Selenoureas were excellent antiradical agents and biomimetic catalysts of glutathione peroxidase for the scavenging of H2O2. They were also potent and selective cytotoxic agents against cancer cells, in particular HeLa (IC50 2.77-6.13 μM), apoptosis being involved. Selenoureas also reduced oxidative stress in HeLa cells (IC50= 3.76 μM). CONCLUSION Phenolic selenoureas are promising lead structures for the development of drugs targeting multifactorial diseases like cancer.
Collapse
|
38
|
An Acetamide Derivative as a Camptothecin Sensitizer for Human Non-Small-Cell Lung Cancer Cells through Increased Oxidative Stress and JNK Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9128102. [PMID: 27843533 PMCID: PMC5098095 DOI: 10.1155/2016/9128102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/20/2016] [Accepted: 08/31/2016] [Indexed: 11/17/2022]
Abstract
In recent years, combination chemotherapy is a primary strategy for treating lung cancer; however, the issues of antagonism and side effects still limit its applications. The development of chemosensitizer aims to sensitize chemoresistant cancer cells to anticancer drugs and therefore improve the efficacy of chemotherapy. In this study, we examined whether N-[2-(morpholin-4-yl)phenyl]-2-{8-oxatricyclo[7.4.0.0,2,7]trideca-1(9),2(7),3,5,10,12-hexaen-4-yloxy}acetamide (NPOA), an acetamide derivative, sensitizes human non-small-cell lung cancer (NSCLC) H1299 cells towards camptothecin- (CPT-) induced apoptosis effects. Our results demonstrate that the combination of CPT and NPOA enhances anti-lung-cancer effect. The cytometer-based Annexin V/propidium iodide (PI) staining showed that CPT and NPOA cotreatment causes an increased population of apoptotic cells compared to CPT treatment alone. Moreover, Western blotting assay showed an enhancement of Bax expression and caspase cascade leading to cell death of H1299 cells. Besides, CPT and NPOA cotreatment-mediated disruption of mitochondrial membrane potential (MMP) in H1299 cells may function through increasing the activation of the stressed-associated c-Jun N-terminal kinase (JNK). These results showed that NPOA treatment sensitizes H1299 cells towards CPT-induced accumulation of cell cycle S phase and mitochondrial-mediated apoptosis through regulating endogenous ROS and JNK activation. Accordingly, NPOA could be a candidate chemosensitizer of CPT derivative agents such as irinotecan or topotecan in the future.
Collapse
|
39
|
Giannotti MI, Abasolo I, Oliva M, Andrade F, García-Aranda N, Melgarejo M, Pulido D, Corchero JL, Fernández Y, Villaverde A, Royo M, García-Parajo MF, Sanz F, Schwartz S. Highly Versatile Polyelectrolyte Complexes for Improving the Enzyme Replacement Therapy of Lysosomal Storage Disorders. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25741-25752. [PMID: 27610822 DOI: 10.1021/acsami.6b08356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/06/2023]
Abstract
Lysosomal storage disorders are currently treated by enzyme replacement therapy (ERT) through the direct administration of the unprotected recombinant protein to the patients. Herein we present an ionically cross-linked polyelectrolyte complex (PEC) composed of trimethyl chitosan (TMC) and α-galactosidase A (GLA), the defective enzyme in Fabry disease, with the capability of directly targeting endothelial cells by incorporating peptide ligands containing the RGD sequence. We assessed the physicochemical properties, cytotoxicity, and hemocompatibility of RGD-targeted and untargeted PECs, the uptake by endothelial cells and the intracellular activity of PECs in cell culture models of Fabry disease. Moreover, we also explored the effect of different freeze-drying procedures in the overall activity of the PECs. Our results indicate that the use of integrin-binding RGD moiety within the PEC increases their uptake and the efficacy of the GLA enzyme, while the freeze-drying allows the activity of the therapeutic protein to remain intact. Overall, these results highlight the potential of TMC-based PECs as a highly versatile and feasible drug delivery system for improving the ERT of lysosomal storage disorders.
Collapse
Affiliation(s)
- Marina I Giannotti
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Nanoprobes & Nanoswitches, Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 10, 08028 Barcelona, Spain
- Physical Chemistry Department, Universitat de Barcelona , 08028 Barcelona, Spain
| | - Ibane Abasolo
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona , 08035 Barcelona, Spain
| | - Mireia Oliva
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Nanoprobes & Nanoswitches, Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 10, 08028 Barcelona, Spain
- Pharmacy and Pharmaceutical Technology Department, Universitat de Barcelona , 08028 Barcelona, Spain
| | - Fernanda Andrade
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Nanoprobes & Nanoswitches, Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 10, 08028 Barcelona, Spain
- Pharmacy and Pharmaceutical Technology Department, Universitat de Barcelona , 08028 Barcelona, Spain
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
| | - Natalia García-Aranda
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona , 08035 Barcelona, Spain
| | - Marta Melgarejo
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Combinatorial Chemistry Unit, Barcelona Science Park , Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Daniel Pulido
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Combinatorial Chemistry Unit, Barcelona Science Park , Baldiri Reixac 10, 08028 Barcelona, Spain
| | - José L Corchero
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Yolanda Fernández
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona , 08035 Barcelona, Spain
| | - Antonio Villaverde
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Miriam Royo
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Combinatorial Chemistry Unit, Barcelona Science Park , Baldiri Reixac 10, 08028 Barcelona, Spain
| | - María F García-Parajo
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Fausto Sanz
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Nanoprobes & Nanoswitches, Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 10, 08028 Barcelona, Spain
- Physical Chemistry Department, Universitat de Barcelona , 08028 Barcelona, Spain
| | - Simó Schwartz
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona , 08035 Barcelona, Spain
| |
Collapse
|
40
|
Cabrera-García A, Vidal-Moya A, Bernabeu Á, Pacheco-Torres J, Checa-Chavarria E, Fernández E, Botella P. Gd-Si Oxide Nanoparticles as Contrast Agents in Magnetic Resonance Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E109. [PMID: 28335240 PMCID: PMC5302615 DOI: 10.3390/nano6060109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/29/2016] [Revised: 05/06/2016] [Accepted: 05/27/2016] [Indexed: 11/23/2022]
Abstract
We describe the synthesis, characterization and application as contrast agents in magnetic resonance imaging of a novel type of magnetic nanoparticle based on Gd-Si oxide, which presents high Gd3+ atom density. For this purpose, we have used a Prussian Blue analogue as the sacrificial template by reacting with soluble silicate, obtaining particles with nanorod morphology and of small size (75 nm). These nanoparticles present good biocompatibility and higher longitudinal and transversal relaxivity values than commercial Gd3+ solutions, which significantly improves the sensitivity of in vivo magnetic resonance images.
Collapse
Affiliation(s)
- Alejandro Cabrera-García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Alejandro Vidal-Moya
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Ángela Bernabeu
- Unit of Magnetic Resonance Imaging, Hospital Universitario de Alicante, INSCANNER S.L., Alicante, Spain.
| | - Jesús Pacheco-Torres
- Unit of Functional Magnetic Resonance Imaging, Instituto de Neurociencias (CSIC-UMH), Alicante, Spain.
| | - Elisa Checa-Chavarria
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain and Centre for Network Biomedical Research (CIBER-BBN), Spain.
| | - Eduardo Fernández
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain and Centre for Network Biomedical Research (CIBER-BBN), Spain.
| | - Pablo Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
41
|
Yang S, Zhang B, Gong X, Wang T, Liu Y, Zhang N. In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer. Int J Nanomedicine 2016; 11:2329-43. [PMID: 27307733 PMCID: PMC4887074 DOI: 10.2147/ijn.s104119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. In this study, sorafenib-loaded lipid-based nanosuspensions (sorafenib-LNS) were first developed as an intravenous injectable formulation to increase the efficacy of sorafenib against HCC. LNS were used as nanocarriers for sorafenib owing to their desired features in increasing the solubility and dissolution velocity, improving the bioavailability of sorafenib. Sorafenib-LNS were prepared by nanoprecipitation and consisted of spherical particles with a uniform size distribution (164.5 nm, polydispersity index =0.202) and negative zeta potential (-11.0 mV). The drug loading (DL) was 10.55%±0.16%. Sorafenib-LNS showed higher in vitro cytotoxicity than sorafenib against HepG2 cells (P<0.05) and Bel-7402 cells (P<0.05). The in vivo biodistribution, biocompatibility, and antitumor efficacy of sorafenib-LNS were evaluated in H22-bearing liver cancer xenograft murine model. The results showed that sorafenib-LNS (9 mg/kg) exhibited significantly higher antitumor efficacy by reducing the tumor volume compared with the sorafenib oral group (18 mg/kg, P<0.05) and sorafenib injection group (9 mg/kg, P<0.05). Furthermore, the results of the in vivo biodistribution experiments demonstrated that sorafenib-LNS injected into H22 tumor-bearing mice exhibited increased accumulation in the tumor tissue, which was confirmed by in vivo imaging. In the current experimental conditions, sorafenib-LNS did not show significant toxicity both in vitro and in vivo. These results suggest that sorafenib-LNS are a promising nanomedicine for treating HCC.
Collapse
Affiliation(s)
- Shaomei Yang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Bo Zhang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Xiaowei Gong
- Shandong Provincial Key Laboratory of Neuroprotective Drug, Jinan, Shandong Province, People’s Republic of China
| | - Tianqi Wang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Na Zhang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
42
|
Li G, Zhao M, Zhao L. Well-defined hydroxyethyl starch-10-hydroxy camptothecin super macromolecule conjugate: cytotoxicity, pharmacodynamics research, tissue distribution test and intravenous injection safety assessment. Drug Deliv 2016; 23:2860-2868. [PMID: 26836216 DOI: 10.3109/10717544.2015.1110844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023] Open
Abstract
10-Hydroxy camptothecin (10-HCPT) is an antitumor agent effective in the treatment of several solid tumors but its use is hampered by poor water solubility, low lactone stability, short plasma half-life and dose-limiting toxicity. These limits of 10-HCPT had been overcome by our group through preparing super macromolecule prodrug: 10-HCPT-hydroxyethyl starch (HES) conjugate. In this study, we mainly evaluated in vitro and in vivo behavior of the prodrug, containing cytotoxicity assay, pharmacodynamics study, vascular irritation test, hemolysis experiment and tissue distribution test of rats. The irritation test results achieved much lower irritation than the commercial injection. The tissue distribution results showed that HES-10-HCPT conjugate increased significantly the 10-HCPT concentration in the tumor, liver and spleen site, whereas decreased the drug concentration in the heart and kidney. The hemolysis effect of the prepared conjugate was not obvious. The pharmacodynamics results indicated that HES-10-HCPT prodrug had a better antitumor efficiency against mice with H22 tumor than the commercial injection, and the inhibition ratio of tumor was 85.2% and 31.1%, respectively at the same dosage. These findings suggest that HES-10-HCPT prodrug is a promising drug delivery system providing improved good injection safety, greater tolerance and antitumor effect.
Collapse
Affiliation(s)
- Guofei Li
- a Department of Pharmacy , Shengjing Hospital of China Medical University , Shenyang , China
| | - Mingming Zhao
- a Department of Pharmacy , Shengjing Hospital of China Medical University , Shenyang , China
| | - Limei Zhao
- a Department of Pharmacy , Shengjing Hospital of China Medical University , Shenyang , China
| |
Collapse
|
43
|
|
44
|
Botella P, Muniesa C, Vicente V, Cabrera-García A. Effect of drug precursor in cell uptake and cytotoxicity of redox-responsive camptothecin nanomedicines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:692-9. [DOI: 10.1016/j.msec.2015.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/30/2015] [Revised: 08/04/2015] [Accepted: 09/02/2015] [Indexed: 12/29/2022]
|
45
|
Gao L, Chen Y, Luo Q, Wang Y, Li X, Shen Z, Zhu W. Injectable camptothecin conjugated hydrogels with simultaneous drug release and degradation. RSC Adv 2016; 6:94661-94668. [DOI: 10.1039/c6ra20691c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2025] Open
Abstract
Novel injectable camptothecin conjugated hydrogels with simultaneous drug release and degradation properties were prepared, which show significant cytotoxicity to HepG2 cells, and could be a potential candidate for intratumor drug delivery.
Collapse
Affiliation(s)
- Lilong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Yadong Chen
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| |
Collapse
|
46
|
Yang X, Wang Z, Niu Y, Chen X, Lee SMY, Wang R. Influence of supramolecular encapsulation of camptothecin by cucurbit[7]uril: reduced toxicity and preserved anti-cancer activity. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00239k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Encapsulation of camptothecin by cucurbit[7]uril significantly inhibited the systemic toxicities of the free drug, while maintaining its antitumor/anti-angiogenic activities.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Yanan Niu
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Simon M. Y. Lee
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| |
Collapse
|
47
|
Scodeller P. Extracellular Matrix Degrading Enzymes for Nanocarrier-Based Anticancer Therapy. INTRACELLULAR DELIVERY III 2016. [DOI: 10.1007/978-3-319-43525-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
48
|
Clemments AM, Botella P, Landry CC. Protein Adsorption From Biofluids on Silica Nanoparticles: Corona Analysis as a Function of Particle Diameter and Porosity. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21682-9. [PMID: 26371804 PMCID: PMC5084906 DOI: 10.1021/acsami.5b07631] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/20/2023]
Abstract
A study on the adsorption of proteins from fetal bovine serum (FBS) on spherical dense and mesoporous silica nanoparticles with a wide range of diameters, from 70 to 900 nm, is presented. Monodisperse populations of particles with a range of diameters were obtained through modifications of the Stöber method. Extensive characterization of the particles was then performed using N2 physisorption, TEM, DLS, and ζ-potential. Following serum exposure, proteomic evaluation in concert with thermogravimetric analysis revealed the associated concentrations of each protein identified in the hard corona. Small particles adsorbed the largest amount of protein, due to their larger external surface area. Proteins with low molecular weights (<50 kDa) constituted the majority of the protein corona, totaling between 60 and 80% of the total mass of adsorbed protein. Here, the higher surface curvature of small particles favors the enrichment of smaller proteins. Porosity does not promote protein adsorption but improves deposition of the low molecular weight protein fraction due to the size-exclusion effect related to pore diameter. These results have important implications for the use of dense and porous silica nanoparticles in biomedical applications.
Collapse
Affiliation(s)
- Alden M. Clemments
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT 05405, USA
| | - Pablo Botella
- Instituto de Tecnología Química, UPV-CSIC, Avenida de los Naranjos s/n, 46022 Valencia, Spain
- To whom correspondence should be addressed. C. C. Landry. . Fax: +1 802 656 8705, P. Botella. . Fax: +34 96 387 9444
| | - Christopher C. Landry
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT 05405, USA
- To whom correspondence should be addressed. C. C. Landry. . Fax: +1 802 656 8705, P. Botella. . Fax: +34 96 387 9444
| |
Collapse
|
49
|
Li G, Cai C, Qi Y, Tang X. Hydroxyethyl starch-10-hydroxy camptothecin conjugate: synthesis, pharmacokinetics, cytotoxicity and pharmacodynamics research. Drug Deliv 2015; 23:277-84. [PMID: 24833272 DOI: 10.3109/10717544.2014.911394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
10-hydroxy camptothecin (10-HCPT) is an antitumor agent effective in the treatment of several solid tumors but its use is hampered by poor water solubility, low lactone stability, short plasma half-life and dose-limiting toxicity. In this study, 10-HCPT-hydroxyethyl starch (HES) conjugate was prepared to overcome these limits of 10-HCPT. The solubility of 10-HCPT conjugate was 0.72 mg/ml, about 100 times to free 10-HCPT. The 10-HCPT conjugate showed good sustained release effect in phosphate-buffered saline (PBS), rat plasma and liver homogenate. Meanwhile, 10-HCPT-HES conjugate achieved much lower IC50 and higher cytotoxicity effects than the free 10-HCPT on Hep-3B liver cancer cells. The pharmacokinetics results of 10-HCPT-HES conjugate demonstrated that the biological half-life of 10-HCPT was increased from 10 min to 4.38 h and the bioavailability was 40 times higher than the commercial 10-HCPT injection. The pharmacodynamics results indicated that 10-HCPT-HES conjugate had a better antitumor efficiency against nude mouse with Hep-3B tumor than the commercial 10-HCPT injection, and the inhibition ratio of tumor was 83.9 and 27.8%, respectively, at the same administration dosage. These findings suggest that 10-HCPT-HES conjugate is a promising drug delivery system providing improved long circulating effect, greater stability and better antitumor effect.
Collapse
Affiliation(s)
- Guofei Li
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China and
| | - Cuifang Cai
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China and
| | - Yingjie Qi
- b Pharmacy, Liaoning Tumor Hospital , Shenyang , China
| | - Xing Tang
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China and
| |
Collapse
|
50
|
Rocas P, Fernández Y, Schwartz S, Abasolo I, Rocas J, Albericio F. Multifunctionalized polyurethane-polyurea nanoparticles: hydrophobically driven self-stratification at the o/w interface modulates encapsulation stability. J Mater Chem B 2015; 3:7604-7613. [PMID: 32262644 DOI: 10.1039/c5tb01345c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
Abstract
Polyurethane-polyurea (PUUa) reactive prepolymers with adjusted hydrophobic and hydrophilic dangling chains to achieve multiwalled sub-30 nm nanoparticles are presented. The combination of an amphiphilic and a hydrophobic prepolymer at the oil-water interface creates a stratified shell by hydrophobic interactions. These novel nanostructures enhance the encapsulation stability of lipophilic compounds compared to monowalled nanostructures and facilitate the selective and ordered functionalization along the multiwalled shell with bioactive motifs. As proof of concept, PUUa nanoparticles have been engineered with disulfide bonds and an αvβ3 integrin-selective cyclic RGD peptide (cRGDfK) providing our system with glutathione (GSH) triggered controlled release and cell targeting specificity to U87 tumor cells.
Collapse
Affiliation(s)
- Pau Rocas
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|