1
|
Wu X, Yan M, Shen J, Xiang Y, Jian K, Pan X, Yuan D, Shi J. Enhancing calvarial defects repair with PDGF-BB mimetic peptide hydrogels. J Control Release 2024; 370:277-286. [PMID: 38679161 DOI: 10.1016/j.jconrel.2024.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Addressing bone defects represents a significant challenge to public health. Localized delivery of growth factor has emerged as promising approach for bone regeneration. However, the clinical application of Platelet-Derived Growth Factor (PDGF) is hindered by its high cost and short half-life. In this work, we introduce the application of PDGF-mimicking peptide (PMP1) hydrogels for calvarial defect restoration, showcasing their remarkable effectiveness. Through osteogenic differentiation assays and q-PCR analyses, we demonstrate PMP1's substantial capacity to enhance osteogenic differentiation of bone marrow mesenchymal stem cell (BMSC), leading to increased expression of crucial osteogenic genes. Further molecular mechanistic investigations reveal PMP1's activation of the PI3K-AKT-mTOR signaling pathway, a key element of its osteogenic effect. In vivo experiments utilizing a rat calvaria critical-sized defect model underscore the hydrogels' exceptional ability to accelerate new bone formation, thereby significantly advancing the restoration of calvaria defects. This research provides a promising bioactive material for bone tissue regeneration.
Collapse
Affiliation(s)
- Xia Wu
- The Affliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China; Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen, Guangdong 518116, China
| | - Mingming Yan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410082, China
| | - Jun Shen
- The Affliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China
| | - Yatong Xiang
- The Affliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China
| | - Ke Jian
- The Affliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Dan Yuan
- The Affliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China.
| | - Junfeng Shi
- The Affliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
2
|
Li R, Zhang J, Shi J, Yue J, Cui Y, Ye Q, Wu G, Zhang Z, Guo Y, Fu D. An intelligent phase transformation system based on lyotropic liquid crystals for sequential biomolecule delivery to enhance bone regeneration. J Mater Chem B 2023; 11:2946-2957. [PMID: 36916173 DOI: 10.1039/d2tb02725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Endogenous repair of critical bone defects is typically hampered by inadequate vascularization in the early stages and insufficient bone regeneration later on. Therefore, drug delivery systems with the ability to couple angiogenesis and osteogenesis in a spatiotemporal manner are highly desirable for vascularized bone formation. Herein, we devoted to develop a liquid crystal formulation system (LCFS) attaining a controlled temporal release of angiogenic and osteoinductive bioactive molecules that could orchestrate the coupling of angiogenesis and osteogenesis in an optimal way. It has been demonstrated that the release kinetics of biomolecules depend on the hydrophobicity of the loaded molecules, making the delivery profile programmable and controllable. The hydrophilic deferoxamine (DFO) could be released rapidly within 5 days to activate angiogenic signaling, while the lipophilic simvastatin (SIM) showed a slow and sustained release for continuous osteogenic induction. Apart from its good biocompatibility with mesenchymal stem cells derived from rat bone marrow (rBMSCs), the DFO/SIM loaded LCFS could stimulate the formation of a vascular morphology in human umbilical vein endothelial cells (HUVECs) and the osteogenic differentiation of rBMSCs in vitro. The in vivo rat femoral defect models have witnessed the prominent angiogenic and osteogenic effects induced by the sequential presentation of DFO and SIM. This study suggests that the sequential release of DFO and SIM from the LCFS results in enhanced bone formation, offering a facile and viable treatment option for bone defects by mimicking the physiological process of bone regeneration.
Collapse
Affiliation(s)
- Rui Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P. R. China
| | - Jiao Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P. R. China
| | - Jingyu Shi
- Department of Pharmacy, Liyuan Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P. R. China.
| | - Jiang Yue
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201114, P. R. China
| | - Yongzhi Cui
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430066, P. R. China
| | - Gang Wu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P. R. China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P. R. China.
| | - Dehao Fu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China.
| |
Collapse
|
3
|
Foam Replica Method in the Manufacturing of Bioactive Glass Scaffolds: Out-of-Date Technology or Still Underexploited Potential? MATERIALS 2021; 14:ma14112795. [PMID: 34073945 PMCID: PMC8197364 DOI: 10.3390/ma14112795] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 01/19/2023]
Abstract
Since 2006, the foam replica method has been commonly recognized as a valuable technology for the production of highly porous bioactive glass scaffolds showing three-dimensional, open-cell structures closely mimicking that of natural trabecular bone. Despite this, there are important drawbacks making the usage of foam-replicated glass scaffolds a difficult achievement in clinical practice; among these, certainly the high operator-dependency of the overall manufacturing process is one of the most crucial, limiting the scalability to industrial production and, thus, the spread of foam-replicated synthetic bone substitutes for effective use in routine management of bone defect. The present review opens a window on the versatile world of the foam replica technique, focusing the dissertation on scaffold properties analyzed in relation to various processing parameters, in order to better understand which are the real issues behind the bottleneck that still puts this technology on the Olympus of the most used techniques in laboratory practice, without moving, unfortunately, to a more concrete application. Specifically, scaffold morphology, mechanical and mass transport properties will be reviewed in detail, considering the various templates proposed till now by several research groups all over the world. In the end, a comprehensive overview of in vivo studies on bioactive glass foams will be provided, in order to put an emphasis on scaffold performances in a complex three-dimensional environment.
Collapse
|
4
|
Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, Głąb M, Kudłacik-Kramarczyk S, Słota D, Tomala A, Tyliszczak B. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2096. [PMID: 33919199 PMCID: PMC8122483 DOI: 10.3390/ma14092096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Regenerative medicine is becoming a rapidly evolving technique in today's biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs. HAp is easily biodegradable, biocompatible, and correlated with macromolecules, which facilitates their incorporation into inorganic materials. This review article provides extensive knowledge on HAp and collagen-containing compositions modified with drugs, bioactive components, metals, and selected nanoparticles. Such compositions consisting of HAp and collagen modified with various additives are used in a variety of biomedical applications such as bone tissue engineering, vascular transplantation, cartilage, and other implantable biomedical devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.S.-K.); (A.D.); (W.F.); (M.G.); (S.K.-K.); (D.S.); (A.T.)
| |
Collapse
|
5
|
Zheng K, Sui B, Ilyas K, Boccaccini AR. Porous bioactive glass micro- and nanospheres with controlled morphology: developments, properties and emerging biomedical applications. MATERIALS HORIZONS 2021; 8:300-335. [PMID: 34821257 DOI: 10.1039/d0mh01498b] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, porous bioactive glass micro/nanospheres (PBGSs) have emerged as attractive biomaterials in various biomedical applications where such engineered particles provide suitable functions, from tissue engineering to drug delivery. The design and synthesis of PBGSs with controllable particle size and pore structure are critical for such applications. PBGSs have been successfully synthesized using melt-quenching and sol-gel based methods. The morphology of PBGSs is controllable by tuning the processing parameters and precursor characteristics during the synthesis. In this comprehensive review on PBGSs, we first overview the synthesis approaches for PBGSs, including both melt-quenching and sol-gel based strategies. Sol-gel processing is the primary technology used to produce PBGSs, allowing for control over the chemical compositions and pore structure of particles. Particularly, the influence of pore-forming templates on the morphology of PBGSs is highlighted. Recent progress in the sol-gel synthesis of PBGSs with sophisticated pore structures (e.g., hollow mesoporous, dendritic fibrous mesoporous) is also covered. The challenges regarding the control of particle morphology, including the influence of metal ion precursors and pore expansion, are discussed in detail. We also highlight the recent achievements of PBGSs in a number of biomedical applications, including bone tissue regeneration, wound healing, therapeutic agent delivery, bioimaging, and cancer therapy. Finally, we conclude with our perspectives on the directions of future research based on identified challenges and potential new developments and applications of PBGSs.
Collapse
Affiliation(s)
- Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | | | | | | |
Collapse
|
6
|
Tang W, Yu Y, Wang J, Liu H, Pan H, Wang G, Liu C. Enhancement and orchestration of osteogenesis and angiogenesis by a dual-modular design of growth factors delivery scaffolds and 26SCS decoration. Biomaterials 2019; 232:119645. [PMID: 31865192 DOI: 10.1016/j.biomaterials.2019.119645] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Preserving the bioactivity of growth factors (GFs) and mimicking their in vivo supply patterns are challenging in the development of GFs-based bone grafts. In this study, we develop a 2-N, 6-O-sulfated chitosan (26SCS) functionalized dual-modular scaffold composed of mesoporous bioactive glass (MBG) with hierarchical porous structures (module I) and GelMA hydrogel columns (module II) in situ fixed in hollowed channels of the module I, which is capable of realizing differentiated delivery modes for osteogenic rhBMP-2 and angiogenic VEGF. A combinational release profile consisting of a high concentration of VEGF initially followed by a decreasing concentration over time, and a slower/sustainable release of rhBMP-2 is realized by immobilizing rhBMP-2 in module I and embedding VEGF in module II. Systematic in vitro and in vivo studies prove that the two coupled processes of osteogenesis and angiogenesis are well-orchestrated and both enhanced ascribed to the specific GFs delivery modes and 26SCS decoration. 26SCS not only enhances the GFs' bioactivity but also decreases antagonism effects of noggin. This study highlights the importance of differentiating the delivery pattern of different GFs and likely sheds light on the future design of growth factor-based bone grafts.
Collapse
Affiliation(s)
- Wei Tang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuanman Yu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui Liu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
7
|
Wang X, Qi F, Xing H, Zhang X, Lu C, Zheng J, Ren X. Uniform-sized insulin-loaded PLGA microspheres for improved early-stage peri-implant bone regeneration. Drug Deliv 2019; 26:1178-1190. [PMID: 31738084 PMCID: PMC6882491 DOI: 10.1080/10717544.2019.1682719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 11/05/2022] Open
Abstract
Poor initial stability at the first four weeks after surgery is becoming the major causes for metal implant failure. Previous attempts neglected the control release of insulin for the bone regeneration among nondiabetic subjects. The major reason may lie in the adverse effects, such as attenuated bone formation, hypoglycemia or hyperinsulinemia, that caused by the excessive insulin. Thus, spatiotemporal release of insulin may serve as the promising strategy. To address this, through solvent extraction (EMS), solvent evaporation (SMS) and cosolvent methods (CMS), we prepared three types of PLGA microspheres with various internal structures, but similar size distribution. The effects of the preparation methods on the properties of the microspheres, such as their release behavior, degradation of molecular weight, and structural evolution, were investigated. Human bone marrow mesenchymal stromal cells (BMSCs) and rabbit implant models were used to test the bioactivity of the microspheres in vitro and in vivo, respectively. The result demonstrated that these three preparation methods did not influence the polymer degradation but instead affected the internal structural evolution, which plays a crucial role in the release behavior, osteogenesis and peri-implant bone regeneration. Compared with EMS and CMS microspheres, SMS microspheres exhibited a relatively steady release rate in the first four weeks, which evidently stimulated the osteogenic differentiation of the stem cells and peri-implant bone regeneration. Meanwhile, SMS microspheres significantly enhanced the stability of the implant at Week 4, which is promising to reduce early failure rate of the implant without inducing adverse effects on the serum biochemical indices.
Collapse
Affiliation(s)
- Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Feng Qi
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Chunxiang Lu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Jiajia Zheng
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| |
Collapse
|
8
|
Chen R, Yu Y, Zhang W, Pan Y, Wang J, Xiao Y, Liu C. Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies. Acta Biomater 2018; 80:108-120. [PMID: 30218780 DOI: 10.1016/j.actbio.2018.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) involved therapy is of great potential for bone regeneration. However, its clinical application is restricted due to the undesirable bioactivity and relevant complications in vivo. Immobilization of recombinant BMP-2 (rhBMP-2) is an efficient strategy to mimic natural microenvironment and retain its bioactivity. Herein, we present evidences indicating that osteoinductive capacity of rhBMP-2 can be regulated via variant immobilizing approaches. Three representative superficial immobilizing models were employed to fabricate rhBMP-2-immobilized surfaces including physical adsorption (Au/rhBMP-2), covalent grafting (rhBMP-2-SAM-Au) and heparin binding (Hep-SAM-Au/rhBMP-2) (SAM: self-assembled monolayer). Loading capacity, releasing behavior, osteogenic differentiation and signaling pathways involved, as well as the cellular recognition of rhBMP-2 under various immobilization modes were systematically investigated. As a result, disparate immobilizing approaches not only have effects on loading capacity, but also lead to disparity of osteoinduction at the same dosage. Notably, heparin could reinforce the recognition between rhBMP-2 and its receptors (BMPRs) whereas weaken its binding to its antagonist Noggin. Owing to this "selective" binding feature, the favorable osteoinduction and maximum ectopic bone formation can be achieved with the heparin-binding approach. In particular, manipulation of orientation-mediated BMP-2-cell recognition efficiency may be a potential target to design more therapeutic efficient rhBMP-2 delivery system. STATEMENT OF SIGNIFICANCE: Bone morphogenetic protein-2 (BMP-2) is crucial in bone regeneration. However, its clinical application is challenged due to its shorten half-life and supra-physiological dose associated complications. In this study, three representative superficial immobilizing patterns were fabricated through physical adsorption, covalent grafting and electrostatic interaction with heparin respectively. We provided evidences indicating an dose-dependent osteoinductive capacity of immobilized BMP-2. Further, a possible mechanism of rhBMP-2-cell recognition at the interface was presented, highlighting the superior effect of heparin on rhBMP-2 bioactivity. Finally, We proposed a dual mechanism of tuning the bioactivity of immobilized rhBMP-2 through surface immobilization approaches: regulation of the saturated loading capacity and orientation-mediated rhBMP-2-cell recognition. These results provide novel insights into designing criterion of efficient delivery vehicle for rhBMP-2.
Collapse
|
9
|
Ferracini R, Martínez Herreros I, Russo A, Casalini T, Rossi F, Perale G. Scaffolds as Structural Tools for Bone-Targeted Drug Delivery. Pharmaceutics 2018; 10:pharmaceutics10030122. [PMID: 30096765 PMCID: PMC6161191 DOI: 10.3390/pharmaceutics10030122] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
Although bone has a high potential to regenerate itself after damage and injury, the efficacious repair of large bone defects resulting from resection, trauma or non-union fractures still requires the implantation of bone grafts. Materials science, in conjunction with biotechnology, can satisfy these needs by developing artificial bones, synthetic substitutes and organ implants. In particular, recent advances in materials science have provided several innovations, underlying the increasing importance of biomaterials in this field. To address the increasing need for improved bone substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from organic or inorganic materials, incorporating drugs and growth factors, to induce new bone tissue formation. This review emphasizes recent progress in materials science that allows reliable scaffolds to be synthesized for targeted drug delivery in bone regeneration, also with respect to past directions no longer considered promising. A general overview concerning modeling approaches suitable for the discussed systems is also provided.
Collapse
Affiliation(s)
- Riccardo Ferracini
- Department of Surgical Sciences, Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genova, Italy.
| | - Isabel Martínez Herreros
- Department of Surgical Sciences, Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genova, Italy.
| | - Antonio Russo
- Department of Surgical Sciences, Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genova, Italy.
| | - Tommaso Casalini
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland, Via Cantonale 2C, Galleria, 26928 Manno, Switzerland.
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| | - Giuseppe Perale
- Department of Surgical Sciences, Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genova, Italy.
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland, Via Cantonale 2C, Galleria, 26928 Manno, Switzerland.
- Industrie Biomediche Insubri SA, Via Cantonale 67, 6805 Mezzovico-Vira, Switzerland.
| |
Collapse
|
10
|
Ghimire S, Miramini S, Richardson M, Mendis P, Zhang L. Role of Dynamic Loading on Early Stage of Bone Fracture Healing. Ann Biomed Eng 2018; 46:1768-1784. [DOI: 10.1007/s10439-018-2083-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/23/2018] [Indexed: 12/14/2022]
|
11
|
Damia C, Marchat D, Lemoine C, Douard N, Chaleix V, Sol V, Larochette N, Logeart-Avramoglou D, Brie J, Champion E. Functionalization of phosphocalcic bioceramics for bone repair applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 95:343-354. [PMID: 30573258 DOI: 10.1016/j.msec.2018.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 09/18/2017] [Accepted: 01/28/2018] [Indexed: 01/05/2023]
Abstract
This work is devoted to the processing of bone morphogenetic protein (BMP-2) functionalized silicate substituted hydroxyapatite (SiHA) ceramic spheres. The motivation behind it is to develop injectable hydrogel/bioceramic composites for bone reconstruction applications. SiHA microspheres were shaped by spray drying and thoroughly characterized. The silicate substitution was used to provide preferred chemical sites at the ceramic surface for the covalent immobilization of BMP-2. In order to control the density and the release of the immobilized BMP-2, its grafting was performed via ethoxysilanes and polyethylene glycols. A method based on Kaiser's test was used to quantify the free amino groups of grafted organosilanes available at the ceramic surface for BMP-2 immobilization. The SiHA surface modification was investigated by means of X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and thermogravimetry coupled with mass spectrometry. The BMP-2 bioactivity was assessed, in vitro, by measuring the luciferase expression of a stably transfected C3H10 cell line (C3H10-BRE/Luc cells). The results provided evidence that the BMP-2 grafted onto SiHA spheres remained bioactive.
Collapse
Affiliation(s)
- Chantal Damia
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France.
| | - David Marchat
- Ecole Nationale Supérieure des Mines, CIS-EMSE, INSERM U1059, 158 cours Fauriel, F-42023 Saint-Etienne cedex 2, France
| | - Charly Lemoine
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France
| | - Nathalie Douard
- Ecole Nationale Supérieure des Mines, CIS-EMSE, INSERM U1059, 158 cours Fauriel, F-42023 Saint-Etienne cedex 2, France
| | | | - Vincent Sol
- Univ. Limoges, LCSN EA 1069, F-87000 Limoges, France
| | - Nathanaël Larochette
- Laboratory of Bioengineering and Bioimaging for Osteo-Articular tissues, UMR 7052, CNRS, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Delphine Logeart-Avramoglou
- Laboratory of Bioengineering and Bioimaging for Osteo-Articular tissues, UMR 7052, CNRS, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Joël Brie
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France; CHU Limoges, Service de Chirurgie Maxillo-Faciale, F-87000, Limoges, France
| | - Eric Champion
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France
| |
Collapse
|
12
|
Development of Poly Lactic/Glycolic Acid (PLGA) Microspheres for Controlled Release of Rho-Associated Kinase Inhibitor. J Ophthalmol 2017; 2017:1598218. [PMID: 28819566 PMCID: PMC5551544 DOI: 10.1155/2017/1598218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/21/2017] [Accepted: 07/09/2017] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the feasibility of poly lactic/glycolic acid (PLGA) as a drug delivery carrier of Rho kinase (ROCK) inhibitor for the treatment of corneal endothelial disease. METHOD ROCK inhibitor Y-27632 and PLGA were dissolved in water with or without gelatin (W1), and a double emulsion [(W1/O)/W2] was formed with dichloromethane (O) and polyvinyl alcohol (W2). Drug release curve was obtained by evaluating the released Y-27632 by using high performance liquid chromatography. PLGA was injected into the anterior chamber or subconjunctiva in rabbit eyes, and ocular complication was evaluated by slitlamp microscope and histological analysis. RESULTS Y-27632 incorporated PLGA microspheres with different molecular weights, and different composition ratios of lactic acid and glycolic acid were fabricated. A high molecular weight and low content of glycolic acid produced a slower and longer release. The Y-27632 released from PLGA microspheres significantly promoted the cell proliferation of cultured corneal endothelial cells. The injection of PLGA did not induce any evident eye complication. CONCLUSIONS ROCK inhibitor-incorporated PLGA microspheres were fabricated, and the microspheres achieved the sustained release of ROCK inhibitor over 7-10 days in vitro. Our data should encourage researchers to use PLGA microspheres for treating corneal endothelial diseases.
Collapse
|
13
|
Wang X, Wu X, Xing H, Zhang G, Shi Q, E L, Liu N, Yang T, Wang D, Qi F, Wang L, Liu H. Porous Nanohydroxyapatite/Collagen Scaffolds Loading Insulin PLGA Particles for Restoration of Critical Size Bone Defect. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11380-11391. [PMID: 28256126 DOI: 10.1021/acsami.6b13566] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Insulin is considered to be a classical central regulator of energy homeostasis. Recently, the effect of insulin on bone has gained a lot of attention, but little attention has been paid to the application in bone tissue engineering. In this study, porous nanohydroxyapatite/collagen (nHAC) scaffolds incorporating poly lactic-co-glycolic acid (PLGA) particles were successfully developed as an insulin delivery platform for bone regeneration. Bioactive insulin was successfully released from the PLGA particles within the scaffold, and the size of the particles as well as the release kinetics of the insulin could be efficiently controlled through Shirasu porous glass premix membrane emulsification technology. It was indicated that the nHAC/PLGA composite scaffolds possessed favorable mechanical and structural properties for cell adhesion and proliferation, as well as the differentiation into osteoblasts. It was also demonstrated that the nHAC/PLGA scaffolds implanted into a rabbit critical-size mandible defect possessed tissue compatibility and higher bone restoration capacity compared with the defects that were filled with or without nHAC scaffolds. Furthermore, the in vivo results showed that the nHAC/PLGA scaffolds which incorporated insulin-loaded microspheres with a size of 1.61 μm significantly accelerated bone healing compared with two other composite scaffolds. Our study indicated that the local insulin released at the optimal time could substantially and reproducibly improve bone repair.
Collapse
Affiliation(s)
- Xing Wang
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
- Hospital of Stomatology, Shanxi Medical University , Taiyuan, 030001, China
| | - Xia Wu
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Helin Xing
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Guilan Zhang
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Quan Shi
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Lingling E
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Na Liu
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Tingyuan Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, 100190, China
| | - Dongsheng Wang
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Feng Qi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, 100190, China
| | - Lianyan Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, 100190, China
| | - Hongchen Liu
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| |
Collapse
|
14
|
López-Cebral R, Civantos A, Ramos V, Seijo B, López-Lacomba JL, Sanz-Casado JV, Sanchez A. Gellan gum based physical hydrogels incorporating highly valuable endogen molecules and associating BMP-2 as bone formation platforms. Carbohydr Polym 2017; 167:345-355. [PMID: 28433171 DOI: 10.1016/j.carbpol.2017.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 12/20/2022]
Abstract
Physical hydrogels have been designed for a double purpose: as growth factor delivery systems and as scaffolds to support cell colonization and formation of new bone. Specifically, the polysaccharide gellan gum and the ubiquitous endogenous molecules chondroitin, albumin and spermidine have been used as exclusive components of these hydrogels. The mild ionotropic gelation technique was used to preserve the bioactivity of the selected growth factor, rhBMP-2. In vitro tests demonstrated the effective delivery of rhBMP-2 in its bioactive form. In vivo experiments performed in the muscle tissue of Wistar rats provided a proof of concept of the ability of the developed platforms to elicit new bone formation. Furthermore, this biological effect was better than that of a commercial formulation currently used for regenerative purposes, confirming the potential of these hydrogels as new and innovative growth factor delivery platforms and scaffolds for regenerative medicine applications.
Collapse
Affiliation(s)
- Rita López-Cebral
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain
| | - Ana Civantos
- Institute of Biofunctional Studies, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Viviana Ramos
- Institute of Biofunctional Studies, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Begoña Seijo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain; Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela (CHUS), Travesía da Choupana, s/n, 15706 Santiago de Compostela, Spain
| | - José Luis López-Lacomba
- Institute of Biofunctional Studies, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | | | - Alejandro Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain; Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela (CHUS), Travesía da Choupana, s/n, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
15
|
King D, McGinty S. Assessing the potential of mathematical modelling in designing drug-releasing orthopaedic implants. J Control Release 2016; 239:49-61. [PMID: 27521893 DOI: 10.1016/j.jconrel.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/04/2016] [Accepted: 08/07/2016] [Indexed: 12/26/2022]
Abstract
Orthopaedic implants have been the subject of intense research in recent years, with academics, clinicians and industrialists seeking to broaden our understanding of their function and potential consequences within the human body. Current research is focussed on ways to improve the integration of an orthopaedic device within the body, whether it be to encourage better osseointegration, combat possible infection or stem the foreign body response. A key emerging strategy is the controlled delivery of therapeutics from the device, which may take the form of, for example, antibiotics, analgesics, anti-inflammatories or growth factors. However, the optimal device design that gives rise to the desired controlled release has yet to be defined. There are many examples in the literature of experimental approaches which attempt to tackle this issue. However, the necessity of having to conduct multiple experiments to test different scenarios is a major drawback of this approach. So enter stage left: mathematical modelling. Using a mathematical modelling approach can provide much more than experiments in isolation. For instance, a mathematical model can help identify key drug release mechanisms and uncover the rate limiting processes; allow for the estimation of values of the parameters controlling the system; quantify the effect of the interaction with the biological environment; and aid with the design of optimisation strategies for controlled drug release. In this paper we review current experimental approaches and some relevant mathematical models and suggest the future direction of such approaches in this field.
Collapse
Affiliation(s)
- David King
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK.
| |
Collapse
|
16
|
Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle. Acta Biomater 2016; 36:310-22. [PMID: 26965394 DOI: 10.1016/j.actbio.2016.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 01/14/2023]
Abstract
UNLABELLED The aim of this study was to evaluate the osseointegration of titanium implants (Ti-6Al-4V, noted here TA6V) and poly(etheretherketone) PEEK implants induced by a BMP-2-delivering surface coating made of polyelectrolyte multilayer films. The in vitro bioactivity of the polyelectrolyte film-coated implants was assessed using the alkaline phosphatase assay. BMP-2-coated TA6V and PEEK implants with a total dose of 9.3μg of BMP-2 were inserted into the femoral condyles of New Zealand white rabbits and compared to uncoated implants. Rabbits were sacrificed 4 and 8weeks after implantation. Histomorphometric analyses on TA6V and PEEK implants and microcomputed tomography on PEEK implants revealed that the bone-to-implant contact and bone area around the implants were significantly lower for the BMP-2-coated implants than for the bare implants. This was confirmed by scanning electron microscopy imaging. This difference was more pronounced at 4weeks in comparison to the 8-week time point. However, bone growth inside the hexagonal upper hollow cavity of the screws was higher in the case of the BMP-2 coated implants. Overall, this study shows that a high dose of BMP-2 leads to localized and temporary bone impairment, and that the dose of BMP-2 delivered at the surface of an implant needs to be carefully optimized. STATEMENT OF SIGNIFICANCE The presentation of growth factors from material surfaces currently presents significant challenges in academia, clinics and industry. Applying osteoinductive factors to different types of implants, made of metals or polymers, may improve bone repair in difficult situations. Here, we show the effects of an osteoinductive coating made of polyelectrolyte multilayer films on two widely used materials, titanium TA6V alloys and PEEK implants, which were implanted in the rabbit femoral condyle. We show that a too high dose of BMP-2 delivered from the screw surface has a negative short-term effect on bone regeneration in close vicinity of the screw surface. In contrast, bone formation was increased at early times in the empty spaces around the screw. These results highlight the need for future dose-dependence studies on bone formation in response to osteoinductive coatings.
Collapse
|
17
|
Xu Y, Kim CS, Saylor DM, Koo D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J Biomed Mater Res B Appl Biomater 2016; 105:1692-1716. [PMID: 27098357 DOI: 10.1002/jbm.b.33648] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/25/2016] [Accepted: 02/12/2016] [Indexed: 01/03/2023]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) copolymers have been broadly used in controlled drug release applications. Because these polymers are biodegradable, they provide an attractive option for drug delivery vehicles. There are a variety of material, processing, and physiological factors that impact the degradation rates of PLGA polymers and concurrent drug release kinetics. This work is intended to provide a comprehensive and collective review of the physicochemical and physiological factors that dictate the degradation behavior of PLGA polymers and drug release from contemporary PLGA-based drug-polymer products. In conjunction with the existing experimental results, analytical and numerical theories developed to predict drug release from PLGA-based polymers are summarized and correlated with the experimental observations. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1692-1716, 2017.
Collapse
Affiliation(s)
- Yihan Xu
- Materials Science and Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211
| | - Chang-Soo Kim
- Materials Science and Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211
| | - David M Saylor
- Division of Biology, Chemistry, and Materials Science, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993
| | - Donghun Koo
- Materials Science R&D, MilliporeSigma, Milwaukee, Wisconsin, 53209
| |
Collapse
|
18
|
Tang W, Lin D, Yu Y, Niu H, Guo H, Yuan Y, Liu C. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater 2016; 32:309-323. [PMID: 26689464 DOI: 10.1016/j.actbio.2015.12.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 12/17/2022]
Abstract
Critical size bone defects raise great demands for efficient bone substitutes. Mimicking the hierarchical porous architecture and specific biological cues of natural bone has been considered as an effective strategy to facilitate bone regeneration. Herein, a trimodal macro/micro/nano-porous scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) was developed. With mesoporous bioactive glass (MBG) as matrix, a trimodal MBG scaffold (TMS) with enhanced compressive strength (4.28 MPa, porosity of 80%) was prepared by a "viscosity controlling" and "homogeneous particle reinforcing" multi-template process. A 7.5 nm, 3D cubic (Im3m) mesoporous structure was tailored for a "size-matched entrapment" of rhBMP-2 to achieve sustained release and preserved bioactivity. RhBMP-2-loaded TMS (TMS/rhBMP-2) induced excellent cell attachment, ingrowth and osteogenesis in vitro. Further in vivo ectopic bone formation and orthotopic rabbit radius critical size defect results indicated that compared to the rhBMP-2-loaded bimodal macro/micro- and macro/nano-porous scaffolds, TMS/rhBMP-2 exhibited appealing bone regeneration capacity. Particularly, in critical size defect, complete bone reconstruction with rapid medullary cavity reunion and sclerotin maturity was observed on TMS/rhBMP-2. On the basis of these results, TMS/rhBMP-2 developed here represents a promising bone substitute for clinical application and the concepts proposed in this study might provide new thoughts on development of future orthopedic biomaterials. STATEMENT OF SIGNIFICANCE Limited self-regenerating capacity of human body makes the reconstruction of critical size bone defect a significant challenge. Current bone substitutes often exhibit undesirable therapeutic efficacy due to poor osteoconductivity or low osteoinductivity. Herein, TMS/rhBMP-2, an advanced mesoporous bioactive glass (MBG) scaffold with osteoconductive trimodal macro/micro/nano-porosity and osteoinductive rhBMP-2 delivery was developed. The preparative and mechanical problems of hierarchical MBG scaffold were solved without affecting its excellent biocompatibilities, and rhBMP-2 immobilization in sizematched mesopores was first explored. Combining structural and biological cues, TMS/rhBMP-2 achieved a complete regeneration with rapid medullary cavity reunion and sclerotin maturity in rabbit radius critical size defects. The design conceptions proposed in this study might provide new thoughts on development of future orthopedic biomaterials.
Collapse
Affiliation(s)
- Wei Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dan Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Haoyi Niu
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Han Guo
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Yuan Yuan
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
19
|
Farokhi M, Mottaghitalab F, Shokrgozar MA, Ou KL, Mao C, Hosseinkhani H. Importance of dual delivery systems for bone tissue engineering. J Control Release 2016; 225:152-69. [PMID: 26805518 DOI: 10.1016/j.jconrel.2016.01.033] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keng-Liang Ou
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University - Shuang Ho Hospital, New Taipei city, Taiwan
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
| | - Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
20
|
Demirtaş TT, Göz E, Karakeçili A, Gümüşderelioğlu M. Combined delivery of PDGF-BB and BMP-6 for enhanced osteoblastic differentiation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:12. [PMID: 26676858 DOI: 10.1007/s10856-015-5626-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Natural microenvironment during bone tissue regeneration involves integration of multiple biological growth factors which regulate mitogenic activities and differentiation to induce bone repair. Among them platelet derived growth factor (PDGF-BB) and bone morphogenic protein-6 (BMP-6) are known to play a prominent role. The aim of this study was to investigate the benefits of combined delivery of PDGF-BB and BMP-6 on proliferation and osteoblastic differentiation of MC3T3-E1 preosteoblastic cells. PDGF-BB and BMP-6 were loaded in gelatin and poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) particles, respectively. The carrier particles were then loaded into 3D chitosan matrix fabricated by freeze drying. The fast release of PDGF-BB during 7 days was accompanied by slower and prolonged release of BMP-6. The premising release of mitogenic factor PDGF-BB resulted in an increased MC3T3-E1 cell population seeded on chitosan scaffolds. Osteogenic markers of RunX2, Col 1, OPN were higher on chitosan scaffolds loaded with growth factors either individually or in combination. However, OCN expression and bone mineral formation were prominent on chitosan scaffolds incorporating PDGF-BB and BMP-6 as a combination.
Collapse
Affiliation(s)
- T Tolga Demirtaş
- Bioengineering Department, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Eda Göz
- Chemical Engineering Department, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey
| | - Ayşe Karakeçili
- Chemical Engineering Department, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey.
| | - Menemşe Gümüşderelioğlu
- Bioengineering Department, Hacettepe University, Beytepe, 06800, Ankara, Turkey
- Chemical Engineering Department, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| |
Collapse
|
21
|
da Silva EP, Guilherme MR, Garcia FP, Nakamura CV, Cardozo-Filho L, Alonso CG, Rubira AF, Kunita MH. Drug release profile and reduction in the in vitro burst release from pectin/HEMA hydrogel nanocomposites crosslinked with titania. RSC Adv 2016. [DOI: 10.1039/c5ra27865a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hydrogel nanocomposites of pectin, HEMA and titania for Vit-B12 controlled release with reduced initial release burst were prepared. A reduction of up to ca. 60% was observed.
Collapse
Affiliation(s)
| | | | | | - Celso V. Nakamura
- Department of Basic Sciences of Health
- State University of Maringá
- Maringá
- Brazil
- Graduate Program in Pharmaceutical Sciences
| | | | | | - Adley F. Rubira
- Department of Chemistry
- State University of Maringá
- Maringá
- Brazil
| | | |
Collapse
|
22
|
Reis AV, Moia TA, Sitta DLA, Mauricio MR, Tenório-Neto ET, Guilherme MR, Rubira AF, Muniz EC. Sustained release of potassium diclofenac from a pH-responsive hydrogel based on gum arabic conjugates into simulated intestinal fluid. J Appl Polym Sci 2015. [DOI: 10.1002/app.43319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Adriano V. Reis
- Department of Chemistry; State University of Maringá; CEP 87020-900 Maringá Paraná Brazil
| | - Thais A. Moia
- Department of Chemistry; State University of Maringá; CEP 87020-900 Maringá Paraná Brazil
| | - Danielly L. A. Sitta
- Department of Chemistry; State University of Maringá; CEP 87020-900 Maringá Paraná Brazil
| | - Marcos R. Mauricio
- Department of Chemistry; State University of Maringá; CEP 87020-900 Maringá Paraná Brazil
| | | | - Marcos R. Guilherme
- Department of Chemistry; State University of Maringá; CEP 87020-900 Maringá Paraná Brazil
| | - Adley F. Rubira
- Department of Chemistry; State University of Maringá; CEP 87020-900 Maringá Paraná Brazil
| | - Edvani C. Muniz
- Department of Chemistry; State University of Maringá; CEP 87020-900 Maringá Paraná Brazil
- Programa De Pós-Graduação Em Biotecnologia Aplicada a Agricultura, Paranaense University (UNIPAR); Umuarama 87502-210 Brazil
| |
Collapse
|
23
|
Ordinary and Activated Bone Grafts: Applied Classification and the Main Features. BIOMED RESEARCH INTERNATIONAL 2015; 2015:365050. [PMID: 26649300 PMCID: PMC4662978 DOI: 10.1155/2015/365050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022]
Abstract
Bone grafts are medical devices that are in high demand in clinical practice for substitution of bone defects and recovery of atrophic bone regions. Based on the analysis of the modern groups of bone grafts, the particularities of their composition, the mechanisms of their biological effects, and their therapeutic indications, applicable classification was proposed that separates the bone substitutes into “ordinary” and “activated.” The main differential criterion is the presence of biologically active components in the material that are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructions encoding growth factors. The pronounced osteoinductive and (or) osteogenic properties of activated osteoplastic materials allow drawing upon their efficacy in the substitution of large bone defects.
Collapse
|
24
|
Mottaghitalab F, Hosseinkhani H, Shokrgozar MA, Mao C, Yang M, Farokhi M. Silk as a potential candidate for bone tissue engineering. J Control Release 2015; 215:112-28. [DOI: 10.1016/j.jconrel.2015.07.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
|
25
|
Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res 2015; 56:175-94. [PMID: 25803622 DOI: 10.3109/03008207.2015.1027341] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro assays can be useful in determining biological mechanism and optimizing scaffold parameters, however translation of the in vitro results to clinics is generally hard. Animal experimentation is a better approximation than in vitro tests, and usage of animal models is often essential in extrapolating the experimental results and translating the information in a human clinical setting. In addition, usage of animal models to study fracture healing is useful to answer questions related to the most effective method to treat humans. There are several factors that should be considered when selecting an animal model. These include availability of the animal, cost, ease of handling and care, size of the animal, acceptability to society, resistance to surgery, infection and disease, biological properties analogous to humans, bone structure and composition, as well as bone modeling and remodeling characteristics. Animal experiments on bone healing have been conducted on small and large animals, including mice, rats, rabbits, dogs, pigs, goats and sheep. This review also describes the molecular events during various steps of fracture healing and explains different means of fracture healing evaluation including biomechanical, histopathological and radiological assessments.
Collapse
Affiliation(s)
- Amin Bigham-Sadegh
- Faculty of Veterinary Medicine, Department of Veterinary Surgery and Radiology, Shahrekord University , Shahrekord , Iran and
| | | |
Collapse
|
26
|
Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. J Control Release 2015; 206:187-205. [DOI: 10.1016/j.jconrel.2015.03.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/03/2023]
|
27
|
Improving the osteogenic efficacy of BMP2 with mechano growth factor by regulating the signaling events in BMP pathway. Cell Tissue Res 2015; 361:723-31. [DOI: 10.1007/s00441-015-2154-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022]
|
28
|
Lauzon MA, Daviau A, Marcos B, Faucheux N. Growth factor treatment to overcome Alzheimer's dysfunctional signaling. Cell Signal 2015; 27:1025-38. [PMID: 25744541 DOI: 10.1016/j.cellsig.2015.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The number of people suffering from Alzheimer's disease (AD) will increase as the world population ages, creating a huge socio-economic burden. The three pathophysiological hallmarks of AD are the cholinergic system dysfunction, the β-amyloid peptide deposition and the Tau protein hyperphosphorylation. Current treatments have only transient effects and each tends to concentrate on a single pathophysiological aspect of AD. This review first provides an overall view of AD in terms of its pathophysiological symptoms and signaling dysfunction. We then examine the therapeutic potential of growth factors (GFs) by showing how they can overcome the dysfunctional cell signaling that occurs in AD. Finally, we discuss new alternatives to GFs that help overcome the problem of brain uptake, such as small peptides, with evidence from some of our unpublished data on human neuronal cell line.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Alex Daviau
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Bernard Marcos
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Nathalie Faucheux
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
29
|
Casalini T, Rossi F, Lazzari S, Perale G, Masi M. Mathematical Modeling of PLGA Microparticles: From Polymer Degradation to Drug Release. Mol Pharm 2014; 11:4036-48. [DOI: 10.1021/mp500078u] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tommaso Casalini
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Filippo Rossi
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Stefano Lazzari
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Giuseppe Perale
- Department
of Innovative Technologies, University for Applied Science and Art of Southern Switzerland, via Cantonale 2c, CH-6928 Manno, Switzerland
- Swiss Institute for Regenerative Medicine, via ai Söi, CH-6807 Taverne, Switzerland
| | - Maurizio Masi
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
30
|
Laschke MW, Schank TE, Scheuer C, Kleer S, Shadmanov T, Eglin D, Alini M, Menger MD. In vitro osteogenic differentiation of adipose-derived mesenchymal stem cell spheroids impairs their in vivo vascularization capacity inside implanted porous polyurethane scaffolds. Acta Biomater 2014; 10:4226-35. [PMID: 24998773 DOI: 10.1016/j.actbio.2014.06.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/06/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022]
Abstract
Undifferentiated adipose-derived mesenchymal stem cell (adMSC) spheroids are attractive vascularization units for tissue engineering. Their osteogenic differentiation further offers the possibility of directed generation of bone constructs. The aim of this study was to analyze how this differentiation affects their in vivo vascularization capacity. Green fluorescent protein (GFP)-positive adMSCs were isolated from C57BL/6-TgN(ACTB-EGFP)1Osb/J mice for the generation of undifferentiated and differentiated spheroids using the liquid overlay technique. Subsequently, polyurethane scaffolds were seeded with these spheroids and successful osteogenic differentiation was proven by von Kossa staining and high-resolution microtomography. The scaffolds were then implanted into dorsal skinfold chambers of C57BL/6 wild-type mice to analyze their vascularization and incorporation using intravital fluorescence microscopy, histology and immunohistochemistry. Scaffolds seeded with differentiated spheroids exhibited a markedly impaired vascularization. Immunohistochemical analyses revealed that this was caused by the lost ability of differentiated spheroids to form GFP-positive microvascular networks inside the scaffolds. This was associated with a reduced tissue incorporation of the implants. Moreover, they no longer exhibited a mineralized matrix after the 14day implantation period, indicating the dedifferentiation of the spheroids under the given in vivo conditions. These findings indicate that osteogenic differentiation of adMSC spheroids markedly impairs their vascularization capacity. Hence, it may be reasonable to combine adMSC spheroids of varying differentiation stages in scaffolds for bone tissue engineering to promote both vascularization and bone formation.
Collapse
|
31
|
Effect of Biodegradable Gelatin β-Tri Calcium Phosphate Sponges Containing Mesenchymal Stem Cells and Bone Morphogenetic Protein-2 on Equine Bone Defect. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Grassi M, Grassi G. Application of mathematical modeling in sustained release delivery systems. Expert Opin Drug Deliv 2014; 11:1299-321. [PMID: 24938598 DOI: 10.1517/17425247.2014.924497] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. AREAS COVERED The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. EXPERT OPINION Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.
Collapse
Affiliation(s)
- Mario Grassi
- University of Trieste, Department of Engineering and Architecture , Via Valerio 6/A, I - 34127, Trieste , Italy +39 040 558 3435 ; +39 040 569823 ;
| | | |
Collapse
|
33
|
Park K. Collagen gels for delivery of bioactive peptide derived from BMP-9. J Control Release 2014; 182:121. [DOI: 10.1016/j.jconrel.2014.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Wu C, Chang J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release 2014; 193:282-95. [PMID: 24780264 DOI: 10.1016/j.jconrel.2014.04.026] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/02/2014] [Accepted: 04/10/2014] [Indexed: 12/21/2022]
Abstract
Regeneration of large-size bone defects represents a significant challenge clinically, which requires the use of scaffolds with multifunction, such as anti-bacterial activity, and stimulation of osteogenesis and angiogenesis. It is known that functional ions or drug/growth factors play an important role to stimulate tissue regeneration. Mesoporous bioactive glasses (MBG) possess excellent bioactivity and drug-delivery ability as well as effective ionic release in the body fluids microenvironment due to its specific mesoporous structure and large surface area. For these reasons, functional ions (e.g. lithium (Li), strontium (Sr), Copper (Cu) and Boron (B)) and drug/growth factors (e.g. dexamethasone, vascular endothelial growth factor (VEGF) and bone morphogenetic protein (BMP)) have been incorporated into MBG, which shows high loading efficiency and effective release. The release of therapeutic ions and drug/growth factors from MBG offers it multifunctional properties, such as improved osteogenesis, angiogenesis, anti-bacterial/cancer activity. However, there is no a systematic review about delivery of therapeutic ions and drugs/growth factors from MBG for the functional effect on the tissue regeneration despite that significant progress has been achieved in the past five years. Therefore, in this review, we mainly focused on the new advances for the functional effect of delivering therapeutic ions and drugs/growth factors on the ostegeogenesis, angiogenesis and antibacterial activity. It is expected that the review will offer new concept to develop multifunctional biomaterials for bone regeneration by the synergistic effect of therapeutic ions and drug/growth factors.
Collapse
Affiliation(s)
- Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
35
|
Lauzon MA, Daviau A, Drevelle O, Marcos B, Faucheux N. Identification of a growth factor mimicking the synergistic effect of fetal bovine serum on BMP-9 cell response. Tissue Eng Part A 2014; 20:2524-35. [PMID: 24593122 DOI: 10.1089/ten.tea.2014.0091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The bone morphogenetic proteins (BMPs) are potent osteogenic molecules that are used for bone repair in delivery systems and in regenerative medicine. We studied the responses of murine MC3T3-E1 preosteoblasts to doses of recombinant human (rh)BMP-9 with and without fetal bovine serum (FBS). rhBMP-2 was used as a control since it is currently approved by the Food and Drug Administration for bone application. We analyzed the major cell signaling pathways and the expression of osteogenic markers. Without FBS, BMP-9 had a similar effect on MC3T3-E1 preosteoblast differentiation in comparison to BMP-2. In contrast, FBS reduced the EC50 of BMP-9 fourfold to sixfold, as determined by osterix gene expression and alkaline phosphatase (ALP) activity, while it had no influence on EC50 of BMP-2. As suggested by MAPK inhibitor assays, FBS could induce an intracellular signaling environment that favors cell response to BMP-9 by inhibiting ERK1/2 activation and increasing p38 phosphorylation. Finally, IGF-2 (100 ng/mL) could mimic the effect of FBS on BMP-9 cell response in terms of MAPK signaling and ALP activity. Thus, the action of BMP-9 on preosteoblast differentiation can be greatly improved by IGF-2. This finding may well be critical for developing optimal growth factor delivery systems and bone tissue engineering strategies.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- 1 Canada Research Chair on Cell-Biomaterial Biohybrid Systems, Université de Sherbrooke , Sherbrooke, Canada
| | | | | | | | | |
Collapse
|
36
|
Lauzon MA, Marcos B, Faucheux N. Effect of initial pBMP-9 loading and collagen concentration on the kinetics of peptide release and a mathematical model of the delivery system. J Control Release 2014; 182:73-82. [PMID: 24637465 DOI: 10.1016/j.jconrel.2014.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
Type I collagen is one of the most widely used materials for drug delivery in tissue repair. It is the reference carrier for delivering growth factors like bone morphogenetic proteins (BMPs such as BMP-2 and BMP-7) for bone repair. Since BMPs are expensive to produce, we have developed a peptide derived from BMP-9 (pBMP-9) that is 300 times less expensive than the entire protein while still promoting osteogenic differentiation. We have now evaluated the effects of the collagen concentration and the initial pBMP-9 load on peptide release. We then developed a model of pBMP-9 release kinetics by finite differences using a system based on Fick's second law in which the interactions between the peptide and collagen fibers are assumed to follow Langmuir adsorption kinetics. The Langmuir isotherms suggest that the structure of the collagen gel influences the strength of its electrostatic interaction with the peptide, since increasing the collagen concentration decreased the affinity of pBMP-9 for the collagen. The resulting model of the mechanism accurately reflects the experimental data and the parameters estimated indicate that the diffusivities with the different collagen concentrations are similar, whereas the mass transfer coefficient increases with the collagen concentration. The results also indicate that perfect sink conditions cannot be assumed and suggest the presence of an optimal collagen concentration. Finally, we have correlated our conclusions with the differences in collagen fiber organization observed by transmission electron microscopy.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada; Canada Research Chair in Cell-Biomaterial Biohybrid Systems Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Bernard Marcos
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada; Canada Research Chair in Cell-Biomaterial Biohybrid Systems Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
37
|
Zheng M, Li L, Tang Y, Liang XH. How to improve the survival rate of implants after radiotherapy for head and neck cancer? J Periodontal Implant Sci 2014; 44:2-7. [PMID: 24616827 PMCID: PMC3945392 DOI: 10.5051/jpis.2014.44.1.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/10/2014] [Indexed: 02/05/2023] Open
Affiliation(s)
- Min Zheng
- Department of Stomatology, Zhou Shan Hospital, Zhoushan Zhejiang, China. ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, China
| | - Li Li
- Department of Stomatology, Zhou Shan Hospital, Zhoushan Zhejiang, China. ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, China
| | - Yaling Tang
- Department of Stomatology, Zhou Shan Hospital, Zhoushan Zhejiang, China. ; Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, China
| | - Xin-Hua Liang
- Department of Stomatology, Zhou Shan Hospital, Zhoushan Zhejiang, China. ; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu Sichuan, China
| |
Collapse
|
38
|
Peterson AM, Pilz-Allen C, Kolesnikova T, Möhwald H, Shchukin D. Growth factor release from polyelectrolyte-coated titanium for implant applications. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1866-1871. [PMID: 24325402 DOI: 10.1021/am404849y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polyelectrolyte multilayer coatings based on poly(methacrylic acid) and poly-l-histidine were formed on anodized titanium surfaces with adsorbed bone morphogenetic protein 2 (BMP-2) or basic fibroblast growth factor (FGFb). These coatings are proposed for use on titanium implanted devices. Coatings were capable of sustained release of growth factor over 25 days, with BMP-2 and FGFb exhibiting approximately identical release profiles. Cell culture on growth factor-eluting surfaces was more effective for preosteoblasts on BMP-2-eluting surfaces than for fibroblasts on FGFb-eluting surfaces. Cell counts at all time points on BMP-2-eluting surfaces were significantly higher than for those on anodized titanium or polyelectrolyte surfaces that did not contain BMP-2. Alkaline phosphatase levels were significantly higher after 21 days on BMP-2-eluting surfaces, indicating increased bone growth.
Collapse
Affiliation(s)
- Amy M Peterson
- Interfaces Department, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | | | | | | |
Collapse
|
39
|
Chang PC, Chong LY, Dovban ASM, Lim LP, Lim JC, Kuo MYP, Wang CH. Sequential platelet-derived growth factor-simvastatin release promotes dentoalveolar regeneration. Tissue Eng Part A 2013; 20:356-64. [PMID: 23980713 DOI: 10.1089/ten.tea.2012.0687] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Timely augmentation of the physiological events of dentoalveolar repair is a prerequisite for the optimization of the outcome of regeneration. This study aimed to develop a treatment strategy to promote dentoalveolar regeneration by the combined delivery of the early mitogenic factor platelet-derived growth factor (PDGF) and the late osteogenic differentiation factor simvastatin. MATERIALS AND METHODS By using the coaxial electrohydrodynamic atomization technique, PDGF and simvastatin were encapsulated in a double-walled poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) (PDLLA-PLGA) microspheres in five different modes: microspheres encapsulating bovine serum albumin (BB), PDGF alone (XP), simvastatin alone (SB), PDGF-in-core and simvastatin-in-shell (PS), and simvastatin-in-core and PDGF-in-shell (SP). The microspheres were characterized using scanning electronic microscopy, and the in vitro release profile was evaluated. Microspheres were delivered to fill large osteotomy sites on rat maxillae for 14 and 28 days, and the outcome of regeneration was evaluated by microcomputed tomography and histological assessments. RESULTS Uniform 20-μm controlled release microspheres were successfully fabricated. Parallel PDGF-simvastatin release was noted in the PS group, and the fast release of PDGF followed by the slow release of simvastatin was noted in the SP group. The promotion of osteogenesis was observed in XP, PS, and SP groups at day 14, whereas the SP group demonstrated the greatest bone fill, trabecular numbers, and thickest trabeculae. Bone bridging was evident in the PS and SP group, with significantly increased osteoblasts in the SP group, and osteoclastic cell recruitment was promoted in all bioactive molecule-treated groups. At day 28, osteogenesis was promoted in all bioactive molecule-treated groups. Initial corticalization was noted in the XP, PS, and SP groups. Osteoblasts appeared to be decreased in all groups, and significantly, a greater osteoclastic cell recruitment was noted in the SB and SP groups. CONCLUSIONS Both PDGF and simvastatin facilitate dentoalveolar regeneration, and sequential PDGF-simvastatin release (SP group) further accelerated the regeneration process through the enhancement of osteoblastogenesis and the promotion of bone maturation.
Collapse
Affiliation(s)
- Po-Chun Chang
- 1 Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University , Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Li W, Fan J, Chen F, Yang W, Su J, Bi Z. Construction of adipose scaffold for bone repair with gene engineering bone cells. Exp Biol Med (Maywood) 2013; 238:1350-4. [PMID: 24131542 DOI: 10.1177/1535370213506677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The bone defect repairing is still a challenge in orthopedics. As the gene engineering bones have been used in the bone repairing clinic, the scaffold construction is a critical fact to be considered. This study aims to construct optimal scaffolds using adipose tissue in the bone repair together with the gene engineering osteocytes. Rat adipose stem cells (ASC) were prepared; the cells were transduced with the OCT-4 gene carrying lentiviral vectors (OCT-4-Lv). Artificial bone defects were created in the rat femoral bone. The bone defects were filled up with adipose scaffolds and shaped by using surrounding muscles and supported with orthopedic splints. ASCs with or without transducing the OCT-4-Lv were injected into the adipose scaffolds. The rats were sacrificed 12 weeks after the surgery. After receiving the OCT-4-Lv, the expressions of OCT-4, RUNX2 and osteocalcin were detected in the ASCs. X-ray examination showed that rats received the OCT-4-Lv transduced ASCs together with the adipose pad had new bone formation in the defect area; none of the control rats showed any new bone formation in situ. The results were supported by histological assessment. Using adipose scaffold and OCT-4-modified ASC transplantation can repair bone defects.
Collapse
Affiliation(s)
- Weiming Li
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | | | | | | | | | | |
Collapse
|
41
|
Yilgor Huri P, Huri G, Yasar U, Ucar Y, Dikmen N, Hasirci N, Hasirci V. A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects. Biomed Mater 2013; 8:045009. [DOI: 10.1088/1748-6041/8/4/045009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Leblanc E, Drouin G, Grenier G, Faucheux N, Hamdy R. From skeletal to non skeletal: The intriguing roles of BMP-9: A literature review. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.410a4004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|