1
|
Wei Y, Xia X, Li H, Gao H. Influence factors on and potential strategies to amplify receptor-mediated nanodrug delivery across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1713-1730. [PMID: 37542516 DOI: 10.1080/17425247.2023.2245332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION A major challenge in treating central nervous system (CNS) disorders is to achieve adequate drug delivery across the blood-brain barrier (BBB). Receptor-mediated nanodrug delivery as a Trojan horse strategy has become an exciting approach. However, these nanodrugs do not accumulate significantly in the brain parenchyma, which greatly limits the therapeutic effect of drugs. Amplifying the efficiency of receptor-mediated nanodrug delivery across the BBB becomes the holy grail in the treatment of CNS disorders. AREAS COVERED In this review, we tend to establish links between dynamic BBB and receptor-mediated nanodrug delivery, starting with the delivery processes across the BBB, describing factors affecting nanodrug delivery efficiency, and summarizing potential strategies that may amplify delivery efficiency. EXPERT OPINION Receptor-mediated nanodrug delivery is a common approach to significantly enhance the efficiency of brain-targeting delivery. As BBB is constantly undergoing changes, it is essential to investigate the impact of diseases on the effectiveness of brain-targeting nanodrug delivery. More critically, there are several barriers to achieving brain-targeting nanodrug delivery in the five stages of receptor-mediated transcytosis (RMT), and the impacts can be conflicting, requiring intricate balance. Further studies are also needed to investigate the material toxicity of nanodrugs to address the issue of clinical translation.
Collapse
Affiliation(s)
- Ya Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
2
|
Lei Q, Huang X, Zheng L, Zheng F, Dong J, Chen F, Zeng W. Biosensors for Caspase-3: From chemical methodologies to biomedical applications. Talanta 2022; 240:123198. [PMID: 34998139 DOI: 10.1016/j.talanta.2021.123198] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022]
Abstract
Caspase-3 plays irreplaceable roles in apoptosis and related diseases. An imbalance in the measured levels of Caspase-3 is implicated in irreversible apoptosis. Therefore, the detection of Caspase-3 is of great significance for apoptosis imaging and the evaluation effect of early tumor treatment and other diseases. Herein, advances in the recent innovations of Caspase-3 response fluorescence biosensors, including molecular probes and nanoprobes, are systematically summarized in sections corresponding. The performances of various luminescence probes in Caspase-3 detection are discussed intensively in the design strategy of chemical structure, response mechanism and biological application. Finally, the current challenges and prospects of the design of new Caspase-3 responsive fluorescence probes for apoptosis imaging, or similar molecular event are proposed.
Collapse
Affiliation(s)
- Qian Lei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Lijuan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China.
| |
Collapse
|
3
|
Sheng A, Lin L, Zhu J, Zhuang J, Li J, Chang L, Cheng H. Micro/nanodevices for assessment and treatment in stomatology and ophthalmology. MICROSYSTEMS & NANOENGINEERING 2021; 7:11. [PMID: 33532080 PMCID: PMC7844113 DOI: 10.1038/s41378-021-00238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 05/09/2023]
Abstract
Micro/nanodevices have been widely applied for the real-time monitoring of intracellular activities and the delivery of exogenous substances in the past few years. This review focuses on miniaturized micro/nanodevices for assessment and treatment in stomatology and ophthalmology. We first summarize the recent progress in this field by examining the available materials and fabrication techniques, device design principles, mechanisms, and biosafety aspects of micro/nanodevices. Following a discussion of biochemical sensing technology from the cellular level to the tissue level for disease assessment, we then summarize the use of microneedles and other micro/nanodevices in the treatment of oral and ocular diseases and conditions, including oral cancer, eye wrinkles, keratitis, and infections. Along with the identified key challenges, this review concludes with future directions as a small fraction of vast opportunities, calling for joint efforts between clinicians and engineers with diverse backgrounds to help facilitate the rapid development of this burgeoning field in stomatology and ophthalmology.
Collapse
Affiliation(s)
- An’an Sheng
- The Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- Department of Stomatology, Xiang’An Hospital of Xiamen University, 361100 Xiamen, China
- School of Stomatology, North China University of Science and Technology, 063210 Tangshan, China
| | - Long Lin
- The Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- Institute of Plastic Machinery and Plastic Engineering, School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jia Zhu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 USA
| | - Jian Zhuang
- Institute of Plastic Machinery and Plastic Engineering, School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jian Li
- Department of Stomatology, Xiang’An Hospital of Xiamen University, 361100 Xiamen, China
| | - Lingqian Chang
- The Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, 230032 Hefei, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
4
|
Wang P, Yang H, Liu C, Qiu M, Ma X, Mao Z, Sun Y, Liu Z. Recent advances in the development of activatable multifunctional probes for in vivo imaging of caspase-3. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Abstract
Peptides are one of the most important functional motifs for constructing smart drug delivery systems (DDSs). Functional peptides can be conjugated with drugs or carriers via covalent bonds, or assembled into DDSs via supramolecular forces, which enables the DDSs to acquire desired functions such as targeting and/or environmental responsiveness. In this mini review, we first introduce the different types of functional peptides that are commonly used for constructing DDSs, and we highlight representative strategies for designing smart DDSs by using functional peptides in the past few years. We also state the challenges of peptide-based DDSs and come up with prospects.
Collapse
Affiliation(s)
- Zheng Lian
- People's Public Security University of China, Beijing 100038, China
| | | |
Collapse
|
6
|
Cogo F, Poreba M, Rut W, Groborz K, Smyth P, Johnston MC, Williams R, Longley DB, Burden RE, Salvesen GS, Drag M, Scott CJ. Development of an advanced nanoformulation for the intracellular delivery of a caspase-3 selective activity-based probe. NANOSCALE 2019; 11:742-751. [PMID: 30566168 PMCID: PMC7331821 DOI: 10.1039/c8nr07859a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability to label active caspase-3 represents a useful pharmacodynamic strategy to determine the efficacy of anti-tumour drugs. Activity-based probes (ABPs) provide a method for the labelling of activated caspases and the recent development of hybrid combinatorial substrate libraries (HyCoSuL) has allowed for the generation of highly selective ABPs to discriminately label these proteases. Here using this approach, a novel caspase-3 selective ABP (CS1) has been developed and validated in apoptotic cells to selectively bind caspase-3 over the closely related caspase-7. However, a critical bottleneck for ABPs is their cell penetrance and therefore this cell-impermeable CS1 probe was subsequently formulated into PLGA-based nanoparticles (CS1-NPs). We demonstrate the ability of these particles to be taken up by the cells and facilitate intracellular delivery of the ABP to effectively label caspase 3 in response to apoptotic stimuli. This work forms the foundation of a novel approach for the labelling of caspase 3 and may have downstream utility to measure real time apoptosis in tumours and other organs.
Collapse
Affiliation(s)
- Francesco Cogo
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Oller-Salvia B, Sánchez-Navarro M, Giralt E, Teixidó M. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem Soc Rev 2018; 45:4690-707. [PMID: 27188322 DOI: 10.1039/c6cs00076b] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain delivery is one of the major challenges in drug development because of the high number of patients suffering from neural diseases and the low efficiency of the treatments available. Although the blood-brain barrier (BBB) prevents most drugs from reaching their targets, molecular vectors - known as BBB shuttles - offer great promise to safely overcome this formidable obstacle. In recent years, peptide shuttles have received growing attention because of their lower cost, reduced immunogenicity, and higher chemical versatility than traditional Trojan horse antibodies and other proteins.
Collapse
Affiliation(s)
- Benjamí Oller-Salvia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Macarena Sánchez-Navarro
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain. and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Francoia JP, Vial L. Everything You Always Wanted to Know about Poly-l-lysine Dendrigrafts (But Were Afraid to Ask). Chemistry 2018; 24:2806-2814. [PMID: 29034997 DOI: 10.1002/chem.201704147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Less than a decade ago, dendrigrafts of poly-l-lysine (DGLs) joined the family of polycationic dendritic macromolecules. Resulting from the iterative polycondensation of an N-carboxyanhydride in water, four generations of the dendrigraft can be obtained on a multigram scale and without chromatographic purification. DGLs share features with both dendrimers and hyperbranched polymers, but turned out to have unique biophysical and bioactive properties. The macromolecules-in their native form or functionalized-have been extensively characterized by various analytical and computational methods, and have already found numerous applications in the biomedical field, such as drug and gene delivery, biomaterials, tissue engineering, bioimaging, and biosensing. Despite a growing interest for DGLs, there is still plenty of room for further exciting developments that could result from a better exposure of these macromolecules, which is the ambition of this short review.
Collapse
Affiliation(s)
| | - Laurent Vial
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université de Montpellier-ENSCM, Place Eugène, Bataillon, 34296, Montpellier cedex 5, France.,Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS-Université Claude Bernard, Lyon 1-CPE Lyon-INSA, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
9
|
Fu C, Xiang Y, Li X, Fu A. Targeted transport of nanocarriers into brain for theranosis with rabies virus glycoprotein-derived peptide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 87:155-166. [PMID: 29549945 DOI: 10.1016/j.msec.2017.12.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/10/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
Abstract
For successful theranosis of brain diseases, limited access of therapeutic molecules across blood-brain barrier (BBB) needs be overcome in brain delivery. Currently, peptide derivatives of rabies virus glycoprotein (RVG) have been exploited as delivery ligands to transport nanocarriers across BBB and specifically into the brain. The targeting peptides usually conjugate to the nanocarrier surface, and the cargoes, including siRNA, miRNA, DNA, proteins and small molecular chemicals, are complexed or encapsulated in the nanocarriers. The peptide ligand of the RVG-modified nanocarriers introduces the conjugated targeted-delivery into the brain, and the cargoes are involved in disease theranosis. The peptide-modified nanocarriers have been applied to diagnose and treat various brain diseases, such as glioma, Alzheimer's disease, ischemic injury, protein misfolding diseases etc. Since the targeting delivery system has displayed good biocompatibility and desirable therapeutic effect, it will raise a potential application in treating brain diseases.
Collapse
Affiliation(s)
- Chen Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yonggang Xiang
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaorong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
10
|
Francoia JP, Rossi JC, Monard G, Vial L. Digitizing Poly-l-lysine Dendrigrafts: From Experimental Data to Molecular Dynamics Simulations. J Chem Inf Model 2017; 57:2173-2180. [PMID: 28853871 DOI: 10.1021/acs.jcim.7b00258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite the growing use of poly-l-lysine dendrigrafts in biomedical applications, a deeper understanding of the molecular level properties of these macromolecules is missing. Herein, we report a simple methodology for the construction of three-dimensional structures of poly-l-lysine dendrigrafts and the subsequent investigation of their structural features using microsecond molecular dynamics simulations. This methodology relies on the encoding of the polymers' experimental characterizations (i.e., composition, degrees of polymerization, branching ratios, charges) into alphanumeric strings that are readable by the Amber simulation package. Such an original approach opens avenues toward the in silico exploration of dendrigrafts and hyperbranched polymers.
Collapse
Affiliation(s)
- Jean-Patrick Francoia
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM , Place Eugéne Bataillon, 34296 Montpellier cedex 5, France
| | - Jean-Christophe Rossi
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM , Place Eugéne Bataillon, 34296 Montpellier cedex 5, France
| | - Gerald Monard
- Université de Lorraine, UMR 7565 SRSMC , Boulevard des Aiguillettes B.P. 70239, F-54506 Vandoeuvre-les-Nancy, France.,CNRS, UMR 7565 SRSMC , Boulevard des Aiguillettes B.P. 70239, F-54506 Vandoeuvre-les-Nancy, France
| | - Laurent Vial
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM , Place Eugéne Bataillon, 34296 Montpellier cedex 5, France.,Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS, Université Claude Bernard Lyon 1, CPE Lyon, INSA , 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| |
Collapse
|
11
|
Oswald M, Geissler S, Goepferich A. Targeting the Central Nervous System (CNS): A Review of Rabies Virus-Targeting Strategies. Mol Pharm 2017; 14:2177-2196. [DOI: 10.1021/acs.molpharmaceut.7b00158] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mira Oswald
- Chemical & Pharmaceutical Development, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Simon Geissler
- Chemical & Pharmaceutical Development, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Achim Goepferich
- Department for Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 94030 Regensburg, Germany
| |
Collapse
|
12
|
Luo Y, Huang L, Yang Y, Zhuang X, Hu S, Ju H, Yu BY, Tian J. A Programmed Nanoparticle with Self-Adapting for Accurate Cancer Cell Eradication and Therapeutic Self-Reporting. Am J Cancer Res 2017; 7:1245-1256. [PMID: 28435462 PMCID: PMC5399590 DOI: 10.7150/thno.18187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/16/2017] [Indexed: 01/08/2023] Open
Abstract
To achieve the best therapeutic efficacy and good prognosis, the drugs necessitate tailored profiles of excellent spatiotemporal control and therapeutic monitoring. Here we introduce a programmed theranostic nanoparticle with self-adapting properties for tumor-specific systemic treatment, including stealthy surface to prolong circulation time in blood, surface charge-reversion for tumor targeting, receptor-mediated internalization to increase intracellular accumulation, “proton sponge effect” for controllable drug release and escape from endo/lysosome. Encouragingly, in the process of drug-induced apoptosis, the therapeutic efficacy can be reported by fluorescence imaging in vivo, in situ and in real time. Therefore, this work provides a new paradigm for design of programmed theranositc nanomedicine and offers promising prospects for precise tumor treatment.
Collapse
|
13
|
Lossi L, Cocito C, Alasia S, Merighi A. Ex vivo imaging of active caspase 3 by a FRET-based molecular probe demonstrates the cellular dynamics and localization of the protease in cerebellar granule cells and its regulation by the apoptosis-inhibiting protein survivin. Mol Neurodegener 2016; 11:34. [PMID: 27122136 PMCID: PMC4848850 DOI: 10.1186/s13024-016-0101-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 04/22/2016] [Indexed: 01/27/2023] Open
Abstract
Background Apoptosis takes place in naturally occurring neuronal death, but also in aging, neurodegenerative disorders, and traumatic brain injuries. Caspase 3 (Casp3) is the most important effector protease in apoptosis: being inactive inside the cell, it undergoes enzymatic cleavage and - hence - activation once the apoptotic cascade is triggered. Immunological techniques with antibodies against cleaved Casp3 (cCasp3) or assays with colorimetric/fluorogenic substrates are commonly in use, but they do not allow to directly follow the dynamics of activation in alive neurons that may be committed to die. Results By combined biolistic transfection, confocal microscopy, and fluorescence resonance energy transfer (FRET), we have implemented a methodology to dynamically monitor Casp3 activation in organotypic cerebellar slices from postnatal mice. After transfection with pSCAT3 FRET probes, we measured the ratio of the emissions of the donor/acceptor pair (ECFPem/Venusem) in fixed or alive cultures. In so doing, we i. discriminated the cellular compartment(s) of enzyme activation (nucleus, perikaryon, neurites); ii. demonstrated that Casp3 was constitutively active in the granule cells; iii. followed the fluctuations of ECFPem/Venusem, and its response to 25 mM KCl depolarization, or to increased intracellular Ca++ after NMDA (1 mM), kainic acid (1 mM), or A23187 (100–200 μM). The specificity of the active pSCAT3-DEVD probe was confirmed with RNA interference and after inhibition of Casp3 with Ac-DEVD-CMK (100 μM), as both sets of experiments brought ECFPem/Venusem to the values recorded with the control probe pSCAT3-DEVG. After double-transfection with pSCAT3-DEVD + pHcRed1-C1-survivin, we also showed a 44–56 % reduction of basal Casp3 activity in cells overexpressing survivin, a protein-member of the family of apoptosis inhibitors, with augmented survival (2.82 folds). Survivin-rescued cells were sensitive to 5 mM H2O2 oxidative stress but died without intervention of Casp3. Conclusions This ex vivo FRET-based methodology provides quantitative information on the functional and histological dynamics of Casp3 activation in individual neurons at a cell level resolution. Not only it can be combined with experimental manipulation of the apoptotic machinery inside the cell, but offers several advantages over existing protocols for monitoring apoptosis in live mammalian neurons, and has potential to be transferred in vivo. Due to the pivotal role of Casp3 in apoptosis, our approach is relevant for a better comprehension of molecular neurodegeneration in the normal and pathological brain. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0101-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Lossi
- University of Turin, Department of Veterinary Sciences, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Carolina Cocito
- University of Turin, Department of Veterinary Sciences, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Silvia Alasia
- University of Turin, Department of Veterinary Sciences, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Adalberto Merighi
- University of Turin, Department of Veterinary Sciences, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy.
| |
Collapse
|
14
|
Zhao H, Lin ZY, Yildirimer L, Dhinakar A, Zhao X, Wu J. Polymer-based nanoparticles for protein delivery: design, strategies and applications. J Mater Chem B 2016; 4:4060-4071. [DOI: 10.1039/c6tb00308g] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Therapeutic proteins have attracted significant attention as they perform vital roles in various biological processes. Polymeric nanoparticles can offer not only physical protection from environmental stimuli but also targeted delivery of such proteins to specific sites, enhancing their therapeutic efficacy.
Collapse
Affiliation(s)
- Hong Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Zhi Yuan Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Lara Yildirimer
- Centre for Nanotechnology and Regenerative Medicine
- UCL Division of Surgery and Interventional Science
- University College London
- London WC1E 6AU
- UK
| | - Arvind Dhinakar
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Xin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Jun Wu
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
15
|
Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Small Molecule Active Site Directed Tools for Studying Human Caspases. Chem Rev 2015; 115:12546-629. [PMID: 26551511 DOI: 10.1021/acs.chemrev.5b00434] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Szalek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
16
|
Cook RL, Householder KT, Chung EP, Prakapenka AV, DiPerna DM, Sirianni RW. A critical evaluation of drug delivery from ligand modified nanoparticles: Confounding small molecule distribution and efficacy in the central nervous system. J Control Release 2015; 220:89-97. [PMID: 26471392 DOI: 10.1016/j.jconrel.2015.10.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 01/02/2023]
Abstract
In this work, we sought to test how surface modification of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with peptide ligand alters the brain specific delivery of encapsulated molecules. For biodistribution studies, nanoparticles modified with rabies virus glycoprotein (RVG29) were loaded with small molecule drug surrogates and administered to healthy mice by lateral tail vein injection. Mice were perfused 2h after injection and major anatomical regions of the CNS were dissected (striatum, midbrain, cerebellum, hippocampus, cortex, olfactory bulb, brainstem, and cervical, thoracic, lumbar and sacral spinal cord). For functional studies, surface modified nanoparticles were loaded with the chemotherapeutic camptothecin (CPT) and administered to mice bearing intracranial GL261-Luc2 gliomas. Outcome measures included tumor growth, as measured by bioluminescent imaging, and median survival time. We observed that small molecule delivery from PLGA nanoparticles varied by as much as 150% for different tissue regions within the CNS. These differences were directly correlated to regional differences in cerebral blood volume. Although the presence of RVG29 enhanced apparent brain delivery for multiple small molecule payloads, we observed minimal evidence for targeting to muscle or spinal cord, which are the known sites for rabies virus entry into the CNS, and enhancements in brain delivery were not prolonged due to an apparent aqueous instability of the RVG29 ligand. Furthermore, we have identified concerning differences in apparent delivery kinetics as measured by different payloads: nanoparticle encapsulated DiR was observed to accumulate in the brain, whereas encapsulated Nile red was rapidly cleared. Although systemically administered CPT loaded nanoparticles slowed the growth of orthotopic brain tumors to prolong survival, the presence of RVG29 did not enhance therapeutic efficacy compared to control nanoparticles. These data are consistent with a model of delivery of hydrophobic small molecules to the brain that does not rely on internalization of polymer nanoparticles in target tissue. We discuss an important risk for discordance between biodistribution, as typically measured by drug surrogate, and therapeutic outcome, as determined by clinically relevant measurement of drug function in a disease model. These results pose critical considerations for the methods used to design and evaluate targeted drug delivery systems in vivo.
Collapse
Affiliation(s)
- Rebecca L Cook
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA; School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287, USA.
| | - Kyle T Householder
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA; School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287, USA.
| | - Eugene P Chung
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA; School of Life Sciences, Arizona State University, P.O. Box 874701, Tempe, AZ 85287, USA.
| | - Alesia V Prakapenka
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA; Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, Arizona State University, P.O. Box 874701, Tempe, AZ 85287, USA.
| | - Danielle M DiPerna
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | - Rachael W Sirianni
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA; School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287, USA; Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, Arizona State University, P.O. Box 874701, Tempe, AZ 85287, USA.
| |
Collapse
|
17
|
Zhang Y, Hou Z, Ge Y, Deng K, Liu B, Li X, Li Q, Cheng Z, Ma P, Li C, Lin J. DNA-Hybrid-Gated Photothermal Mesoporous Silica Nanoparticles for NIR-Responsive and Aptamer-Targeted Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20696-20706. [PMID: 26325285 DOI: 10.1021/acsami.5b05522] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Near-infrared light is an attractive stimulus due to its noninvasive and deep tissue penetration. Particularly, NIR light is utilized for cancer thermotherapy and on-demand release of drugs by the disruption of the delivery carriers. Here we have prepared a novel NIR-responsive DNA-hybrid-gated nanocarrier based on mesoporous silica-coated Cu1.8S nanoparticles. Cu1.8S nanoparticles, possessing high photothermal conversion efficiency under a 980 nm laser, were chosen as photothermal agents. The mesoporous silica structure could be used for drug storage/delivery and modified with aptamer-modified GC-rich DNA-helix as gatekeepers, drug vectors, and targeting ligand. Simultaneously, the as-produced photothermal effect caused denaturation of DNA double strands, which triggered the drug release of the DNA-helix-loaded hydrophilic drug doxorubicin and mesopore-loaded hydrophobic drug curcumin, resulting in a synergistic therapeutic effect. The Cu1.8S@mSiO2 nanocomposites endocytosed by cancer cells through the aptamer-mediated mode are able to generate rational release of doxorubicin/curcumin under NIR irradiation, strongly enhancing the synergistic growth-inhibitory effect of curcumin against doxorubicin in MCF-7 cells, which is associated with a strong mitochondrial-mediated cell apoptosis progression. The underlying mechanism of apoptosis showed a strong synergistic inhibitory effect both on the expression of Bcl-2, Bcl-xL, Mcl-1, and upregulated caspase 3/9 activity and on the expression level of Bak and Bax. Therefore, Cu1.8S@mSiO2 with efficient synergistic therapeutic efficiency is a potential multifunctional cancer therapy nanoplatform.
Collapse
Affiliation(s)
- Yuanxin Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology , Jilin 132022, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Yakun Ge
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology , Jilin 132022, P. R. China
| | - Kerong Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Bei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xuejiao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Quanshun Li
- School of Life Science, Jilin University , Changchun 130012, P. R. China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Chunxia Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
18
|
|
19
|
Mokarram N, Bellamkonda RV. A perspective on immunomodulation and tissue repair. Ann Biomed Eng 2013; 42:338-51. [PMID: 24297492 DOI: 10.1007/s10439-013-0941-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/12/2013] [Indexed: 12/14/2022]
Abstract
An immune response involves the action of all types of macrophages, classically activated subtype (M1) in the early inflammatory phase and regulatory and wound-healing subtypes (M2) in the resolution phase. The remarkable plasticity of macrophages makes them an interesting target in the context of immunomodulation. Here, we reviewed the current state of understanding regarding the role that different phenotypes of macrophages and monocytes play following injury and during the course of remodeling in different tissue types. Moreover, we explored recent designs of macrophage modulatory biomaterials for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Nassir Mokarram
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
20
|
Nanotechnology-Based Drug Delivery Systems for Targeting, Imaging and Diagnosis of Neurodegenerative Diseases. Pharm Res 2013; 30:2499-511. [DOI: 10.1007/s11095-013-1156-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 07/22/2013] [Indexed: 12/26/2022]
|
21
|
Liu Y, Guo Y, An S, Kuang Y, He X, Ma H, Li J, Lv J, Zhang N, Jiang C. Targeting caspase-3 as dual therapeutic benefits by RNAi facilitating brain-targeted nanoparticles in a rat model of Parkinson's disease. PLoS One 2013; 8:e62905. [PMID: 23675438 PMCID: PMC3652845 DOI: 10.1371/journal.pone.0062905] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/26/2013] [Indexed: 12/21/2022] Open
Abstract
The activation of caspase-3 is an important hallmark in Parkinson’s disease. It could induce neuron death by apoptosis and microglia activation by inflammation. As a result, inhibition the activation of caspase-3 would exert synergistic dual effect in brain in order to prevent the progress of Parkinson’s disease. Silencing caspase-3 genes by RNA interference could inhibit the activation of caspase-3. We developed a brain-targeted gene delivery system based on non-viral gene vector, dendrigraft poly-L-lysines. A rabies virus glycoprotein peptide with 29 amino-acid linked to dendrigraft poly-L-lysines could render gene vectors the ability to get across the blood brain barrier by specific receptor mediated transcytosis. The resultant brain-targeted vector was complexed with caspase-3 short hairpin RNA coding plasmid DNA, yielding nanoparticles. In vivo imaging analysis indicated the targeted nanoparticles could accumulate in brain more efficiently than non-targeted ones. A multiple dosing regimen by weekly intravenous administration of the nanoparticles could reduce activated casapse-3 levels, significantly improve locomotor activity and rescue dopaminergic neuronal loss and in Parkinson’s disease rats’ brain. These results indicated the rabies virus glycoprotein peptide modified brain-targeted nanoparticles were promising gene delivery system for RNA interference to achieve anti-apoptotic and anti-inflammation synergistic therapeutic effects by down-regulation the expression and activation of caspase-3.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Yubo Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Sai An
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Yuyang Kuang
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Xi He
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Haojun Ma
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Jianfeng Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Jing Lv
- Department of Life Sciences and Technology, Caliper-a PerkinElmer Company, Alameda, California, United States of America
| | - Ning Zhang
- Department of Life Sciences and Technology, Caliper-a PerkinElmer Company, Alameda, California, United States of America
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|