1
|
Abdulsalam L, Mordecai J, Ahmad I. Non-viral gene therapy for Leber's congenital amaurosis: progress and possibilities. Nanomedicine (Lond) 2024:1-14. [PMID: 39707712 DOI: 10.1080/17435889.2024.2443387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Leber's congenital amaurosis (LCA) represents a set of rare and pervasive hereditary conditions of the retina that cause severe vision loss starting in early childhood. Targeted treatment intervention has become possible thanks to recent advances in understanding LCA genetic basis. While viral vectors have shown efficacy in gene delivery, they present challenges related to safety, low cargo capacity, and the potential for random genomic integration. Non-viral gene therapy is a safer and more flexible alternative to treating the underlying genetic mutation causing LCA. Non-viral gene delivery methods, such as inorganic nanoparticles, polymer-based delivery systems, and lipid-based nanoparticles, bypass the risks of immunogenicity and genomic integration, potentially offering a more versatile and personalized treatment for patients. This review explores the genetic background of LCA, emphasizing the mutations involved, and explores diverse non-viral gene delivery methods being developed. It also highlights recent studies on non-viral gene therapy for LCA in animal models and clinical trials. It presents future perspectives for gene therapy, including integrating emerging technologies like CRISPR-Cas9, interdisciplinary collaborations, personalized medicine, and ethical considerations.
Collapse
Affiliation(s)
- Latifat Abdulsalam
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - James Mordecai
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| |
Collapse
|
2
|
Crane R, Makia MS, Zeibak S, Tebbe L, Ikele L, Woods CR, Conley SM, Acharya G, Naash MI, Al-Ubaidi MR. Effective intravitreal gene delivery to retinal pigment epithelium with hyaluronic acid nanospheres. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102222. [PMID: 38868364 PMCID: PMC11168490 DOI: 10.1016/j.omtn.2024.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Inherited retinal degeneration (IRD) can cause a wide range of different forms of vision loss and blindness, and in spite of extensive advancements in gene therapy research, therapeutic approaches for targeting IRDs are still lacking. We have recently developed an approach for the intravitreal co-delivery of hyaluronic-acid nanospheres (HA-NSs) with sulfotyrosine (ST), effectively reaching the outer retina from the vitreal cavity. Here, our goal was to understand whether DNA-filled HA-NSs could generate gene expression in the outer retina. TxRed-labeled HA-NSs were compacted with plasmid DNA carrying a GFP reporter gene and intravitreally injected into the mouse retina. Follow-up at 4 weeks showed widespread gene expression in the outer retina and reduced, albeit present, expression at 8 weeks post-injection. Further analysis revealed this expression to be largely localized to the retinal pigment epithelium (RPE). These data show that intravitreal delivery of HA-NSs is a promising non-viral platform for the delivery of therapeutic genes and can generate pan-tissue, persistent gene expression in the RPE.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Mustafa S. Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Stephanie Zeibak
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Larissa Ikele
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | | | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ghanashyam Acharya
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- College of Optometry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Toualbi L, Toms M, Almeida PV, Harbottle R, Moosajee M. Gene Augmentation of CHM Using Non-Viral Episomal Vectors in Models of Choroideremia. Int J Mol Sci 2023; 24:15225. [PMID: 37894906 PMCID: PMC10607001 DOI: 10.3390/ijms242015225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors. However, late-phase trials have failed to show significant functional improvements and have raised safety concerns about inflammatory events potentially caused by the use of viruses. Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region (S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish, using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of prenylation function by 75%, indicating correction of the underlying biochemical defect associated with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival, prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors show promise as a potential gene-augmentation strategy without the use of immunogenic viral components, which could be applicable to many inherited retinal disease genes.
Collapse
Affiliation(s)
- Lyes Toualbi
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Richard Harbottle
- cDNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.V.A.)
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|
4
|
Toms M, Toualbi L, Almeida PV, Harbottle R, Moosajee M. Successful large gene augmentation of USH2A with non-viral episomal vectors. Mol Ther 2023; 31:2755-2766. [PMID: 37337429 PMCID: PMC10491995 DOI: 10.1016/j.ymthe.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
USH2A mutations are a common cause of autosomal recessive retinitis pigmentosa (RP) and Usher syndrome, for which there are currently no approved treatments. Gene augmentation is a valuable therapeutic strategy for treating many inherited retinal diseases; however, conventional adeno-associated virus (AAV) gene therapy cannot accommodate cDNAs exceeding 4.7 kb, such as the 15.6-kb-long USH2A coding sequence. In the present study, we adopted an alternative strategy to successfully generate scaffold/matrix attachment region (S/MAR) DNA plasmid vectors containing the full-length human USH2A coding sequence, a GFP reporter gene, and a ubiquitous promoter (CMV or CAG), reaching a size of approximately 23 kb. We assessed the vectors in transfected HEK293 cells and USH2A patient-derived dermal fibroblasts in addition to ush2au507 zebrafish microinjected with the vector at the one-cell stage. pS/MAR-USH2A vectors drove persistent transgene expression in patient fibroblasts with restoration of usherin. Twelve months of GFP expression was detected in the photoreceptor cells, with rescue of Usher 2 complex localization in the photoreceptors of ush2au507 zebrafish retinas injected with pS/MAR-USH2A. To our knowledge, this is the first reported vector that can be used to express full-length usherin with functional rescue. S/MAR DNA vectors have shown promise as a novel non-viral retinal gene therapy, warranting further translational development.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Lyes Toualbi
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Patrick V Almeida
- DNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Richard Harbottle
- DNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mariya Moosajee
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK; Department of Genetics, Moorfields Eye Hospital, NHS Foundation Trust, London EC1V 2PD, UK.
| |
Collapse
|
5
|
Peynshaert K, Devoldere J, De Smedt S, Remaut K. Every nano-step counts: a critical reflection on do's and don'ts in researching nanomedicines for retinal gene therapy. Expert Opin Drug Deliv 2023; 20:259-271. [PMID: 36630275 DOI: 10.1080/17425247.2023.2167979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Retinal disease affects millions of people worldwide, generating a massive social and economic burden. Current clinical trials for retinal diseases are dominated by gene augmentation therapies delivered with recombinant viruses as key players. As an alternative, nanoparticles hold great promise for the delivery of nucleic acid therapeutics as well. Nevertheless, despite numerous attempts, 'nano' is in practice not as successful as aspired and major breakthroughs in retinal gene therapy applying nanomaterials are yet to be seen. AREAS COVERED In this review, we summarize the advantages of nanomaterials and give an overview of nanoparticles designed for retinal nucleic acid delivery up to now. We furthermore critically reflect on the predominant issues that currently limit nano to progress to the clinic, where faulty study design and the absence of representative models play key roles. EXPERT OPINION Since the current approach of in vitro - in vivo experimentation is highly inefficient and creates misinformation, we advocate for a more prominent role for ex vivo testing early on in nanoparticle research. In addition, we elaborate on several concepts, including systematic studies and open science, which could aid in pushing the field of nanomedicine beyond the preclinical stage.
Collapse
Affiliation(s)
- Karen Peynshaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| | - Joke Devoldere
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| | - Stefaan De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| | - Katrien Remaut
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| |
Collapse
|
6
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
7
|
Mandal M, Banerjee I, Mandal M. Nanoparticle-mediated gene therapy as a novel strategy for the treatment of retinoblastoma. Colloids Surf B Biointerfaces 2022; 220:112899. [DOI: 10.1016/j.colsurfb.2022.112899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
8
|
Staurenghi F, McClements ME, Salman A, MacLaren RE. Minicircle Delivery to the Neural Retina as a Gene Therapy Approach. Int J Mol Sci 2022; 23:11673. [PMID: 36232975 PMCID: PMC9569440 DOI: 10.3390/ijms231911673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Non-viral gene therapy has the potential to overcome several shortcomings in viral vector-based therapeutics. Methods of in vivo plasmid delivery have developed over recent years to increase the efficiency of non-viral gene transfer, yet further improvements still need to be made to improve their translational capacity. Gene therapy advances for inherited retinal disease have been particularly prominent over the recent decade but overcoming physical and physiological barriers present in the eye remains a key obstacle in the field of non-viral ocular drug delivery. Minicircles are circular double-stranded DNA vectors that contain expression cassettes devoid of bacterial DNA, thereby limiting the risks of innate immune responses induced by such elements. To date, they have not been extensively used in pre-clinical studies yet remain a viable vector option for the treatment of inherited retinal disease. Here, we explore the potential of minicircle DNA delivery to the neural retina as a gene therapy approach. We consider the advantages of minicircles as gene therapy vectors as well as review the challenges involved in optimising their delivery to the neural retina.
Collapse
Affiliation(s)
- Federica Staurenghi
- Nuffield Laboratory of Ophthalmology, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ahmed Salman
- Nuffield Laboratory of Ophthalmology, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford University Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
9
|
Leroy BP, Fischer MD, Flannery JG, MacLaren RE, Dalkara D, Scholl HPN, Chung DC, Spera C, Viriato D, Banhazi J. Gene Therapy for Inherited Retinal Disease: Long-Term Durability of Effect. Ophthalmic Res 2022; 66:179-196. [PMID: 36103843 DOI: 10.1159/000526317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/27/2022] [Indexed: 12/23/2023]
Abstract
The recent approval of voretigene neparvovec (Luxturna®) for patients with biallelic RPE65 mutation-associated inherited retinal dystrophy with viable retinal cells represents an important step in the development of ocular gene therapies. Herein, we review studies investigating the episomal persistence of different recombinant adeno-associated virus (rAAV) vector genomes and the preclinical and clinical evidence of long-term effects of different RPE65 gene replacement therapies. A targeted review of articles published between 1974 and January 2021 in Medline®, Embase®, and other databases was conducted, followed by a descriptive longitudinal analysis of the clinical trial outcomes of voretigene neparvovec. Following an initial screening, 14 publications examining the episomal persistence of different rAAV genomes and 71 publications evaluating gene therapies in animal models were included. Viral genomes were found to persist for at least 22 months (longest study follow-up) as transcriptionally active episomes. Treatment effects lasting almost a decade were reported in canine disease models, with more pronounced effects the earlier the intervention. The clinical trial outcomes of voretigene neparvovec are consistent with preclinical findings and reveal sustained results for up to 7.5 years for the full-field light sensitivity threshold test and 5 years for the multi-luminance mobility test in the Phase I and Phase III trials, respectively. In conclusion, the therapeutic effect of voretigene neparvovec lasts for at least a decade in animal models and 7.5 years in human subjects. Since retinal cells can retain functionality over their lifetime after transduction, these effects may be expected to last even longer in patients with a sufficient number of outer retinal cells at the time of intervention.
Collapse
Affiliation(s)
- Bart P Leroy
- Department of Ophthalmology & Centre for Medical Genetics, Ghent University Hospital & Ghent University, Ghent, Belgium
- Division of Ophthalmology & Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
- Oxford Eye Hospital, University of Oxford NHS Foundation Trust and NIHR Oxford Biomedical Research Centre, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - John G Flannery
- School of Optometry and the Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, USA
| | - Robert E MacLaren
- Oxford Eye Hospital, University of Oxford NHS Foundation Trust and NIHR Oxford Biomedical Research Centre, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
10
|
Sun D, Sun W, Gao SQ, Lehrer J, Naderi A, Wei C, Lee S, Schilb AL, Scheidt J, Hall RC, Traboulsi EI, Palczewski K, Lu ZR. Effective gene therapy of Stargardt disease with PEG-ECO/ pGRK1-ABCA4-S/MAR nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:823-835. [PMID: 36159595 PMCID: PMC9463552 DOI: 10.1016/j.omtn.2022.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023]
Abstract
Stargardt disease (STGD) is the most common form of inherited retinal genetic disorders and is often caused by mutations in ABCA4. Gene therapy has the promise to effectively treat monogenic retinal disorders. However, clinically approved adeno-associated virus (AAV) vectors do not have a loading capacity for large genes, such as ABCA4. Self-assembly nanoparticles composed of (1-aminoethyl)iminobis[N-(oleoylcysteinyl-1-amino-ethyl)propionamide (ECO; a multifunctional pH-sensitive/ionizable amino lipid) and plasmid DNA produce gene transfection comparable with or better than the AAV2 capsid. Stable PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles produce specific and prolonged expression of ABCA4 in the photoreceptors of Abca4 -/- mice and significantly inhibit accumulation of toxic A2E in the eye. Multiple subretinal injections enhance gene expression and therapeutic efficacy with an approximately 69% reduction in A2E accumulation in Abca4 -/- mice after 3 doses. Very mild inflammation was observed after multiple injections of the nanoparticles. PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles are a promising non-viral mediated gene therapy modality for STGD type 1 (STGD1).
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jonathan Lehrer
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Amirreza Naderi
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Cheng Wei
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Sangjoon Lee
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Andrew L. Schilb
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Josef Scheidt
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ryan C. Hall
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Elias I. Traboulsi
- Department of Pediatric Ophthalmology and Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, Departments of Physiology and Biophysics, Chemistry, and Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Valdés-Sánchez L, Borrego-González S, Montero-Sánchez A, Massalini S, de la Cerda B, Díaz-Cuenca A, Díaz-Corrales FJ. Mesoporous Silica-Based Nanoparticles as Non-Viral Gene Delivery Platform for Treating Retinitis Pigmentosa. J Clin Med 2022; 11:jcm11082170. [PMID: 35456263 PMCID: PMC9026300 DOI: 10.3390/jcm11082170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Gene therapy is a therapeutic possibility for retinitis pigmentosa (RP), in which therapeutic transgenes are currently delivered to the retina by adeno-associated viral vectors (AAVs). Although their safety and efficacy have been demonstrated in both clinical and preclinical settings, AAVs present some technical handicaps, such as limited cargo capacity and possible immunogenicity in repetitive doses. The development of alternative, non-viral delivery platforms like nanoparticles is of great interest to extend the application of gene therapy for RP. METHODS Amino-functionalized mesoporous silica-based nanoparticles (N-MSiNPs) were synthesized, physico-chemically characterized, and evaluated as gene delivery systems for human cells in vitro and for retinal cells in vivo. Transgene expression was evaluated by WB and immunofluorescence. The safety evaluation of mice subjected to subretinal injection was assessed by ophthalmological tests (electroretinogram, funduscopy, tomography, and optokinetic test). RESULTS N-MSiNPs delivered transgenes to human cells in vitro and to retinal cells in vivo. No adverse effects were detected for the integrity of the retinal tissue or the visual function of treated eyes. N-MSiNPs were able to deliver a therapeutic transgene candidate for RP, PRPF31, both in vitro and in vivo. CONCLUSIONS N-MSiNPs are safe for retinal delivery and thus a potential alternative to viral vectors.
Collapse
Affiliation(s)
- Lourdes Valdés-Sánchez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Sara Borrego-González
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain;
- Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Adoración Montero-Sánchez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Simone Massalini
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Berta de la Cerda
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| | - Aránzazu Díaz-Cuenca
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain;
- Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| | - Francisco J. Díaz-Corrales
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| |
Collapse
|
12
|
Rotov AY, Romanov IS, Tarakanchikova YV, Astakhova LA. Application Prospects for Synthetic Nanoparticles in Optogenetic Retinal Prosthetics. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Dai X, Jin X, Ye Q, Huang H, Duo L, Lu C, Bao J, Chen H. Intraperitoneal chromophore injections delay early-onset and rapid retinal cone degeneration in a mouse model of Leber congenital amaurosis. Exp Eye Res 2021; 212:108776. [PMID: 34582935 DOI: 10.1016/j.exer.2021.108776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/04/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Highly expressed in the retinal pigment epithelium (RPE), the RPE-specific 65-kDa (RPE65) enzyme is indispensable to generate 11-cis-retinal (11cRAL), a chromophore for rhodopsin and cone photopigments. RPE65 deficiency can lead to Leber congenital amaurosis type 2 (LCA2), in which the isomerization of photobleached all-trans-retinal into photosensitive 11cRAL is blocked, ultimately causing severe retinal dysfunction and degeneration. The related mouse models, which are constructed through gene knockout or caused by spontaneous mutations, morphologically present with early-onset and rapid retinal cone cells degeneration, including loss of short-wavelength-sensitive cone opsins (S-opsins) and mislocalization of medium-wavelength-sensitive cone opsins (M-opsins). Studies have shown that routine Rpe65 gene replacement therapy, mediated by an adeno-associated virus (AAV) vector, can restore RPE65 protein. However, AAV transfection and Rpe65 transgene expression require at least one to two weeks, and the treatment cannot fully block the early-onset cone degeneration. To determine the feasibility of delaying cone degeneration before gene therapy, we investigated the impact of 11cRAL treatment in an early-age LCA2 retinal degeneration 12 (rd12) mouse model. Similar to human patients, the mouse model carries a spontaneous mutation in the Rpe65 gene, which results in disrupted endogenous 11cRAL regeneration. We found that RPE65 deficiency did not notably affect rodent retinal vessels. Under red light illumination, the rd12 mice were intraperitoneally injected with exogenous 11cRAL from postnatal day (P) 14 to P21. Three days after the last injection, a notable recovery of retinal function was observed using scotopic and photopic electroretinograms. Using optical coherence tomography and histological analyses of the deficient retinas, we found changes in the thickness of the photoreceptor outer segment (OS); this change could be rescued by early 11cRAL treatment. In addition, the treatment notably preserved M- and S-opsins, both of which maintained appropriate localization inside cone cells, as shown by the wild-type mice. In contrast, the age-matched untreated rd12 mice were characterized by retinal S-opsin loss and M-opsin mislocalization from the photoreceptor OS to the inner segment, outer nuclear layer, or outer plexiform layer. Notably, 11cRAL treatment could not maintain retinal function for a long time. Ten days after the last injection, the rod and M-cone electroretinograms significantly decreased, and S-cone responses almost extinguished. Our findings suggest that early 11cRAL treatment is useful for restoring retinal function and rescuing morphology in the rd12 mouse model, and the early-onset and rapid cone degeneration can be delayed before gene therapy.
Collapse
Affiliation(s)
- Xufeng Dai
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; State Key Laboratory of Ophthalmology, Optometry, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Xumin Jin
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qian Ye
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Haixiao Huang
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Lan Duo
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; State Key Laboratory of Ophthalmology, Optometry, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Chunjie Lu
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jinhua Bao
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; State Key Laboratory of Ophthalmology, Optometry, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Hao Chen
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; State Key Laboratory of Ophthalmology, Optometry, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
14
|
Sahu B, Chug I, Khanna H. The Ocular Gene Delivery Landscape. Biomolecules 2021; 11:1135. [PMID: 34439800 PMCID: PMC8394578 DOI: 10.3390/biom11081135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The eye is at the forefront of developing therapies for genetic diseases. With the FDA approval of the first gene-therapy drug for a form of congenital blindness, numerous studies have been initiated to develop gene therapies for other forms of eye diseases. These examinations have revealed new information about the benefits as well as restrictions to using drug-delivery routes to the different parts of the eye. In this article, we will discuss a brief history of gene therapy and its importance to the eye and ocular delivery landscape that is currently being investigated, and provide insights into their advantages and disadvantages. Efficient delivery routes and vehicle are crucial for an effective, safe, and longer-lasting therapy.
Collapse
Affiliation(s)
| | | | - Hemant Khanna
- Department of Ophthalmology & Visual Sciences, UMass Medical School, Worcester, MA 01655, USA; (B.S.); (I.C.)
| |
Collapse
|
15
|
Graceffa V. Physical and mechanical cues affecting biomaterial-mediated plasmid DNA delivery: insights into non-viral delivery systems. J Genet Eng Biotechnol 2021; 19:90. [PMID: 34142237 PMCID: PMC8211807 DOI: 10.1186/s43141-021-00194-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Whilst traditional strategies to increase transfection efficiency of non-viral systems aimed at modifying the vector or the polyplexes/lipoplexes, biomaterial-mediated gene delivery has recently sparked increased interest. This review aims at discussing biomaterial properties and unravelling underlying mechanisms of action, for biomaterial-mediated gene delivery. DNA internalisation and cytoplasmic transport are initially discussed. DNA immobilisation, encapsulation and surface-mediated gene delivery (SMD), the role of extracellular matrix (ECM) and topographical cues, biomaterial stiffness and mechanical stimulation are finally outlined. MAIN TEXT Endocytic pathways and mechanisms to escape the lysosomal network are highly variable. They depend on cell and DNA complex types but can be diverted using appropriate biomaterials. 3D scaffolds are generally fabricated via DNA immobilisation or encapsulation. Degradation rate and interaction with the vector affect temporal patterns of DNA release and transgene expression. In SMD, DNA is instead coated on 2D surfaces. SMD allows the incorporation of topographical cues, which, by inducing cytoskeletal re-arrangements, modulate DNA endocytosis. Incorporation of ECM mimetics allows cell type-specific transfection, whereas in spite of discordances in terms of optimal loading regimens, it is recognised that mechanical loading facilitates gene transfection. Finally, stiffer 2D substrates enhance DNA internalisation, whereas in 3D scaffolds, the role of stiffness is still dubious. CONCLUSION Although it is recognised that biomaterials allow the creation of tailored non-viral gene delivery systems, there still are many outstanding questions. A better characterisation of endocytic pathways would allow the diversion of cell adhesion processes and cytoskeletal dynamics, in order to increase cellular transfection. Further research on optimal biomaterial mechanical properties, cell ligand density and loading regimens is limited by the fact that such parameters influence a plethora of other different processes (e.g. cellular adhesion, spreading, migration, infiltration, and proliferation, DNA diffusion and release) which may in turn modulate gene delivery. Only a better understanding of these processes may allow the creation of novel robust engineered systems, potentially opening up a whole new area of biomaterial-guided gene delivery for non-viral systems.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
- Department of Life Sciences, Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
| |
Collapse
|
16
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
17
|
Toualbi L, Toms M, Moosajee M. The Landscape of Non-Viral Gene Augmentation Strategies for Inherited Retinal Diseases. Int J Mol Sci 2021; 22:2318. [PMID: 33652562 PMCID: PMC7956638 DOI: 10.3390/ijms22052318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/19/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a heterogeneous group of disorders causing progressive loss of vision, affecting approximately one in 1000 people worldwide. Gene augmentation therapy, which typically involves using adeno-associated viral vectors for delivery of healthy gene copies to affected tissues, has shown great promise as a strategy for the treatment of IRDs. However, the use of viruses is associated with several limitations, including harmful immune responses, genome integration, and limited gene carrying capacity. Here, we review the advances in non-viral gene augmentation strategies, such as the use of plasmids with minimal bacterial backbones and scaffold/matrix attachment region (S/MAR) sequences, that have the capability to overcome these weaknesses by accommodating genes of any size and maintaining episomal transgene expression with a lower risk of eliciting an immune response. Low retinal transfection rates remain a limitation, but various strategies, including coupling the DNA with different types of chemical vehicles (nanoparticles) and the use of electrical methods such as iontophoresis and electrotransfection to aid cell entry, have shown promise in preclinical studies. Non-viral gene therapy may offer a safer and effective option for future treatment of IRDs.
Collapse
Affiliation(s)
- Lyes Toualbi
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (L.T.); (M.T.)
- The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Toms
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (L.T.); (M.T.)
- The Francis Crick Institute, London NW1 1AT, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (L.T.); (M.T.)
- The Francis Crick Institute, London NW1 1AT, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Found Trust, London WC1N 3JH, UK
| |
Collapse
|
18
|
Sun D, Sun W, Gao SQ, Wei C, Naderi A, Schilb AL, Scheidt J, Lee S, Kern TS, Palczewski K, Lu ZR. Formulation and efficacy of ECO/pRHO-ABCA4-SV40 nanoparticles for nonviral gene therapy of Stargardt disease in a mouse model. J Control Release 2021; 330:329-340. [PMID: 33358976 PMCID: PMC9066847 DOI: 10.1016/j.jconrel.2020.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023]
Abstract
It is still a challenge to develop gene replacement therapy for retinal disorders caused by mutations in large genes, such as Stargardt disease (STGD). STGD is caused by mutations in ABCA4 gene. Previously, we have developed an effective non-viral gene therapy using self-assembled nanoparticles of a multifunctional pH-sensitive amino lipid ECO and a therapeutic ABCA4 plasmid containing rhodopsin promoter (pRHO-ABCA4). In this study, we modified the ABCA4 plasmid with simian virus 40 enhancer (SV40, pRHO-ABCA4-SV40) for enhanced gene expression. We also prepared and assessed the formulations of ECO/pDNA nanoparticles using sucrose or sorbitol as a stablilizer to develop consistent and stable formulations. Results demonstrated that ECO formed stable nanoparticles with pRHO-ABCA4-SV40 in the presence of sucrose, but not with sorbitol. The transfection efficiency in vitro increased significantly after introduction of SV40 enhancer for plasmid pCMV-ABCA4-SV40 with a CMV promoter. Sucrose didn't affect the transfection efficiency, while sorbitol resulted in a fluctuation of the in vitro transfection efficiency. Subretinal gene therapy in Abca4-/- mice using ECO/pRHO-ABCA4 and ECO/pRHO-ABCA4-SV40 nanoparticles induced 36% and 29% reduction in A2E accumulation respectively. Therefore, the ECO/pABCA4 based nanoparticles are promising for non-viral gene therapy for Stargardt disease and can be expended for applications in a variety of visual dystrophies with mutated large genes.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Cheng Wei
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Amirreza Naderi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Andrew L Schilb
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Josef Scheidt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Sangjoon Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Timothy S Kern
- Department of Ophthalmology, Physiology & Biophysics, and Chemistry, University of California, Irvine, Irvine, CA 92697, United States of America; Veterans Administration Medical Center Research Service, Long Beach, CA, 90822, United States of America
| | - Krzysztof Palczewski
- Department of Ophthalmology, Physiology & Biophysics, and Chemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America.
| |
Collapse
|
19
|
Sahle FF, Kim S, Niloy KK, Tahia F, Fili CV, Cooper E, Hamilton DJ, Lowe TL. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev 2019; 148:290-307. [PMID: 31707052 PMCID: PMC7474549 DOI: 10.1016/j.addr.2019.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
In recent years, regenerative medicine is gaining momentum and is giving hopes for restoring function of diseased, damaged, and aged tissues and organs and nanotechnology is serving as a catalyst. In the ophthalmology field, various types of allogenic and autologous stem cells have been investigated to treat some ocular diseases due to age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and corneal and lens traumas. Nanomaterials have been utilized directly as nanoscaffolds for these stem cells to promote their adhesion, proliferation and differentiation or indirectly as vectors for various genes, tissue growth factors, cytokines and immunosuppressants to facilitate cell reprogramming or ocular tissue regeneration. In this review, we reviewed various nanomaterials used for retina, cornea, and lens regenerations, and discussed the current status and future perspectives of nanotechnology in tracking cells in the eye and personalized regenerative ophthalmology. The purpose of this review is to provide comprehensive and timely insights on the emerging field of nanotechnology for ocular tissue engineering and regeneration.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sangyoon Kim
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Cameron V Fili
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Emily Cooper
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - David J Hamilton
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
20
|
Kelley RA, Conley SM, Makkia R, Watson JN, Han Z, Cooper MJ, Naash MI. DNA nanoparticles are safe and nontoxic in non-human primate eyes. Int J Nanomedicine 2018; 13:1361-1379. [PMID: 29563793 PMCID: PMC5849385 DOI: 10.2147/ijn.s157000] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION DNA nanoparticles (NPs) comprising polylysine conjugated to polyethylene glycol efficiently target murine photoreceptors and the retinal pigment epithelium (RPE) and lead to long-term phenotypic improvement in models of retinal degeneration. Advancing this technology requires testing in a large animal model, particularly with regard to safety. So, herein we evaluate NPs in non-human primates (baboon). METHODS AND RESULTS NPs with plasmids carrying GFP and a ubiquitous, RPE-specific, or photoreceptor-specific promoter were delivered by either subretinal or intravitreal injection. We detected GFP message and protein in the retina/RPE from eyes dosed with NPs carrying ubiquitously expressed and RPE-specific vectors, and GFP message in eyes injected with NPs carrying photoreceptor-specific vectors. Importantly, we observed NP DNA in the retina/RPE following intravitreal injection, indicating the inner limiting membrane does not prevent NP diffusion into the outer retina. We did not observe any adverse events in any baboon, and there were no NP-associated changes in retinal function. Furthermore, no systemic or local inflammatory reaction to the vectors/injections was observed, and no NP DNA was found outside the eye. CONCLUSION Taken together with the well-established rodent safety and efficacy data, these findings suggest that DNA NPs may be a safe and potentially clinically viable nonviral ocular therapy platform for retinal diseases.
Collapse
Affiliation(s)
- Ryan A Kelley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rasha Makkia
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jamie N Watson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zongchao Han
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
21
|
Wang Y, Rajala A, Rajala RVS. Nanoparticles as Delivery Vehicles for the Treatment of Retinal Degenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:117-123. [PMID: 29721935 DOI: 10.1007/978-3-319-75402-4_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the last few years, huge progress has been made in the understanding of molecular mechanisms underlying the pathogenesis of retinal degenerative diseases. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Non-viral gene delivery has been recognized as a prospective treatment for retinal degenerative diseases. In this review, we will summarize the constituent characteristics and recent applications of three representative nanoparticles (NPs) in ocular therapy.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Dean McGee Eye Institute, Oklahoma City, OK, USA. .,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
22
|
Zulliger R, Watson JN, Al-Ubaidi MR, Padegimas L, Sesenoglu-Laird O, Cooper MJ, Naash MI. Optimizing Non-viral Gene Therapy Vectors for Delivery to Photoreceptors and Retinal Pigment Epithelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:109-115. [PMID: 29721934 DOI: 10.1007/978-3-319-75402-4_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Considerable progress has been made in the design and delivery of non-viral gene therapy vectors, but, like their viral counterparts, therapeutic levels of transgenes have not met the requirements for successful clinical applications so far. The biggest advantage of polymer-based nanoparticle vectors is the ease with which they can be modified to increase their ability to penetrate the cell membrane and target specific cells by simply changing the formulation of the nanoparticle compaction. We took advantage of this characteristic to improve transfection rates of our particles to meet the transgene levels which will be needed for future treatment of patients. For this study, we successfully investigated the possibility of our established pegylated polylysine particles to be administered via intravitreal rather than subretinal route to ease the damage during injection. We also demonstrated that our particles are flexible enough to sustain changes in the formulation to accommodate additional targeting sequences without losing their efficiency in transfecting neuronal cells in the retina. Together, these results give us the opportunity to even further improve our particles.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Jamie N Watson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | | | | | | | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
23
|
Joseph M, Trinh HM, Cholkar K, Pal D, Mitra AK. Recent perspectives on the delivery of biologics to back of the eye. Expert Opin Drug Deliv 2017; 14:631-645. [PMID: 27573097 PMCID: PMC5570518 DOI: 10.1080/17425247.2016.1227783] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Biologics are generally macromolecules, large in size with poor stability in biological environments. Delivery of biologics to tissues at the back of the eye remains a challenge. To overcome these challenges and treat posterior ocular diseases, several novel approaches have been developed. Nanotechnology-based delivery systems, like drug encapsulation technology, macromolecule implants and gene delivery are under investigation. We provide an overview of emerging technologies for biologics delivery to back of the eye tissues. Moreover, new biologic drugs currently in clinical trials for ocular neovascular diseases have been discussed. Areas covered: Anatomy of the eye, posterior segment disease and diagnosis, barriers to biologic delivery, ocular pharmacokinetic, novel biologic delivery system Expert opinion: Anti-VEGF therapy represents a significant advance in developing biologics for the treatment of ocular neovascular diseases. Various strategies for biologic delivery to posterior ocular tissues are under development with some in early or late stages of clinical trials. Despite significant progress in the delivery of biologics, there is unmet need to develop sustained delivery of biologics with nearly zero-order release kinetics to the back of the eye tissues. In addition, elevated intraocular pressure associated with frequent intravitreal injections of macromolecules is another concern that needs to be addressed.
Collapse
Affiliation(s)
- Mary Joseph
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| | - Hoang M. Trinh
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| | - Kishore Cholkar
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
- RiconPharma LLC, 100 Ford Road, Suite 9, Denville, NJ, 07834 USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| | - Ashim K. Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| |
Collapse
|
24
|
Chan SC, Bubela T, Dimopoulos IS, Freund PR, Varkouhi AK, MacDonald IM. Choroideremia research: Report and perspectives on the second international scientific symposium for choroideremia. Ophthalmic Genet 2016; 37:267-75. [PMID: 26855058 DOI: 10.3109/13816810.2015.1088958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To discuss progress in research on choroideremia (CHM) and related retinopathies with special emphasis on gene therapy approaches. METHODS Biomedical and clinical researchers from across the world as well as representatives of the social science research community were convened to the 2nd International Scientific Symposium for Choroideremia in Denver, Colorado in June 2014 to enhance our understanding of CHM and accelerate the translation of research to clinical application for the benefit of those affected by CHM. RESULTS Pre-clinical research using cell and animal models continues to further our understanding in the pathogenesis of CHM as well as to demonstrate proof-of-concept for gene transfer strategies. With the advent of modern imaging technology, better outcome measures are being defined for upcoming clinical trials. Results from the first gene therapy trial in CHM show promise, with sustained visual improvement over 6 months post-treatment. Current and next-generation gene transfer approaches may make targeted vector delivery possible in the future for CHM and other inherited retinal diseases. CONCLUSIONS While no accepted therapies exist for CHM, promising approaches using viral-vectored gene therapy and cell therapies are entering clinical trials for eye diseases, with gene therapy trials underway for CHM.
Collapse
Affiliation(s)
- Stephanie C Chan
- a Department of Ophthalmology and Visual Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Tania Bubela
- b School of Public Health , University of Alberta , Edmonton , Alberta , Canada
| | - Ioannis S Dimopoulos
- a Department of Ophthalmology and Visual Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Paul R Freund
- a Department of Ophthalmology and Visual Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Amir K Varkouhi
- a Department of Ophthalmology and Visual Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Ian M MacDonald
- a Department of Ophthalmology and Visual Sciences , University of Alberta , Edmonton , Alberta , Canada
| |
Collapse
|
25
|
Mitra RN, Zheng M, Han Z. Nanoparticle-motivated gene delivery for ophthalmic application. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:160-74. [PMID: 26109528 PMCID: PMC4688250 DOI: 10.1002/wnan.1356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 12/24/2022]
Abstract
Ophthalmic gene therapy is an intellectual and intentional manipulation of desired gene expression into the specific cells of an eye for the treatment of ophthalmic (ocular) genetic dystrophies and pathological conditions. Exogenous nucleic acids such as DNA, small interfering RNA, micro RNA, and so on, are used for the purpose of managing expression of the desired therapeutic proteins in ocular tissues. The delivery of unprotected nucleic acids into the cells is limited because of exogenous and endogenous degradation modalities. Nanotechnology, a promising and sophisticated cutting edge tool, works as a protective shelter for these therapeutic nucleic acids. They can be safely delivered to the required cells in order to modulate anticipated protein expression. To this end, nanotechnology is seen as a potential and promising strategy in the field of ocular gene delivery. This review focused on current nanotechnology modalities and other promising nonviral strategies being used to deliver therapeutic genes in order to treat various devastating ocular diseases.
Collapse
Affiliation(s)
| | - Min Zheng
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
- Carolina Institute for NanoMedicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral gene therapy: Gains and challenges of non-invasive administration methods. J Control Release 2015; 240:165-190. [PMID: 26686079 DOI: 10.1016/j.jconrel.2015.12.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/26/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Gene therapy is becoming an influential part of the rapidly increasing armamentarium of biopharmaceuticals for improving health and combating diseases. Currently, three gene therapy treatments are approved by regulatory agencies. While these treatments utilize viral vectors, non-viral alternative technologies are also being developed to improve the safety profile and manufacturability of gene carrier formulations. We present an overview of gene-based therapies focusing on non-viral gene delivery systems and the genetic therapeutic tools that will further revolutionize medical treatment with primary focus on the range and development of non-invasive delivery systems for dermal, transdermal, ocular and pulmonary administrations and perspectives on other administration methods such as intranasal, oral, buccal, vaginal, rectal and otic delivery.
Collapse
Affiliation(s)
- Marianna Foldvari
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Ding Wen Chen
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Nafiseh Nafissi
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Daniella Calderon
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lokesh Narsineni
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Amirreza Rafiee
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
27
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
28
|
Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 2015; 8:109-29. [PMID: 25650393 PMCID: PMC4314777 DOI: 10.1242/dmm.017913] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Csilla H Lazar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, Cluj-Napoca, 400271, Romania
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eyal Banin
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Wan J, Li Y, Li Y, Guo X. Micellization of N-dodecylglucosylamine and its interaction with DNA in the presence of carboxylic acid. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3650-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Wang Y, Rajala A, Rajala RVS. Lipid Nanoparticles for Ocular Gene Delivery. J Funct Biomater 2015; 6:379-94. [PMID: 26062170 PMCID: PMC4493518 DOI: 10.3390/jfb6020379] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023] Open
Abstract
Lipids contain hydrocarbons and are the building blocks of cells. Lipids can naturally form themselves into nano-films and nano-structures, micelles, reverse micelles, and liposomes. Micelles or reverse micelles are monolayer structures, whereas liposomes are bilayer structures. Liposomes have been recognized as carriers for drug delivery. Solid lipid nanoparticles and lipoplex (liposome-polycation-DNA complex), also called lipid nanoparticles, are currently used to deliver drugs and genes to ocular tissues. A solid lipid nanoparticle (SLN) is typically spherical, and possesses a solid lipid core matrix that can solubilize lipophilic molecules. The lipid nanoparticle, called the liposome protamine/DNA lipoplex (LPD), is electrostatically assembled from cationic liposomes and an anionic protamine-DNA complex. The LPD nanoparticles contain a highly condensed DNA core surrounded by lipid bilayers. SLNs are extensively used to deliver drugs to the cornea. LPD nanoparticles are used to target the retina. Age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy are the most common retinal diseases in humans. There have also been promising results achieved recently with LPD nanoparticles to deliver functional genes and micro RNA to treat retinal diseases. Here, we review recent advances in ocular drug and gene delivery employing lipid nanoparticles.
Collapse
Affiliation(s)
- Yuhong Wang
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104, USA.
- Department of Ophthalmology, College of Medicine, University of Oklahoma, Oklahoma City, OK 73014, USA.
| | - Ammaji Rajala
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104, USA.
- Department of Ophthalmology, College of Medicine, University of Oklahoma, Oklahoma City, OK 73014, USA.
| | - Raju V S Rajala
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104, USA.
- Department of Ophthalmology, College of Medicine, University of Oklahoma, Oklahoma City, OK 73014, USA.
- Department of Physiology and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA.
| |
Collapse
|
31
|
Toms M, Bitner-Glindzicz M, Webster A, Moosajee M. Usher syndrome: a review of the clinical phenotype, genes and therapeutic strategies. EXPERT REVIEW OF OPHTHALMOLOGY 2015. [DOI: 10.1586/17469899.2015.1033403] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Jacobson SG, Cideciyan AV, Aguirre GD, Roman AJ, Sumaroka A, Hauswirth WW, Palczewski K. Improvement in vision: a new goal for treatment of hereditary retinal degenerations. Expert Opin Orphan Drugs 2015; 3:563-575. [PMID: 26246977 PMCID: PMC4487613 DOI: 10.1517/21678707.2015.1030393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Inherited retinal degenerations (IRDs) have long been considered untreatable and incurable. Recently, one form of early-onset autosomal recessive IRD, Leber congenital amaurosis (LCA) caused by mutations in RPE65 (retinal pigment epithelium-specific protein 65 kDa) gene, has responded with some improvement of vision to gene augmentation therapy and oral retinoid administration. This early success now requires refinement of such therapeutics to fully realize the impact of these major scientific and clinical advances. Areas covered: Progress toward human therapy for RPE65-LCA is detailed from the understanding of molecular mechanisms to preclinical proof-of-concept research to clinical trials. Unexpected positive and complicating results in the patients receiving treatment are explained. Logical next steps to advance the clinical value of the therapeutics are suggested. Expert opinion: The first molecularly based early-phase therapies for an IRD are remarkably successful in that vision has improved and adverse events are mainly associated with surgical delivery to the subretinal space. Yet, there are features of the gene augmentation therapeutic response, such as slowed kinetics of night vision, lack of foveal cone function improvement and relentlessly progressive retinal degeneration despite therapy, that still require research attention.
Collapse
Affiliation(s)
- Samuel G Jacobson
- University of Pennsylvania, Scheie Eye Institute, Perelman School of Medicine, Department of Ophthalmology , Philadelphia, PA, USA
| | - Artur V Cideciyan
- University of Pennsylvania, Scheie Eye Institute, Perelman School of Medicine, Department of Ophthalmology , Philadelphia, PA, USA
| | - Gustavo D Aguirre
- University of Pennsylvania, School of Veterinary Medicine, Section of Ophthalmology , Philadelphia, PA, USA
| | - Alejandro J Roman
- University of Pennsylvania, Scheie Eye Institute, Perelman School of Medicine, Department of Ophthalmology , Philadelphia, PA, USA
| | - Alexander Sumaroka
- University of Pennsylvania, Scheie Eye Institute, Perelman School of Medicine, Department of Ophthalmology , Philadelphia, PA, USA
| | | | - Krzysztof Palczewski
- Case Western University, School of Medicine, Cleveland Center for Membrane and Structural Biology, Department of Pharmacology , Cleveland, OH, USA
| |
Collapse
|
33
|
Han Z, Banworth MJ, Makkia R, Conley SM, Al-Ubaidi MR, Cooper MJ, Naash MI. Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype. FASEB J 2015; 29:2535-44. [PMID: 25713057 DOI: 10.1096/fj.15-270363] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/09/2015] [Indexed: 01/10/2023]
Abstract
Mutations in the rhodopsin gene cause retinal degeneration and clinical phenotypes including retinitis pigmentosa (RP) and congenital stationary night blindness. Effective gene therapies have been difficult to develop, however, because generating precise levels of rhodopsin expression is critical; overexpression causes toxicity, and underexpression would result in incomplete rescue. Current gene delivery strategies routinely use cDNA-based vectors for gene targeting; however, inclusion of noncoding components of genomic DNA (gDNA) such as introns may help promote more endogenous regulation of gene expression. Here we test the hypothesis that inclusion of genomic sequences from the rhodopsin gene can improve the efficacy of rhodopsin gene therapy in the rhodopsin knockout (RKO) mouse model of RP. We utilize our compacted DNA nanoparticles (NPs), which have the ability to transfer larger and more complex genetic constructs, to deliver murine rhodopsin cDNA or gDNA. We show functional and structural improvements in RKO eyes for up to 8 months after NP-mediated gDNA but not cDNA delivery. Importantly, in addition to improvements in rod function, we observe significant preservation of cone function at time points when cones in the RKO model are degenerated. These results suggest that inclusion of native expression elements, such as introns, can significantly enhance gene expression and therapeutic efficacy and may become an essential option in the array of available gene delivery tools.
Collapse
Affiliation(s)
- Zongchao Han
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| | - Marcellus J Banworth
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| | - Rasha Makkia
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| | - Shannon M Conley
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| | - Muayyad R Al-Ubaidi
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| | - Mark J Cooper
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| | - Muna I Naash
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Nanoparticle-based technologies for retinal gene therapy. Eur J Pharm Biopharm 2015; 95:353-67. [PMID: 25592325 DOI: 10.1016/j.ejpb.2014.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023]
Abstract
For patients with hereditary retinal diseases, retinal gene therapy offers significant promise for the prevention of retinal degeneration. While adeno-associated virus (AAV)-based systems remain the most popular gene delivery method due to their high efficiency and successful clinical results, other delivery systems, such as non-viral nanoparticles (NPs) are being developed as additional therapeutic options. NP technologies come in several categories (e.g., polymer, liposomes, peptide compacted DNA), several of which have been tested in mouse models of retinal disease. Here, we discuss the key biochemical features of the different NPs that influence how they are internalized into cells, escape from endosomes, and are delivered into the nucleus. We review the primary mechanism of NP uptake by retinal cells and highlight various NPs that have been successfully used for in vivo gene delivery to the retina and RPE. Finally, we consider the various strategies that can be implemented in the plasmid DNA to generate persistent, high levels of gene expression.
Collapse
|
35
|
Burnight ER, Wiley LA, Mullins RF, Stone EM, Tucker BA. Gene therapy using stem cells. Cold Spring Harb Perspect Med 2014; 5:cshperspect.a017434. [PMID: 25395375 DOI: 10.1101/cshperspect.a017434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Viral-mediated gene augmentation therapy has recently shown success in restoring vision to patients with retinal degenerative disorders. Key to this success was the availability of animal models that accurately presented the human phenotype to test preclinical efficacy and safety. These exciting studies support the use of gene therapy in the treatment of devastating retinal degenerative diseases. In some cases, however, in vivo gene therapy for retinal degeneration would not be effective because the cell types targeted are no longer present. The development of somatic cell reprogramming methods provides an attractive source of autologous cells for transplantation and treatment of retinal degenerative disease. This article explores the development of gene therapy and patient-derived stem cells for the purpose of restoring vision to individuals suffering from inherited retinal degenerations.
Collapse
Affiliation(s)
- Erin R Burnight
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Luke A Wiley
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Robert F Mullins
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Edwin M Stone
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242 Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa 52242
| | - Budd A Tucker
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
36
|
Rajala A, Wang Y, Zhu Y, Ranjo-Bishop M, Ma JX, Mao C, Rajala RVS. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. NANO LETTERS 2014; 14:5257-63. [PMID: 25115433 PMCID: PMC4160266 DOI: 10.1021/nl502275s] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Indexed: 05/24/2023]
Abstract
Application of viruses as a carrier, though not safe, to deliver genes to eye tissue was successful. However, a safer, nonviral, biocompatible lipid-based nanoparticle has never been tested to treat blinding eye diseases. We created an artificial virus using a nanoparticle, liposome-protamine-DNA complex (LPD), modified with a cell permeable peptide and a nuclear localization signaling (NLS) peptide, to deliver a functional gene for eye disease treatment. In the eye, a photochemical, 11-cis-retinal, allows the visual pigment rhodopsin to absorb light in the visible range. Without the photochemical, we lose the ability to see light. Retinal pigment epithelium protein 65 (Rpe65) is the key enzyme in regulating the availability of photochemical; deficiency of this gene results in a blinding eye disease. Here we show for the first time that LPD promotes efficient delivery in a cell specific-manner, and a long-term expression of Rpe65 gene to mice lacking Rpe65 gene, leading to in vivo correction of blindness. Thus, LPD nanoparticles could provide a promising, efficient, nonviral method of gene delivery with clinical applications in eye disease treatment.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, Department of Physiology, Department of Cell
Biology, and Dean A. McGee
Eye Institute, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Yuhong Wang
- Department of Ophthalmology, Department of Physiology, Department of Cell
Biology, and Dean A. McGee
Eye Institute, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Ye Zhu
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Michelle Ranjo-Bishop
- Department of Ophthalmology, Department of Physiology, Department of Cell
Biology, and Dean A. McGee
Eye Institute, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Jian-Xing Ma
- Department of Ophthalmology, Department of Physiology, Department of Cell
Biology, and Dean A. McGee
Eye Institute, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Chuanbin Mao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Raju V. S. Rajala
- Department of Ophthalmology, Department of Physiology, Department of Cell
Biology, and Dean A. McGee
Eye Institute, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
37
|
Conley SM, Naash MI. Gene therapy for PRPH2-associated ocular disease: challenges and prospects. Cold Spring Harb Perspect Med 2014; 4:a017376. [PMID: 25167981 DOI: 10.1101/cshperspect.a017376] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The peripherin-2 (PRPH2) gene encodes a photoreceptor-specific tetraspanin protein called peripherin-2/retinal degeneration slow (RDS), which is critical for the formation and maintenance of rod and cone outer segments. Over 90 different disease-causing mutations in PRPH2 have been identified, which cause a variety of forms of retinitis pigmentosa and macular degeneration. Given the disease burden associated with PRPH2 mutations, the gene has long been a focus for preclinical gene therapy studies. Adeno-associated viruses and compacted DNA nanoparticles carrying PRPH2 have been successfully used to mediate improvement in the rds(-/-) and rds(+/-) mouse models. However, complexities in the pathogenic mechanism for PRPH2-associated macular disease coupled with the need for a precise dose of peripherin-2 to combat a severe haploinsufficiency phenotype have delayed the development of clinically viable genetic treatments. Here we discuss the progress and prospects for PRPH2-associated gene therapy.
Collapse
Affiliation(s)
- Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Muna I Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
38
|
Vesicle formation between single-chained cationic surfactant and plasmid DNA and its application in cell transfection. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3352-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss. Vision Res 2014; 111:124-33. [PMID: 25094052 DOI: 10.1016/j.visres.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
The maturity in our understanding of the genetics and the pathogenesis of disease in degenerative retinal disorders has intersected in past years with a novel treatment paradigm in which a genetic intervention may lead to sustained therapeutic benefit, and in some cases even restoration of vision. Here, we review this prospect of retinal gene therapy, discuss the enabling technologies that have led to first-in-human demonstrations of efficacy and safety, and the road that led to this exciting point in time.
Collapse
Affiliation(s)
- Livia S Carvalho
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Harvard University, 20 Staniford Street, Boston, MA 02114, USA
| | - Luk H Vandenberghe
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Harvard University, 20 Staniford Street, Boston, MA 02114, USA.
| |
Collapse
|