1
|
Zeng L, Kang D, Zhu L, Zhou Z, Li Y, Ling W, Zhang Y, Yu DG, Kim I, Song W. Poly(phenylalanine) and poly(3,4-dihydroxy-L-phenylalanine): Promising biomedical materials for building stimuli-responsive nanocarriers. J Control Release 2024; 372:810-828. [PMID: 38968969 DOI: 10.1016/j.jconrel.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Cancer is a serious threat to human health because of its high annual mortality rate. It has attracted significant attention in healthcare, and identifying effective strategies for the treatment and relief of cancer pain requires urgency. Drug delivery systems (DDSs) offer the advantages of excellent efficacy, low cost, and low toxicity for targeting drugs to tumor sites. In recent decades, copolymer carriers based on poly(phenylalanine) (PPhe) and poly(3,4-dihydroxy-L-phenylalanine) (PDopa) have been extensively investigated owing to their good biocompatibility, biodegradability, and controllable stimulus responsiveness, which have resulted in DDSs with loading and targeted delivery capabilities. In this review, we introduce the synthesis of PPhe and PDopa, highlighting the latest proposed synthetic routes and comparing the differences in drug delivery between PPhe and PDopa. Subsequently, we summarize the various applications of PPhe and PDopa in nanoscale-targeted DDSs, providing a comprehensive analysis of the drug release behavior based on different stimulus-responsive carriers using these two materials. In the end, we discuss the challenges and prospects of polypeptide-based DDSs in the field of cancer therapy, aiming to promote their further development to meet the growing demands for treatment.
Collapse
Affiliation(s)
- Lingcong Zeng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Linglin Zhu
- Oncology Department of Huadong Hospital, Minimally Invasive Tumor Treatment Center, No. 139 Yan'an West Road, Jing'an District, Shanghai, China 200040
| | - Zunkang Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yichong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wei Ling
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
2
|
Zhang J, Yang XY, Chen J, Zhou Q, Pan G, Wang Y, Luo W, Hou J, Bao H, Xu G, Tang G, Bai H, Yu R. A Poly(amino acid)-Based Nanomedicine Strategy: Telomere-Telomerase Axis Targeting and Magnetic Resonance Imaging in Hepatocellular Carcinoma Treatment. NANO LETTERS 2024; 24:8351-8360. [PMID: 38916238 DOI: 10.1021/acs.nanolett.4c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Targeting telomere maintenance has emerged as a promising strategy for hepatocellular carcinoma (HCC) treatment. However, given the duality of the telomere-telomerase axis in telomere maintenance, a comprehensive strategy is urgently needed. Herein, we develop a poly(amino acid) (D-PAAs)-based strategy for spatiotemporal codelivery of telomerase inhibitor, BIBR1523, and AKT inhibitor, isobavachalcone. By leveraging D-PAAs' modifiability, we synthesize polymer-inhibitor conjugates (PB and PI) and a folic acid-decorated tumor-targeting vector (PF). These building blocks undergo micellization to fabricate a codelivery nanomedicine (P-BI@P-FA) by exploiting D-PAAs' noncovalent assembly. P-BI@P-FA improves the pharmacokinetics, tumor selectivity, and bioavailability of small molecule inhibitors and initiates a dual telomere-specific inhibition by combining telomerase deactivation with telomere disruption. Furthermore, a hybrid tumor-targeting magnetic nanosystem is designed using D-PAAs and manganese dioxide to showcase magnetic resonance imaging capacities. Our D-PAAs-based strategy addresses the pressing need for telomere-specific HCC treatment while allowing for diagnostic application, presenting a promising avenue for nanomedicine design.
Collapse
Affiliation(s)
- Jinguo Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Jiayi Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Qiaomei Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Guohua Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Yining Wang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Wangping Luo
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Jue Hou
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Hanxiao Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Guoqiao Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Guping Tang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| |
Collapse
|
3
|
Patra R, Halder S, Saha R, Jana K, Sarkar K. Highly Efficient Photoswitchable Smart Polymeric Nanovehicle for Gene and Anticancer Drug Delivery in Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2024; 10:2299-2323. [PMID: 38551335 DOI: 10.1021/acsbiomaterials.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Over the past few decades, there has been significant interest in smart drug delivery systems capable of carrying multiple drugs efficiently, particularly for treating genetic diseases such as cancer. Despite the development of various drug delivery systems, a safe and effective method for delivering both anticancer drugs and therapeutic genes for cancer therapy remains elusive. In this study, we describe the synthesis of a photoswitchable smart polymeric vehicle comprising a photoswitchable spiropyran moiety and an amino-acid-based cationic monomer-based block copolymer using reversible addition-fragmentation chain transfer (RAFT) polymerization. This system aims at diagnosing triple-negative breast cancer and subsequently delivering genes and anticancer agents. Triple-negative breast cancer patients have elevated concentrations of Cu2+ ions, making them excellent targets for diagnosis. The polymer can detect Cu2+ ions with a low limit of detection value of 9.06 nM. In vitro studies on doxorubicin drug release demonstrated sustained delivery at acidic pH level similar to the tumor environment. Furthermore, the polymer exhibited excellent blood compatibility even at the concentration as high as 500 μg/mL. Additionally, it displayed a high transfection efficiency of approximately 82 ± 5% in MDA-MB-231 triple-negative breast cancer cells at an N/P ratio of 50:1. It is observed that mitochondrial membrane depolarization and intracellular reactive oxygen species generation are responsible for apoptosis and the higher number of apoptotic cells, which occurred through the arrest of the G2/M phase of the cell cycle were observed. Therefore, the synthesized light-responsive cationic polymer may be an effective system for diagnosis, with an efficient anticancer drug and gene carrier for the treatment of triple-negative breast cancer in the future.
Collapse
Affiliation(s)
- Rishik Patra
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Satyajit Halder
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Rima Saha
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
4
|
Zhang ML, Zhang GP, Ma HS, Pan YZ, Liao XL. Preparation of pH-responsive polyurethane nano micelles and their antibacterial application. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:519-534. [PMID: 38265701 DOI: 10.1080/09205063.2024.2301807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Considering the differences in pH between bacterial infection microenvironment and normal tissues, a series of pH-responsive drug-release amphiphilic polyurethane copolymers (DPU-g-PEG) have been prepared in this work. Fourier transform infrared (FT-IR) spectroscopy and 1H NMR was selected to detect the structure of the condensed polymers. The DPU-g-PEG amphiphilic copolymers could form stable micelles with a hydrophilic shell of polyethylene glycol (PEG) and a hydrophobic core of polylactic acid (PLA). We loaded a model drug called triclosan onto DPU-g-PEG micelles and studied how pH affects their particle size, Zeta potential, and drug release performance. The results revealed that when exposed to acidic conditions, the surface potential of DPU-g-PEG micelles changed, the micelles' particle size increased, and the drug release performance was significantly enhanced. These results suggested that the micelles prepared in this study can release more antibacterial substances at sites of bacterial infection. Meanwhile, we also investigated the impact of different ratios of soft and hard segments on the properties of micelles, and the results showed that the pH responsiveness of micelles was strongest when the ratio of soft segments (PLLA diol + PEG 2000): 1,6-hexamethylene diisocyanate (HDI): 2,6-Bis-(2-hydroxy-ethyl)-pyrrolo[3,4-f]isoindole-1,3,5,7-tetraone (DMA) = 1: 1.2: 0.2. Furthermore, the results of inhibition zone test, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) all confirmed the antibacterial activity of triclosan-load DPU-g-PEG micelles. In conclusion, the DPU-g-PEG micelles produced in this study have the potential to be used as intelligent drug delivery systems in the biomedical field.
Collapse
Affiliation(s)
- Mao-Lan Zhang
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Gui-Ping Zhang
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Hong-Shuo Ma
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Yu-Zhu Pan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Xiao-Ling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
5
|
Li H, Yang L, Feng W, Liu W, Wang M, Liu F, Li G, Wang X. Poly(amino acid)-based drug delivery nanoparticles eliminate Methicillin resistant Staphylococcus aureus via tunable release of antibiotic. Colloids Surf B Biointerfaces 2024; 239:113882. [PMID: 38593511 DOI: 10.1016/j.colsurfb.2024.113882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bacterial infections threaten public health, and novel therapeutic strategies critically demand to be explored. Herein, poly(amino acid) (PAA)-based drug delivery nanoparticles (NPs) were designed for eliminating Methicillin resistant Staphylococcus aureus (MRSA) via tunable release of antibiotic. Using N-acryloyl amino acids (valine, valine methyl ester, aspartic acid, serine) as monomers, four kinds of amphiphilic PAAs were synthesized via photoinduced electron/energy transfer-reversible addition fragmentation chain-transfer (PET-RAFT) polymerization and were further assembled into nano-sized delivery systems. Their assemble behavior was drove mainly by hydrophobic/hydrophilic interaction, which determined the particle size, efficacy of drug loading and release; but numerous hydrogen bonding (HB) interaction also played an important role in regulating morphologies of the NPs and enriching drug-binding capacity. By changing the HB- and hydrophobic-interaction of the PAAs, the particle sizes (240.7 nm-302.7 nm), the drug loading efficiency (9.57%-19.76%), and the Rifampicin (Rif) release rate (49.6%-69.7%) of the PAA-based NPs could be tunable. Specially, the antimicrobial properties of the Rif-loaded NPs are found to be related to the release of Rif, which was determined by its hydrophobic interaction with hydrophobic blocks and HB interaction with hydrophilic blocks. These studies provide a new outlook for the design of delivery systems for the therapy of bacterial infection.
Collapse
Affiliation(s)
- Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Longlong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Weilin Liu
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, PR China
| | - Meng Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Fang Liu
- China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
6
|
Hu T, Wan C, Zhan Y, Li X, Zheng Y. Preparation and performance of biocompatible gadolinium polymer as liver-targeting magnetic resonance imaging contrast agent. J Biosci Bioeng 2024; 137:134-140. [PMID: 38195341 DOI: 10.1016/j.jbiosc.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
A biocompatible macromolecule-conjugated gadolinium chelate complex (PAV2-EDA-DOTA-Gd) as a new liver-specific contrast agent for magnetic resonance imaging (MRI) was synthesized and evaluated. An aspartic acid-valine copolymer was used as a carrier and ethylenediamine as a chemical linker, and the aspartic acid-valine copolymer was covalently linked to the small molecule MRI contrast agent Gd-DOTA (Dotarem) to synthesize a large molecule contrast agent. In vitro MR relaxation showed that the T1-relaxivity of PAV2-EDA-DOTA-Gd (13.7 mmol-1 L s-1) was much higher than that of the small-molecule Gd-DOTA (4.9 mmol-1 L s-1). In vivo imaging of rats showed that the enhancement effect of PAV2-EDA-DOTA-Gd (55.37 ± 2.80%) on liver imaging was 2.6 times that of Gd-DOTA (21.12 ± 3.86%), and it produced a longer imaging window time (40-70 min for PAV2-EDA-DOTA-Gd and 10-30 min for Gd-DOTA). Preliminary safety experiments, such as cell experiments and tissue sectioning, showed that PAV2-EDA-DOTA-Gd had low toxicity and satisfactory biocompatibility. The results of this study indicated that PAV2-EDA-DOTA-Gd had high potential as a liver-specific MRI contrast agent.
Collapse
Affiliation(s)
- Tingting Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Chuanling Wan
- School of Science, Changchun Institute of Technology, Changchun 130012, Jilin Province, China
| | - Youyang Zhan
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin Province, China
| | - Xiaojing Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin Province, China
| | - Yan Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
7
|
Fathi-Karkan S, Arshad R, Rahdar A, Ramezani A, Behzadmehr R, Ghotekar S, Pandey S. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review. Eur J Med Chem 2023; 259:115676. [PMID: 37499287 DOI: 10.1016/j.ejmech.2023.115676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Etoposide (ETO), a popular anticancer drug that inhibits topoisomerase II enzymes, may be administered more effectively and efficiently due to nanomedicine. The therapeutic application of ETO is constrained by its limited solubility, weak absorption, and severe side effects. This article summarizes substantial progress made in the development of ETO nanomedicine for the treatment of cancer. It discusses various organic and inorganic nanostructures used to load or affix ETOs, such as lipids, liposomes, polymeric nanoparticles (NPs), dendrimers, micelles, gold NPs, iron oxide NPs, and silica NPs. In addition, it evaluates the structural properties of these nanostructures, such as their size, zeta potential, encapsulation efficiency, and drug release mechanism, as well as their in vitro or in vivo performance. The article also emphasizes the co-delivery of ETO with other medications or agents to produce synergistic effects or combat drug resistance in the treatment of cancer. It concludes with a discussion of the challenges and potential avenues for clinical translation of ETO nanomedicine.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
| | - Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98613-35856, Iran.
| | - Aghdas Ramezani
- Faculty of Medical Science, Tarbiat Modares, University, Tehran, Iran
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, South Korea.
| |
Collapse
|
8
|
Yang J, Li D, Zhang M, Lin G, Hu S, Xu H. From the updated landscape of the emerging biologics for IBDs treatment to the new delivery systems. J Control Release 2023; 361:568-591. [PMID: 37572962 DOI: 10.1016/j.jconrel.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
Inflammatory bowel diseases (IBDs) treatments have shifted from small-molecular therapeutics to the oncoming biologics. The first-line biologics against the moderate-to-severe IBDs are mainly involved in antibodies against integrins, cytokines and cell adhesion molecules. Besides, other biologics including growth factors, antioxidative enzyme, anti-inflammatory peptides, nucleic acids, stem cells and probiotics have also been explored at preclinical or clinical studies. Biologics with variety of origins have their unique potentials in attenuating immune inflammation or gut mucosa healing. Great advances in use of biologics for IBDs treatments have been archived in recent years. But delivering issues for biologic have also been confronted due to their liable nature. In this review, we will focus on biologics for IBDs treatments in the recent publications; summarize the current landscapes of biologics and their promise to control disease progress. Alternatively, the confronted challenges for delivering biologics will also be analyzed. To combat these drawbacks, some new delivering strategies are provided: firstly, designing the functional materials with high affinity toward biologics; secondly, the delivering vehicle systems to encapsulate the liable biologics; thirdly, the topical adhering delivery systems as enema. To our knowledge, this review is the first study to summarize the updated usage of the oncoming biologics for IBDs, their confronted challenges in term of delivery and the potential combating strategies.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Mengjiao Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
9
|
Wang J, Wang P, Shao Y, He D. Advancing Treatment Strategies: A Comprehensive Review of Drug Delivery Innovations for Chronic Inflammatory Respiratory Diseases. Pharmaceutics 2023; 15:2151. [PMID: 37631365 PMCID: PMC10458134 DOI: 10.3390/pharmaceutics15082151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic inflammatory respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis, present ongoing challenges in terms of effective treatment and management. These diseases are characterized by persistent inflammation in the airways, leading to structural changes and compromised lung function. There are several treatments available for them, such as bronchodilators, immunomodulators, and oxygen therapy. However, there are still some shortcomings in the effectiveness and side effects of drugs. To achieve optimal therapeutic outcomes while minimizing systemic side effects, targeted therapies and precise drug delivery systems are crucial to the management of these diseases. This comprehensive review focuses on the role of drug delivery systems in chronic inflammatory respiratory diseases, particularly nanoparticle-based drug delivery systems, inhaled corticosteroids (ICSs), novel biologicals, gene therapy, and personalized medicine. By examining the latest advancements and strategies in these areas, we aim to provide a thorough understanding of the current landscape and future prospects for improving treatment outcomes in these challenging conditions.
Collapse
Affiliation(s)
- Junming Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Pengfei Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Yiru Shao
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Daikun He
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Li Y, Liu B, Zhang X, Liu Y, Wang S, Li S, Zhao X. Lutein–stachyose (LS) amphiphilic oligosaccharide derivatives improve the oral bioavailability of lutein. Food Chem 2023; 418:136032. [PMID: 36996657 DOI: 10.1016/j.foodchem.2023.136032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
A new amphiphilic oligosaccharide derivative, based on lutein modification onto the OH position of stachyose with facile and mild esterification, was prepared and used to improve the oral bioavailability of lutein. The structures of lutein-stachyose derivative (LS) were confirmed by Fourier transform infrared spectroscopy and hydrogen-1 nuclear magnetic resonance, indicating that one stachyose is connected to one lutein through succinic acid. The critical micelle concentration of LS was approximately 6.86 ± 0.24 mg/mL, corresponding to the free lutein concentration of approximately 2.96 mg/mL. LS has better digestive stability and free radical scavenging ability, and it could inhibit the degradation of lutein in the gastrointestinal tract. Importantly, LS is nontoxic to cells and zebrafish embryos. In terms of oral bioavailability in rats, the AUC0-12h values of LS were 2.26 times higher than those of free lutein. Therefore, stachyose modification is a promising strategy for improving the oral bioavailability of fat-soluble lutein.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China; Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Bingxue Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Xiaoxue Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Yanjie Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Siying Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Shujun Li
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
11
|
Khuddus M, Jayakannan M. Melt Polycondensation Strategy for Amide-Functionalized l-Aspartic Acid Amphiphilic Polyester Nano-assemblies and Enzyme-Responsive Drug Delivery in Cancer Cells. Biomacromolecules 2023. [PMID: 37186892 DOI: 10.1021/acs.biomac.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aliphatic polyesters are intrinsically enzymatic-biodegradable, and there is ever-increasing demand for safe and smart next-generation biomaterials including drug delivery nano-vectors in cancer research. Using bioresource-based biodegradable polyesters is one of the elegant strategies to meet this requirement; here, we report an l-amino acid-based amide-functionalized polyester platform and explore their lysosomal enzymatic biodegradation aspects to administrate anticancer drugs in cancer cells. l-Aspartic acid was chosen and different amide-side chain-functionalized di-ester monomers were tailor-made having aromatic, aliphatic, and bio-source pendant units. Under solvent-free melt polycondensation methodology; these monomers underwent polymerization to yield high molecular weight polyesters with tunable thermal properties. PEGylated l-aspartic monomer was designed to make thermo-responsive amphiphilic polyesters. This amphiphilic polyester was self-assembled into a 140 ± 10 nm-sized spherical nanoparticle in aqueous medium, which exhibited lower critical solution temperature at 40-42 °C. The polyester nano-assemblies showed excellent encapsulation capabilities for anticancer drug doxorubicin (DOX), anti-inflammatory drug curcumin, biomarkers such as rose bengal (RB), and 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt. The amphiphilic polyester NP was found to be very stable under extracellular conditions and underwent degradation upon exposure to horse liver esterase enzyme in phosphate-buffered saline at 37 °C to release 90% of the loaded cargoes. Cytotoxicity studies in breast cancer MCF 7 and wild-type mouse embryonic fibroblasts cell lines revealed that the amphiphilic polyester was non-toxic to cell lines up to 100 μg/mL, while their drug-loaded polyester nanoparticles were able to inhibit the cancerous cell growth. Temperature-dependent cellular uptake studies further confirmed the energy-dependent endocytosis of polymer NPs across the cellular membranes. Confocal laser scanning microscopy assisted time-dependent cellular uptake analysis directly evident for the endocytosis of DOX loaded polymer NP and their internalization for biodegradation. In a nutshell, the present investigation opens up an avenue for the l-amino acid-based biodegradable polyesters from l-aspartic acids, and the proof of concept is demonstrated for drug delivery in the cancer cell line.
Collapse
Affiliation(s)
- Mohammed Khuddus
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
12
|
Dzhuzha A, Gandalipov E, Korzhikov-Vlakh V, Katernyuk E, Zakharova N, Silonov S, Tennikova T, Korzhikova-Vlakh E. Amphiphilic Polypeptides Obtained by Post-Polymerization Modification of Poly-l-Lysine as Systems for Combined Delivery of Paclitaxel and siRNA. Pharmaceutics 2023; 15:pharmaceutics15041308. [PMID: 37111793 PMCID: PMC10143851 DOI: 10.3390/pharmaceutics15041308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The development of effective anti-cancer therapeutics remains one of the current pharmaceutical challenges. The joint delivery of chemotherapeutic agents and biopharmaceuticals is a cutting-edge approach to creating therapeutic agents of enhanced efficacy. In this study, amphiphilic polypeptide delivery systems capable of loading both hydrophobic drug and small interfering RNA (siRNA) were developed. The synthesis of amphiphilic polypeptides included two steps: (i) synthesis of poly-αl-lysine by ring-opening polymerization and (ii) its post-polymerization modification with hydrophobic l-amino acid and l-arginine/l-histidine. The obtained polymers were used for the preparation of single and dual delivery systems of PTX and short double-stranded nucleic acid. The obtained double component systems were quite compact and had a hydrodynamic diameter in the range of 90-200 nm depending on the polypeptide. The release of PTX from the formulations was studied, and the release profiles were approximated using a number of mathematical dissolution models to establish the most probable release mechanism. A determination of the cytotoxicity in normal (HEK 293T) and cancer (HeLa and A549) cells revealed the higher toxicity of the polypeptide particles to cancer cells. The separate evaluation of the biological activity of PTX and anti-GFP siRNA formulations testified the inhibitory efficiency of PTX formulations based on all polypeptides (IC50 4.5-6.2 ng/mL), while gene silencing was effective only for the Tyr-Arg-containing polypeptide (56-70% GFP knockdown).
Collapse
Affiliation(s)
- Apollinariia Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia
| | - Erik Gandalipov
- International Institute of Solution Chemistry and Advanced Materials Technologies, ITMO University, Lomonosov Street 9, St. Petersburg 191002, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
| | - Elena Katernyuk
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia
| | - Natalia Zakharova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia
| | - Sergey Silonov
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
- Institute of Cytology, Russian Academy of Sciences, Tihkorezky Pr. 4, St. Petersburg 194064, Russia
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia
| |
Collapse
|
13
|
Wang Q, Atluri K, Tiwari AK, Babu RJ. Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine. Pharmaceuticals (Basel) 2023; 16:ph16030433. [PMID: 36986532 PMCID: PMC10052155 DOI: 10.3390/ph16030433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Various formulations of polymeric micelles, tiny spherical structures made of polymeric materials, are currently being investigated in preclinical and clinical settings for their potential as nanomedicines. They target specific tissues and prolong circulation in the body, making them promising cancer treatment options. This review focuses on the different types of polymeric materials available to synthesize micelles, as well as the different ways that micelles can be tailored to be responsive to different stimuli. The selection of stimuli-sensitive polymers used in micelle preparation is based on the specific conditions found in the tumor microenvironment. Additionally, clinical trends in using micelles to treat cancer are presented, including what happens to micelles after they are administered. Finally, various cancer drug delivery applications involving micelles are discussed along with their regulatory aspects and future outlooks. As part of this discussion, we will examine current research and development in this field. The challenges and barriers they may have to overcome before they can be widely adopted in clinics will also be discussed.
Collapse
Affiliation(s)
- Qi Wang
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Keerthi Atluri
- Product Development Department, Alcami Corporation, Morrisville, NC 27560, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
14
|
Gosecki M, Ziemczonek P, Gosecka M, Urbaniak M, Wielgus E, Marcinkowska M, Janaszewska A, Klajnert-Maculewicz B. Cross-linkable star-hyperbranched unimolecular micelles for the enhancement of the anticancer activity of clotrimazole. J Mater Chem B 2023. [PMID: 36877094 DOI: 10.1039/d2tb02629e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Clotrimazole, a hydrophobic drug routinely used in the treatment of vaginal candidiasis, also shows antitumor activity. However, its use in chemotherapy has been unsuccessful to date due to its low solubility in aqueous media. In this work, new unimolecular micelles based on polyether star-hyperbranched carriers of clotrimazole are presented that can enhance solubility, and consequently the bioavailability, of clotrimazole in water. The amphiphilic constructs consisting of a hydrophobic poly(n-alkyl epoxide) core and hydrophilic corona of hyperbranched polyglycidol were synthesized in a three-step anionic ring-opening polymerization of epoxy monomers. The synthesis of such copolymers, however, was only possible by incorporating a linker to facilitate the elongation of the hydrophobic core with glycidol. Unimolecular micelles-clotrimazole formulations displayed significantly increased activity against human cervical cancer HeLa cells compared to the free drug, along with a weak effect on the viability of the normal dermal microvascular endothelium cells HMEC1. This selective activity of clotrimazole on cancer cells with little effect on normal cells was a result of the fact that clotrimazole targets the Warburg effect in cancer cells. Flow cytometric analysis revealed that the encapsulated clotrimazole significantly blocks the progression of the HeLa cycle in the G0/G1 phase and induces apoptosis. In addition, the ability of the synthesized amphiphilic constructs to form a dynamic hydrogel was demonstrated. Such a gel facilitates the delivery of drug-loaded single-molecule micelles to the affected area, where they can form a continuous, self-healing layer.
Collapse
Affiliation(s)
- Mateusz Gosecki
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Piotr Ziemczonek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Monika Gosecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Malgorzata Urbaniak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Monika Marcinkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| |
Collapse
|
15
|
Lu S, Hao D, Xiang X, Pei Q, Xie Z. Carboxylated paclitaxel prodrug nanofibers for enhanced chemotherapy. J Control Release 2023; 355:528-537. [PMID: 36787820 DOI: 10.1016/j.jconrel.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
The facile availability of nanoformulations with enhanced antitumor performance remains a big challenge. Herein, we synthesize paclitaxel prodrugs with amphiphilic structures and robust assembling ability. Carboxylated paclitaxel prodrugs (PSCB) containing disulfide bonds prefer to form exquisite nanofibers, while phenylcarbinol end capped paclitaxel prodrugs (PSP) assemble into spherical nanoparticles. The transformation of morphology from nanofibers to nanorods can be realized via tuning the content of paclitaxel. Hydrophilic domains of PSCB nanofibers accelerate the cleavage of disulfide bond for rapid drug release in tumor cells, thus exhibiting the enhanced cytotoxicity and antitumor activity. This study provides a crucial insight into the functional design of hydrophobic drugs to improve chemotherapy.
Collapse
Affiliation(s)
- Shaojin Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiujuan Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
16
|
Sedighi M, Mahmoudi Z, Ghasempour A, Shakibaie M, Ghasemi F, Akbari M, Abbaszadeh S, Mostafavi E, Santos HA, Shahbazi MA. Nanostructured multifunctional stimuli-responsive glycopolypeptide-based copolymers for biomedical applications. J Control Release 2023; 354:128-145. [PMID: 36599396 DOI: 10.1016/j.jconrel.2022.12.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Inspired by natural resources, such as peptides and carbohydrates, glycopolypeptide biopolymer has recently emerged as a new form of biopolymer being recruited in various biomedical applications. Glycopolypeptides with well-defined secondary structures and pendant glycosides on the polypeptide backbone have sparked lots of research interest and they have an innate ability to self-assemble in diverse structures. The nanostructures of glycopolypeptides have also opened up new perspectives in biomedical applications due to their stable three-dimensional structures, high drug loading efficiency, excellent biocompatibility, and biodegradability. Although the development of glycopolypeptide-based nanocarriers is well-studied, their clinical translation is still limited. The present review highlights the preparation and characterization strategies related to glycopolypeptides-based copolymers, followed by a comprehensive discussion on their biomedical applications with a specific focus on drug delivery by various stimuli-responsive (e.g., pH, redox, conduction, and sugar) nanostructures, as well as their beneficial usage in diagnosis and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Shakibaie
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Akbari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
17
|
Recent advances of amino acid-based biosensors for the efficient food and water contamination detection in food samples and environmental resources: A technical and analytical overview towards advanced nanomaterials and biological receptor. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
18
|
de Santana WMO, Pochapski DJ, Pulcinelli SH, Fontana CR, Santilli CV. Polymeric micelles–mediated photodynamic therapy. NANOMATERIALS FOR PHOTODYNAMIC THERAPY 2023:105-139. [DOI: 10.1016/b978-0-323-85595-2.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Alimardani V, Sadat Abolmaali S, Yousefi G, Hossein Nowroozzadeh M, Mohammad Tamaddon A. In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Shofolawe-Bakare OT, de Mel JU, Mishra SK, Hossain M, Hamadani CM, Pride MC, Dasanayake GS, Monroe W, Roth EW, Tanner EEL, Doerksen RJ, Smith AE, Werfel TA. ROS-Responsive Glycopolymeric Nanoparticles for Enhanced Drug Delivery to Macrophages. Macromol Biosci 2022; 22:e2200281. [PMID: 36125638 PMCID: PMC10013198 DOI: 10.1002/mabi.202200281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/12/1912] [Indexed: 02/02/2023]
Abstract
Macrophages play a diverse, key role in many pathologies, including inflammatory diseases, cardiovascular diseases, and cancer. However, many therapeutic strategies targeting macrophages suffer from systemic off-target toxicity resulting in notoriously narrow therapeutic windows. To address this shortcoming, the development of poly(propylene sulfide)-b-poly(methacrylamidoglucopyranose) [PPS-b-PMAG] diblock copolymer-based nanoparticles (PMAG NPs) capable of targeting macrophages and releasing drug in the presence of reactive oxygen species (ROS) is reported. PMAG NPs have desirable physicochemical properties for systemic drug delivery, including slightly negative surface charge, ≈100 nm diameter, and hemo-compatibility. Additionally, due to the presence of PPS in the NP core, PMAG NPs release drug cargo preferentially in the presence of ROS. Importantly, PMAG NPs display high cytocompatibility and are taken up by macrophages in cell culture at a rate ≈18-fold higher than PEGMA NPs-NPs composed of PPS-b-poly(oligoethylene glycol methacrylate). Computational studies indicate that PMAG NPs likely bind with glucose transporters such as GLUT 1/3 on the macrophage cell surface to facilitate high levels of internalization. Collectively, this study introduces glycopolymeric NPs that are uniquely capable of both receptor-ligand targeting to macrophages and ROS-dependent drug release and that can be useful in many immunotherapeutic settings.
Collapse
Affiliation(s)
| | - Judith U de Mel
- Department of Biomedical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Sushil K Mishra
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Mehjabeen Hossain
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Christine M Hamadani
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Mercedes C Pride
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Gaya S Dasanayake
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Wake Monroe
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Eric W Roth
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Eden E L Tanner
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Adam E Smith
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, USA
- Department of Biomedical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Thomas A Werfel
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, USA
- Department of Biomedical Engineering, University of Mississippi, University, MS, 38677, USA
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
21
|
Jia Y, Chen S, Wang C, Sun T, Yang L. Hyaluronic acid-based nano drug delivery systems for breast cancer treatment: Recent advances. Front Bioeng Biotechnol 2022; 10:990145. [PMID: 36091467 PMCID: PMC9449492 DOI: 10.3389/fbioe.2022.990145] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy among females worldwide, and high resistance to drugs and metastasis rates are the leading causes of death in BC patients. Releasing anti-cancer drugs precisely to the tumor site can improve the efficacy and reduce the side effects on the body. Natural polymers are attracting extensive interest as drug carriers in treating breast cancer. Hyaluronic acid (HA) is a natural polysaccharide with excellent biocompatibility, biodegradability, and non-immunogenicity and is a significant component of the extracellular matrix. The CD44 receptor of HA is overexpressed in breast cancer cells and can be targeted to breast tumors. Therefore, many researchers have developed nano drug delivery systems (NDDS) based on the CD44 receptor tumor-targeting properties of HA. This review examines the application of HA in NDDSs for breast cancer in recent years. Based on the structural composition of NDDSs, they are divided into HA NDDSs, Modified HA NDDSs, and HA hybrid NDDSs.
Collapse
Affiliation(s)
- Yufeng Jia
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Siwen Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Chenyu Wang
- Department of Information Management, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Tao Sun
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
- *Correspondence: Tao Sun, ; Liqun Yang,
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- *Correspondence: Tao Sun, ; Liqun Yang,
| |
Collapse
|
22
|
Carboxymethyl Dextran-Based Nanomicelle Coatings on Microarc Oxidized Titanium Surface for Percutaneous Implants: Drug Release, Antibacterial Properties, and Biocompatibility. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9225647. [PMID: 35865662 PMCID: PMC9296324 DOI: 10.1155/2022/9225647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Bacterial contamination and biofilm formation onpercutaneous implants can lead to device failure and be life-threatening. To solve this issue, we constructed a carboxymethyl dextran- (CMD-) based nanomicelle antibacterial coating on the microarc-oxidized titanium (MAO-Ti) surface (described in the supplementary file). The self-assembled CMD-based nanomicelles and octadecylamine (ODA) were developed as a drug carrier and loaded with minocycline (MC). The characterization and stability of the MC-loaded nanomicelles were determined. The surface roughness, hydrophilicity, and drug release property of the coatings were also investigated. Our findings showed that the cross-linked MC-loaded nanomicelles (MC@(ODA-CMD)CL) were more stable than the uncross-linked nanomicelles. Moreover, MC@(ODA-CMD)CL was successfully incorporated into the pores of MAO-Ti, which significantly increased the surface hydrophilicity of the coatings without influencing their surface roughness. In addition, the coatings demonstrated a sustained release time of 360 h, with a cumulative release rate reaching 86.6%. Staphylococcus aureus (S. aureus) was used to determine the antibacterial properties of the coatings, and human skin fibroblasts were seeded on them to investigate their biocompatibility. The results showed that the coatings significantly reduced the number of adhesive S. aureus and promoted the viability, adhesion, and morphology of the human skin fibroblasts compared to smooth titanium (S-Ti) sheets. In conclusion, MC-loaded CMD-based nanomicelles coated on MAO-Ti surface (MC@(ODA-CMD)CL-Ti) demonstrated sustained-release properties, excellent antibacterial properties and biocompatibility, and promising potential as coatings for percutaneous implants.
Collapse
|
23
|
Liu N, Zhu L, Sun H, Zhou Z, Dong J, Sun M. Crosslinked Protein Delivery Strategy with Precise Activity Regulation Properties for Cancer Therapy and Gene Editing. Adv Healthc Mater 2022; 11:e2102329. [PMID: 35032155 DOI: 10.1002/adhm.202102329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/30/2021] [Indexed: 11/09/2022]
Abstract
Protein drugs hold tremendous promise for therapeutic applications due to their direct and superior pharmacological effects. However, protein drugs can be degraded in blood stream and unable to cross many physical barriers to exert therapeutic effect. Degradable synthetic crosslinking is a versatile strategy to enhance the stability of the nanoparticle in a complex physiological medium and is helpful to get through physical barriers. Herein, crosslinked polypeptide (PABP) composed of poly-amino acids including cystine, tyrosine, lysine, ketal bridge, and polyethylene glycol (PEG) is modularly explored and synthesized for protein delivery. Notably, plasma membrane V-ATPase is the particular pathway which induces the macropinocytosis of the inner peptide analogous core (PAB/protein) after the outer PEG shell disassociation at tumor intercellular sites. In addition, PABP/protein achieves proteins' activity shielding in systemic circulation and recovery in tumor cytoplasm precisely. In application, PABP/RNase-A shows satisfying tumor accumulation and antineoplastic efficacy. More importantly, PABP/Cas9 + small guide RNA displays obvious gene editing efficiency. The crosslinked protein delivery strategy not only makes the accurate protein transport and activity regulation possible but also is promising in paving the way for clinical translation of protein drugs.
Collapse
Affiliation(s)
- Ning Liu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University Nanjing 210009 China
| | - Lianghan Zhu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University Nanjing 210009 China
| | - Honghao Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University Nanjing 210009 China
| | - Zhanwei Zhou
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University Nanjing 210009 China
| | - Jingwen Dong
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University Nanjing 210009 China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
24
|
Yee YJ, Benson HA, Dass CR, Chen Y. Evaluation of novel conjugated resveratrol polymeric nanoparticles in reduction of plasma degradation, hepatic metabolism and its augmentation of anticancer activity in vitro and in vivo. Int J Pharm 2022; 615:121499. [DOI: 10.1016/j.ijpharm.2022.121499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
|
25
|
Wang M, Liang Y, Chen K, Wang M, Long X, Liu H, Sun Y, He B. The management of diabetes mellitus by mangiferin: advances and prospects. NANOSCALE 2022; 14:2119-2135. [PMID: 35088781 DOI: 10.1039/d1nr06690k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetes mellitus has become one of the most challenging public health problems today. There are still various deficiencies that remain in existing therapeutic drugs. With increasing prevalence and mortality rates, more effective therapeutic agents are required for treatment clinically. As a kind of polyphenol and as a natural product, mangiferin has numerous pharmacological and excellent effects. In this review, the underlying mechanisms of mangiferin on diabetes mellitus and complications will be summarized. Moreover, mangiferin belongs to the BSC IV class and the clinical application and development of mangiferin are limited due to its poor aqueous solubility and fat solubility as well as low bioavailability. Our review also elaborated on improving the solubility of mangiferin by changing the dosage form and introduced the existing results, which hope to provide useful reference for mangiferin for further treating diabetes. In conclusion, mangiferin might be a potential adjuvant therapy for the treatment of diabetes mellitus and complications in the future.
Collapse
Affiliation(s)
- Mengdi Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Keqi Chen
- Department of Clinical laboratory, Qingdao special servicemen recuperation centre of PLA navy, Qingdao 266021, China
| | - Maolong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xuehua Long
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - HongLing Liu
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
26
|
Tian Y, Jia D, Dirican M, Cui M, Fang D, Yan C, Xie J, Liu Y, Li C, Fu J, Liu H, Chen G, Zhang X, Tao J. Highly Soluble and Stable, High Release Rate Nanocellulose Codrug Delivery System of Curcumin and AuNPs for Dual Chemo-Photothermal Therapy. Biomacromolecules 2022; 23:960-971. [PMID: 35029369 DOI: 10.1021/acs.biomac.1c01367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a natural antitumor drug, curcumin (CUR) has received increasing attention from researchers and patients due to its various medicinal properties. However, currently CUR is still restricted due to its low and stand-alone therapeutic effects that seriously limit its clinical application. Here, by using cellulose nanocrystals (CNCs) as a nanocarrier to load CUR and AuNPs simultaneously, we developed a hybrid nanoparticle as a codrug delivery system to enhance the low and stand-alone therapeutic effects of CUR. Aided with the encapsulation of β-cyclodextrin (βCD), both the solubility and the stability of CUR are greatly enhanced (solubility increased from 0.89 to 131.7 μg/mL). Owing to the unique rod-like morphology of CNCs, the system exhibits an outstanding loading capacity of 31.4 μg/mg. Under the heat effects of coloaded AuNPs, the system demonstrates a high release rate of 77.63%. Finally, with CNC as a bridge nanocarrier, all aforementioned functions were integrated into one hybrid nanoparticle. The all-in-one integration ensures CUR to have enhanced therapeutic effects and enables the delivery system to exhibit combined chemo-photothermal therapy outcomes. This work presents a significant step toward CUR's clinical application and provides a new strategy for effective and integrative treatment of tumor disease.
Collapse
Affiliation(s)
- Yan Tian
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongmei Jia
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mahmut Dirican
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Meng Cui
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongjun Fang
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chaoyi Yan
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Jingyi Xie
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunxing Li
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junjun Fu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.,Bengbu-SCUT Research Center for Advanced Manufacturing of Biomaterials, Bengbu, Anhui 233010, China
| | - Gang Chen
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Jinsong Tao
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.,Bengbu-SCUT Research Center for Advanced Manufacturing of Biomaterials, Bengbu, Anhui 233010, China
| |
Collapse
|
27
|
Kar A, Rout SR, Singh V, Greish K, Sahebkar A, Abourehab MA, Kesharwani P, Dandela R. Triblock polymeric micelles as an emerging nanocarrier for drug delivery. POLYMERIC MICELLES FOR DRUG DELIVERY 2022:561-590. [DOI: 10.1016/b978-0-323-89868-3.00022-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
A self assembled dextran-stearic acid-spermine nanocarrier for delivery of rapamycin as a hydrophobic drug. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Zhu Y, Liu R, Wu D, Yu Q, Shea KJ, Zhu Q. Engineered polymer nanoparticles incorporating l-amino acid groups as affinity reagents for fibrinogen. J Pharm Anal 2021; 11:596-602. [PMID: 34765272 PMCID: PMC8572708 DOI: 10.1016/j.jpha.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
Synthetic polymer hydrogel nanoparticles (NPs) were developed to function as abiotic affinity reagents for fibrinogen. These NPs were made using both temperature-sensitive N-isopropyl acrylamide (NIPAm) and l-amino acid monomers. Five kinds of l-amino acids were acryloylated to obtain functional monomers: l-phenylalanine (Phe) and l-leucine (Leu) with hydrophobic side chains, l-glutamic acid (Glu) with negative charges, and l-lysine (Lys) and l-arginine (Arg) with positive charges. After incubating the NPs with fibrinogen, γ-globulin, and human serum albumin (HSA) respectively, the NPs that incorporated N-acryloyl-Arg monomers (AArg@NPs) showed the strongest and most specific binding affinity to fibrinogen, when compared with γ-globulin and HSA. Additionally, the fibrinogen-AArg binding model had the best docking scores, and this may be due to the interaction of positively charged AArg@NPs and the negatively charged fibrinogen D domain and the hydrophobic interaction between them. The specific adsorption of AArg@NPs to fibrinogen was also confirmed by the immunoprecipitation assay, as the AArg@NPs selectively trapped the fibrinogen from a human plasma protein mixture. AArg@NPs had a strong selectivity for, and specificity to, fibrinogen and may be developed as a potential human fibrinogen-specific affinity reagent.
Collapse
Affiliation(s)
- Yongyan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China
| | - Ruixuan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dengyu Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qianqian Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Kenneth J. Shea
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
- Corresponding author.
| | - Quanhong Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China
- Corresponding author. School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
30
|
Liu P, Huang P, Kang ET. pH-Sensitive Dextran-Based Micelles from Copper-Free Click Reaction for Antitumor Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12990-12999. [PMID: 34714094 DOI: 10.1021/acs.langmuir.1c02049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There remains a need to develop new strategies to fabricate dextran-based biocompatible drug delivery systems for safe and effective chemotherapy. Herein, a copper-free azide-propiolate ester click reaction was introduced for dextran modification to fabricate a pH-sensitive dextran-based drug delivery system. A pH-sensitive dextran-based micelle system, self-assembled from amphiphilic dextran-graft-poly(2-(diisopropylamino)ethyl methacrylate-co-2-(2',3',5'-triiodobenzoyl)ethyl methacrylate) or dextran-g-P(DPA-co-TIBMA), is reported for effective chemotherapy. The amphiphilic dextran-g-P(DPA-co-TIBMA) was prepared via reversible addition-fragmentation chain-transfer (RAFT) polymerization and copper-free azide-propiolate ester click reaction. Doxorubicin (DOX)-loaded dextran-g-P(DPA-co-TIBMA) micelles were prepared through self-assembly of DOX and dextran-g-P(DPA-co-TIBMA) in aqueous solution, and had a mean diameter of 154 nm and a drug loading content of 9.7 wt %. The release of DOX from DOX-loaded dextran-g-P(PDPA-co-TIBMA) micelles was slow at pH 7.4, but was greatly accelerated under acidic conditions (pH 6 and 5). Confocal laser scanning microscopy and flow cytometry experiments showed that the dextran-g-P(DPA-co-TIBMA) micelles could effectively deliver and release DOX in human breast cancer cell line (MCF-7 cells). MTT assay showed that dextran-g-P(DPA-co-TIBMA) exhibited excellent biocompatibility while DOX-loaded dextran-g-P(DPA-co-TIBMA) micelles have good antitumor efficacy in vitro. The in vivo therapeutic studies indicated that the DOX-loaded dextran-g-P(PDPA-co-TIBMA) micelles could effectively reduce the growth of tumor with little body weight reduction.
Collapse
Affiliation(s)
- Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| | - Ping Huang
- Division of Ultrasound, Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518058, China
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| |
Collapse
|
31
|
Feng W, Huang Z, Kang X, Zhao D, Li H, Li G, Xu J, Wang X. Self-Assembled Nanosized Vehicles from Amino Acid-Based Amphiphilic Polymers with Pendent Carboxyl Groups for Efficient Drug Delivery. Biomacromolecules 2021; 22:4871-4882. [PMID: 34636237 DOI: 10.1021/acs.biomac.1c01164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing safe and efficient delivery vehicles for chemotherapeutic drugs has been a long-standing demanding. Amino acid-based polymers are promising candidates to address this challenge due to their excellent biocompatibility and biodegradation. Herein, a series of well-defined amphiphilic block copolymers were prepared by PET-RAFT polymerization of N-acryloyl amino acid monomers. By altering monomer types and the block ratio of the copolymers, the copolymers self-assembled into nanostructures with various morphologies, including spheres, rod-like, fibers, and lamellae via hydrophobic and hydrogen bonding interactions. Significantly, the nanoparticles (NPs) assembled from amphiphilic block copolymers poly(N-acryloyl-valine)-b-poly(N-acryloyl-aspartic acid) (PV-b-PD) displayed an appealing cargo loading efficiency (21.8-32.6%) for a broad range of drugs (paclitaxel, doxorubicin (DOX), cisplatin, etc.) due to strong interactions. The DOX-loaded PV-b-PD NPs exhibited rapid cellular uptake (within 1 min) and a great therapeutic performance. These drug delivery systems provide new insights for regulating the controlled morphologies and improving the efficiency of drug delivery.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zixuan Huang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiangtao Xu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
32
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
33
|
Wang X, Deng B, Yu M, Zeng T, Chen Y, Hu J, Wu Q, Li A. Constructing a passive targeting and long retention therapeutic nanoplatform based on water-soluble, non-toxic and highly-stable core-shell poly(amino acid) nanocomplexes. Biomater Sci 2021; 9:7065-7075. [PMID: 34590101 DOI: 10.1039/d1bm01246k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug delivery nanoplatforms have been applied in bioimaging, medical diagnosis, drug delivery and medical therapy. However, insolubility, toxicity, instability, nonspecific targeting and short retention of many hydrophobic drugs limit their extensive applications. Herein, we have constructed a passive targeting and long retention therapeutic nanoplatform of core-shell gefitinib/poly (ethylene glycol)-polytyrosine nanocomplexes (Gef-PY NCs). The Gef-PY NCs have good water-solubility, non-toxicity (correspond to 1/10 dosage of effective gefitinib (hydrochloride) (Gef·HCl) (normal drug administration and slow-release) and high stability (120 days, 80% drug retention at 4 or 25 °C). The core-shell Gef-PY NCs present unexpected kidney targeting and drug slow-release capacity (ca. 72 h). The good water-solubility, non-toxicity and high stability of Gef-PY NCs effectively solve the bottleneck question that Gef-based therapy could be used only in intraperitoneal injection due to its insolubility and severe toxicity. Such excellent properties (e.g., water-solubility, non-toxicity, high stability, kidney targeting and long retention) of Gef-PY NCs create their prominent anti-fibrosis capabilities, such as decreasing approximately 40% tubulointerstitial fibrosis area and 68% expression of collagen I within 7 days. This therapeutic efficacy is well-matched with that of 10 times the dosage of toxic Gef·HCl. It is very hopeful that Gef-PY NCs could realize clinical applications and such a strategy offers an effective route to design high-efficiency treatments for kidney- and tumor-related diseases.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Bingqing Deng
- Nanobiological Medicine Center, Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Meng Yu
- Nanobiological Medicine Center, Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Tao Zeng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yuyu Chen
- Nanobiological Medicine Center, Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Jianqiang Hu
- Nanobiological Medicine Center, Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Qianqing Wu
- Nanobiological Medicine Center, Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
34
|
Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int J Pharm 2021; 608:121094. [PMID: 34534631 DOI: 10.1016/j.ijpharm.2021.121094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023]
Abstract
The treatment effect of chemotherapeutics is often impeded by nonspecific biodistribution and limited biocompatibility. Polymeric core-shell nanocarriers (PCS NCs) composed of a polymer core and at least one shell have been widely applied for cancer therapy and have shown great potential in selectively delivering chemotherapeutic drugs to tumor sites. These PCS NCs can effectively ameliorate the delivery efficiency and therapeutic index of anticarcinogens by prolonging drug residence in the bloodstream, enhancing tumor tissue drug penetration, facilitating cellular drug uptake, controlling the spatiotemporal release of payloads, or codelivering two or more bioactive agents. This review summarizes recently published literature on using PCS NCs to transport chemotherapeutic drugs with poor aqueous solubility and discusses their design principles, structural features, functional properties, and potential limitations.
Collapse
|
35
|
Xie L, Liu R, Chen X, He M, Zhang Y, Chen S. Micelles Based on Lysine, Histidine, or Arginine: Designing Structures for Enhanced Drug Delivery. Front Bioeng Biotechnol 2021; 9:744657. [PMID: 34646819 PMCID: PMC8503256 DOI: 10.3389/fbioe.2021.744657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Natural amino acids and their derivatives are excellent building blocks of polymers for various biomedical applications owing to the non-toxicity, biocompatibility, and ease of multifunctionalization. In the present review, we summarized the common approaches to designing and constructing functional polymeric micelles based on basic amino acids including lysine, histidine, and arginine and highlighted their applications as drug carriers for cancer therapy. Different polypeptide architectures including linear polypeptides and dendrimers were developed for efficient drug loading and delivery. Besides, polylysine- and polyhistidine-based micelles could enable pH-responsive drug release, and polyarginine can realize enhanced membrane penetration and gas therapy by generating metabolites of nitric oxide (NO). It is worth mentioning that according to the structural or functional characteristics of basic amino acids and their derivatives, key points for designing functional micelles with excellent drug delivery efficiency are importantly elaborated in order to pave the way for exploring micelles based on basic amino acids.
Collapse
Affiliation(s)
- Li Xie
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Rong Liu
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Xin Chen
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Mei He
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Yi Zhang
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Shuyi Chen
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| |
Collapse
|
36
|
Sun J, Xue P, Liu J, Huang L, Lin G, Ran K, Yang J, Lu C, Zhao YZ, Xu HL. Self-Cross-Linked Hydrogel of Cysteamine-Grafted γ-Polyglutamic Acid Stabilized Tripeptide KPV for Alleviating TNBS-Induced Ulcerative Colitis in Rats. ACS Biomater Sci Eng 2021; 7:4859-4869. [PMID: 34547895 DOI: 10.1021/acsbiomaterials.1c00792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
KPV (Lys-Pro-Val), which is a tripeptide derived from α-MSH (α-melanocyte-stimulating hormone), has an anti-inflammatory effect on colitis. However, KPV solution is very unstable when rectally administered, compromising its therapeutic efficacy. Herein, cysteamine-grafted γ-polyglutamic acid (SH-PGA) was synthesized by conjugating cysteamine with the carboxyl groups of γ-PGA. The synthesized SH-PGA has the thiol grafting amount of 4.5 ± 0.3 mmol/g. Without the use of the cross-linker, the SH-PGA hydrogel with 4% of the polymer was formed by self-cross-linking of thiol groups. Moreover, the formation of the SH-PGA hydrogel was not affected by KPV. The KPV/SH-PGA hydrogel presented higher elastic modulus (G') than the corresponding viscous modulus (G″) at 0.01-10 Hz, exhibiting good mechanical stability. The KPV/SH-PGA hydrogel presented a shear-thinning behavior, which was helpful for rectal administration. Only 30% of KPV was released from the KPV/SH-PGA hydrogel within 20 min, followed by a sustained-release behavior. Importantly, the stability of KPV in the SH-PGA hydrogel was obviously enhanced, which was presented by detecting its anti-inflammatory activity and promoting cell migration potential after 2 h of exposure to 37 °C. The enhanced therapeutic effect of the KPV/SH-PGA hydrogel on colitis was confirmed on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis rats. The colitis symptoms including body weight loss and the disease activity index score were obviously attenuated by rectally administering the KPV/SH-PGA hydrogel. Besides, the KPV/SH-PGA hydrogel treatment prevented the colon shortening of TNBS-infused rats and decreased the colonic myeloperoxidase level. The morphology of the colon including the epithelial barrier, crypt, and intact goblet cells was recovered after KPV/SH-PGA hydrogel treatment. Besides, the KPV/SH-PGA hydrogel decreased the expression of proinflammatory cytokines such as tumor necrosis factor α and interleukin 6. Collectively, the KPV/SH-PGA hydrogel may provide a promising strategy for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Pengpeng Xue
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jiayi Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Lantian Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Kunjie Ran
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jiaojiao Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Cuitao Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| |
Collapse
|
37
|
Research progress on the utilisation of embedding technology and suitable delivery systems for improving the bioavailability of nattokinase: A review. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Zhang N, Liu W, Dong Z, Yin Y, Luo J, Lu T, Tang W, Wang Y, Han Y. An Integrated Tumor Microenvironment Responsive Polymeric Micelle for Smart Drug Delivery and Effective Drug Release. Bioconjug Chem 2021; 32:2083-2094. [PMID: 34472841 DOI: 10.1021/acs.bioconjchem.1c00385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tumor microenvironment (TME) responsive polymeric micelles are promising carriers for drug delivery. In order to meet the needs of various applications, multifarious TME-responsive switches are used to construct smart polymeric micelles, which causes the complexity and corpulence of the polymeric micelle system and increases the difficulty of preparation. In this study, we designed and synthesized an ingenious TME-responsive switch through grafting disulfide bond-modified piperidinepropionic acid (CPA) on copolymer poly(ethylene glycol)-b-poly(aspartate)(PEG-b-PAsp) and built a novel pH/reduction-responsive PEG-b-PAsp-g-CPA polymeric micelle delivery system. The CPA-pendants can reverse the surface charge of the polymeric micelle from negative to positive at pH 6.5 because of the protonation of piperidine groups, thereby enhancing the internalization of cell. Subsequently, more piperidine groups are protonated at pH 5.0 which will increase the hydrophilicity of polymeric micelles and cause the hydrophobic core to swell, thus making the disulfide bonds packed in the core to be more easily broken by GSH. With the synergistic effect of the pH-triggered protonation of piperidine groups and reduction triggered break of disulfide bonds, the polymeric micelles will disintegrate and achieve efficient intracellular drug release. The TME-responsive polymeric micelles exhibited good biological safety, enhanced internalization, and rapid intracellular doxorubicin (DOX) release in vitro. Moreover, the PEG-b-PAsp-g-CPA/DOX polymeric micelles showed excellent antitumor efficacy and low systemic toxicity in lung tumor-bearing BALB/C mice. These results indicated that the novel integrated TME-responsive switch CPA helps the PEG-b-PAsp-g-CPA polymeric micelles to obtain excellent TME-responsiveness and antitumor drug delivery capabilities, while it also makes the preparation of TME-responsive polymeric micelles simpler and more convenient. This work provides a new idea for the architecture of TME-responsive polymeric micelles.
Collapse
Affiliation(s)
- Nanxia Zhang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, Jiangsu Province China
| | - Weixing Liu
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, Jiangsu Province China
| | - Zhipeng Dong
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, Jiangsu Province China
| | - Yunxue Yin
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, Jiangsu Province China
| | - Jun Luo
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, Jiangsu Province China
| | - Tao Lu
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, Jiangsu Province China
| | - Weifang Tang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, Jiangsu Province China
| | - Yue Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, Jiangsu Province China
| | - Yonghu Han
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, Jiangsu Province China
| |
Collapse
|
39
|
Augustine R, Uthaman S, Kalva N, Eom KH, Huh KM, Pillarisetti S, Park IK, Kim I. Two-tailed tadpole-shaped synthetic polymer polypeptide bioconjugate nanomicelles for enhanced chemo-photothermal therapy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Dai Y, Li Q, Zhang S, Shi S, Li Y, Zhao X, Zhou L, Wang X, Zhu Y, Li W. Smart GSH/pH dual-bioresponsive degradable nanosponges based on β-CD-appended hyper-cross-linked polymer for triggered intracellular anticancer drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Molza AE, Gao P, Jakpou J, Nicolas J, Tsapis N, Ha-Duong T. Simulations of the Upper Critical Solution Temperature Behavior of Poly(ornithine- co-citrulline)s Using MARTINI-Based Coarse-Grained Force Fields. J Chem Theory Comput 2021; 17:4499-4511. [PMID: 34101464 DOI: 10.1021/acs.jctc.1c00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ornithine-co-citrulline)s are ureido-based polymers, which were shown to exhibit tunable upper critical solution temperature (UCST) behavior, a property that can be exploited to develop thermoresponsive nanoparticles for controlled drug delivery systems. To gain insight into the driving forces that govern the formation and dissolution processes of poly(ornithine-co-citrulline) nanoparticles, a molecular dynamics (MD) simulation study has been carried out using MARTINI-based protein coarse-grained models. Multi-microsecond simulations at temperatures ranging from 280 to 370 K show that the fully reparametrized version 3.0 of MARTINI force field is able to capture the dependence on temperature of poly(ornithine-co-citrulline) aggregation and dissolution, while version 2.2 could not account for it. Furthermore, the phase separation observed in these simulations allowed us to extrapolate a phase diagram based on the Flory-Huggins theory of polymer solution, which could help in future rational design of drug delivery nanoparticles based on poly(amino acid)s.
Collapse
Affiliation(s)
| | - Ping Gao
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.,Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Justine Jakpou
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|
42
|
Kordasht HK, Hasanzadeh M, Seidi F, Alizadeh PM. Poly (amino acids) towards sensing: Recent progress and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Wang X, Song Z, Wei S, Ji G, Zheng X, Fu Z, Cheng J. Polypeptide-based drug delivery systems for programmed release. Biomaterials 2021; 275:120913. [PMID: 34217020 DOI: 10.1016/j.biomaterials.2021.120913] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Recent years have seen increasing interests in the use of ring-opening polymerization of α-amino acid N-carboxyanhydrides (NCAs) to prepare synthetic polypeptides, a class of biocompatible and versatile materials, for various biomedical applications. Because of their rich side-chain functionalities, diverse hydrophilicity/hydrophobicity profiles, and the capability of forming stable secondary structures, polypeptides can assemble into a variety of well-organized nano-structures that have unique advantages in drug delivery and controlled release. Herein, we review the design and use of polypeptide-based drug delivery system derived from NCA chemistry, and discuss the future perspectives of this exciting and important biomaterial area that may potentially change the landscape of next-generation therapeutics and diagnosis. Given the high significance of precise control over release for polypeptide-based systems, we specifically focus on the versatile designs of drug delivery systems capable of programmed release, through the changes in the chemical and physical properties controlled by the built-in molecular structures of polypeptides.
Collapse
Affiliation(s)
- Xu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Shiqi Wei
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Guonan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xuetao Zheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zihuan Fu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
44
|
Brunato S, Mastrotto F, Bellato F, Bastiancich C, Travanut A, Garofalo M, Mantovani G, Alexander C, Preat V, Salmaso S, Caliceti P. PEG-polyaminoacid based micelles for controlled release of doxorubicin: Rational design, safety and efficacy study. J Control Release 2021; 335:21-37. [PMID: 33989691 DOI: 10.1016/j.jconrel.2021.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022]
Abstract
A library of amphiphilic monomethoxypolyethylene glycol (mPEG) terminating polyaminoacid co-polymers able to self-assemble into colloidal systems was screened for the delivery and controlled release of doxorubicin (Doxo). mPEG-Glu/Leu random co-polymers were generated by Ring Opening Polymerization from 5 kDa mPEG-NH2 macroinitiator using 16:0:1, 8:8:1, 6:10:1, 4:12:1 γ-benzyl glutamic acid carboxy anhydride monomer/leucine N-carboxy anhydride monomer/PEG molar ratios. Glutamic acid was selected for chemical conjugation of Doxo, while leucine units were introduced in the composition of the polyaminoacid block as spacer between adjacent glutamic repeating units to minimize the steric hindrance that could impede the Doxo conjugation and to promote the polymer self-assembly by virtue of the aminoacid hydrophobicity. The benzyl ester protecting the γ-carboxyl group of glutamic acid was quantitatively displaced with hydrazine to yield mPEG5kDa-b-(hydGlum-r-Leun). Doxo was conjugated to the diblock co-polymers through pH-sensitive hydrazone bond. The Doxo derivatized co-polymers obtained with a 16:0:1, 8:8:1, 6:10:1 Glu/Leu/PEG ratios self-assembled into 30-40 nm spherical nanoparticles with neutral zeta-potential and CMC in the range of 4-7 μM. At pH 5.5, mimicking endosome environment, the carriers containing leucine showed a faster Doxo release than at pH 7.4, mimicking the blood conditions. Doxo-loaded colloidal formulations showed a dose dependent cytotoxicity on two cancer cell lines, CT26 murine colorectal carcinoma and 4T1 murine mammary carcinoma with IC50 slightly higher than those of free Doxo. The carrier assembled with the polymer containing 6:10:1 hydGlu/Leu/PEG molar ratio {mPEG5kDa-b-[(Doxo-hydGlu)6-r-Leu10]} was selected for subsequent in vitro and in vivo investigations. Confocal imaging on CT26 cell line showed that intracellular fate of the carrier involves a lysosomal trafficking pathway. The intratumor or intravenous injection to CT26 and 4T1 subcutaneous tumor bearing mice yielded higher antitumor activity compared to free Doxo. Furthermore, mPEG5kDa-b-[(Doxo-hydGlu)6-r-Leu10] displayed a better safety profile when compared to commercially available Caelyx®.
Collapse
Affiliation(s)
- Silvia Brunato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Chiara Bastiancich
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200 Brussels, Belgium
| | - Alessandra Travanut
- Molecular Therapeutics and Formulations Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Giuseppe Mantovani
- Molecular Therapeutics and Formulations Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Cameron Alexander
- Molecular Therapeutics and Formulations Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Veronique Preat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200 Brussels, Belgium
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy.
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
45
|
Fan M, Li J. A Novel Combinational Nanodrug Delivery System Induces Synergistic Inhibition of Lung Adenocarcinoma Cells In vitro. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200719152426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The combination of two or more therapeutic drugs is an attractive approach
to improve the treatment of experimental tumors. Leveraging nanocarriers for combinational drug
delivery can allow control over drug biological fate and promote co-localization in the same area of
the body. However, there are certain concerns regarding the biodegradability and potential longterm
toxicity arising from these synthetic nanoscale carriers.
Objective:
Our aim was to develop a combinational nanodrug delivery system formed by selfassembling
of amphiphilic drug molecules.minimizing potential toxicities associated with using
additional synthetic nanocarriers.
Methods:
A novel prodrug chlorambucil gemcitabine conjugate was synthesized, this prodrug was
used for the encapsulation of an additional hydrophobic anticancer drug paclitaxel, taking the form
of combinational nanodrugs. Particle size and zeta potential were evaluated, cytotoxicity assay and
apoptosis/cell cycle analysis were also performed to validate the anticancer efficacy of the combinational
nanodrugs.
Results:
The combinational nanodrugs were acquired by means of nanoprecipitation. In A549 lung
adenocarcinoma cell line, cellular assays revealed that co-delivery of low dosage paclitaxel with
chlorambucil gemcitabine conjugate can act synergistically to inhibit cell growth and induce accumulation
of cells in the G2/M phase with a concomitant decrease in G0/G1 compartment.
Conclusion:
Chlorambucil gemcitabine conjugate and paclitaxel can co-assemble into composite
nanoparticles by a nanoprecipitation process and the resulting combinational nanodrugs showed a
synergistic anticancer effect. This synthetic nanocarrier-free approach might broaden the nanodrug
concept and have potential in cancer therapy.
Collapse
Affiliation(s)
- Mingliang Fan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jiping Li
- Department of Otolaryngology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200032, China
| |
Collapse
|
46
|
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332:127-147. [PMID: 33609621 DOI: 10.1016/j.jconrel.2021.02.016] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
In recent years, polymeric micelles have been extensively utilized in pre-clinical studies for delivering poorly soluble chemotherapeutic agents in cancer. Polymeric micelles are formed via self-assembly of amphiphilic polymers in facile manners. The wide availability of hydrophobic and, to some extent, hydrophilic polymeric blocks allow researchers to explore various polymeric combinations for optimum loading, stability, systemic circulation, and delivery to the target cancer tissues. Moreover, polymeric micelles could easily be tailor-made by increasing and decreasing the number of monomers in each polymeric chain. Some of the widely accepted hydrophobic polymers are poly(lactide) (PLA), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), polyesters, poly(amino acids), lipids. The hydrophilic polymers used to wrap the hydrophobic core are poly(ethylene glycol), poly(oxazolines), chitosan, dextran, and hyaluronic acids. Drugs could be conjugated to polymers at the distal ends to prepare pharmacologically active polymeric systems that impart enhanced solubility and stability of the conjugates and provide an opportunity for combination drug delivery. Their nano-size enables them to accumulate to the tumor microenvironment via the Enhanced Permeability and Retention (EPR) effect. Moreover, the stimuli-sensitive breakdown provides the micelles an effective means to deliver the therapeutic cargo effectively. The tumor micro-environmental stimuli are pH, hypoxia, and upregulated enzymes. Externally applied stimuli to destroy micellar disassembly to release the payload include light, ultrasound, and temperature. This article delineates the current trend in developing polymeric micelles combining various block polymeric scaffolds. The development of stimuli-sensitive micelles to achieve enhanced therapeutic activity are also discussed.
Collapse
Affiliation(s)
- Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
| |
Collapse
|
47
|
Wang Y, Wang C, Li K, Song X, Yan X, Yu L, He Z. Recent advances of nanomedicine-based strategies in diabetes and complications management: Diagnostics, monitoring, and therapeutics. J Control Release 2021; 330:618-640. [PMID: 33417985 DOI: 10.1016/j.jconrel.2021.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by the presence of chronic hyperglycemia driven by insulin deficiency or resistance, imposing a significant global burden affecting 463 million people worldwide in 2019. This review has comprehensively summarized the application of nanomedicine with accurate, patient-friendly, real-time properties in the field of diabetes diagnosis and monitoring, and emphatically discussed the unique potential of various nanomedicine carriers (e.g., polymeric nanoparticles, liposomes, micelles, microparticles, microneedles, etc.) in the management of diabetes and complications. Novel delivery systems have been developed with improved pharmacokinetics and pharmacodynamics, excellent drug biodistribution, biocompatibility, and therapeutic efficacy, long-term action safety, as well as the improved production methods. Furthermore, the effective nanomedicine for the treatment of several major diabetic complications with significantly improved life qualities of diabetic patients were discussed in detail. Going through the literature review, several critical issues of the nanomedicine-based strategies applications need to be addressed such as stabilities and long-term safety effects in vivo, the deficiency of standard for formulation administration, feasibility of scale-up, etc. Overall, the review provides an insight into the design, advantages and limitations of novel nanomedicine application in the diagnostics, monitoring, and therapeutics of DM.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Chunhui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Keyang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China.
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China.
| |
Collapse
|
48
|
Abuna G, Campos P, Hirashi N, Giannini M, Nikaido T, Tagami J, Coelho Sinhoreti MA, Geraldeli S. The ability of a nanobioglass-doped self-etching adhesive to re-mineralize and bond to artificially demineralized dentin. Dent Mater 2020; 37:120-130. [PMID: 33229040 DOI: 10.1016/j.dental.2020.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/17/2020] [Accepted: 10/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To a self-etch adhesive doped with nano-bioglass and evaluate its ability to bond and re-mineralize artificially demineralized dentin. METHODS Experimental Si, Ca, Na and PO4 based nanobioglass particles were synthesized, doped into experimental self-etch adhesives, and divided into 3 groups: Clearfi SE2 (CSE2), experimental (EXC), and experimental doped with 10% of nanobioglass (ExNB). The adhesives were applied onto the caries-affected dentin (chemically simulated), and evaluated after 24 h and 28 days of immersion in simulated body fluid. The remineralization process was assessed using optical coherence tomography, nanoindentation, in situ zymography, transmission electron microscopy, confocal laser scanning microscopy, μ-tensile bond strength, and pH buffer. RESULTS The addition of nanobioglass particles into the experimental self-etch adhesives altered the μTBS in the short-term jeopardizing dentin bonding properties, when compared to the non-doped self-etch adhesive. The remineralization recovered the nanohardness, and volume lost by caries lesion (p = 0.02). Moreover, reduced the enzymatic activity (p = 1.24E-4) and formed new crystals within of the hybrid layer. CONCLUSION The use of nanobioglass was efficient to recover the properties of a caries affected dentin. Furthermore, the adhesive properties were not hampered and the probabilistic reliability increased.
Collapse
Affiliation(s)
- Gabriel Abuna
- Restorative Dentistry Department, Dental Materials Division, Piracicaba Dental School, State University of Campinas, Piracicaba, Sao Paulo, Brazil; Cariology and Operative Dentistry Department, Tokyo Medical and Dental University, Tokyo, Japan; General Dentistry Department, Division of Biomedical Materials, East Carolina University School of Dental Medicine, Greenville, NC, USA.
| | - Paulo Campos
- Restorative Dentistry Department, Dental Materials Division, Piracicaba Dental School, State University of Campinas, Piracicaba, Sao Paulo, Brazil
| | - Noriko Hirashi
- Cariology and Operative Dentistry Department, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marcelo Giannini
- Restorative Dentistry Department, Dental Materials Division, Piracicaba Dental School, State University of Campinas, Piracicaba, Sao Paulo, Brazil
| | - Toru Nikaido
- Department of Operative Dentistry, Division of Oral Funtional Science and Rehabiltation, School of Dentistry, Asahi University, Gifu, Japan
| | - Junji Tagami
- Cariology and Operative Dentistry Department, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mario Alexandre Coelho Sinhoreti
- Restorative Dentistry Department, Dental Materials Division, Piracicaba Dental School, State University of Campinas, Piracicaba, Sao Paulo, Brazil
| | - Saulo Geraldeli
- General Dentistry Department, Division of Biomedical Materials, East Carolina University School of Dental Medicine, Greenville, NC, USA
| |
Collapse
|
49
|
Li H, Jing F, Hao J. GSH
‐responsive polyglutamic acid nanocarriers for dual targeted cancer therapy. J Appl Polym Sci 2020. [DOI: 10.1002/app.49339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- He‐Yi Li
- Department of OphthalmologyJin Qiu Hospital of Liaoning Province (Geriatric Hospital of Liaoning Province) Shenyang China
| | - Fang‐kun Jing
- Department of NeurosurgeryJin Qiu Hospital of Liaoning Province (Geriatric Hospital of Liaoning Province) Shenyang China
| | - Jun‐Feng Hao
- Department of NephrologyJin Qiu Hospital of Liaoning Province (Geriatric Hospital of Liaoning Province) Shenyang China
| |
Collapse
|
50
|
Nguyen THT, Trinh NT, Tran HN, Tran HT, Le PQ, Ngo DN, Tran-Van H, Van Vo T, Vong LB, Nagasaki Y. Improving silymarin oral bioavailability using silica-installed redox nanoparticle to suppress inflammatory bowel disease. J Control Release 2020; 331:515-524. [PMID: 33616078 DOI: 10.1016/j.jconrel.2020.10.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
Chronic inflammatory diseases such as inflammatory bowel diseases (IBD), which are strongly related to the overproduction of reactive oxygen species (ROS), have become more threatening to health. Silymarin is an active compound with the effect of expressing anti-inflammatory activity; however, it exhibits poor bioavailability due to the rapid metabolism and secretion, low permeability across the intestinal epithelial cells, and poor water solubility. In this study, we developed silica-containing redox nanoparticles (siRNP) with 50-60 nm in diameter to improve the bioavailability of silymarin by improving its uptake into the bloodstream and delivery to the targeted tissues of the colon. Silymarin-loaded siRNP (SM@siRNP) significantly increased the antioxidant capacity and anti-inflammatory efficacy in vitro by scavenging 2,2-diphenyl-1-picrylhydrazyl free radical and suppressing nitric oxide and pro-inflammatory cytokines as compared to the other treatments such as free silymarin, siRNP, and silymarin-loaded si-nRNP (the control nanoparticle without ROS scavenging property). Orally administered SM@siRNP significantly improved the bioavailability of silymarin and its retention in the colonic mucosa. The anti-inflammatory effects of SM@siRNP were also investigated in dextran sodium sulfate (DSS)-induced colitis in mice and it was observed that SM@siRNP treatment significantly improved the damage in the colonic mucosa of DSS colitis mice as compared to the other treatments. The results in this study indicate that SM@siRNP is a promising nanomedicine for enhancing the anti-inflammatory activity of silymarin and has a high potential for the treatment of IBD.
Collapse
Affiliation(s)
- Thu-Ha Thi Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| | - Nhu-Thuy Trinh
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| | - Han Ngoc Tran
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam; Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh 703000, Vietnam
| | - Hao Thi Tran
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Phong Quoc Le
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| | - Dai-Nghiep Ngo
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam; Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh 703000, Vietnam
| | - Hieu Tran-Van
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam; Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh 703000, Vietnam
| | - Toi Van Vo
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| | - Long Binh Vong
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam.
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|