1
|
Liu W, Xu J, Pi Z, Chen Y, Jiang G, Wan Y, Mao W. Untangling the web of intratumor microbiota in lung cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189025. [PMID: 37980944 DOI: 10.1016/j.bbcan.2023.189025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Microbes are pivotal in contemporary cancer research, influencing various biological behaviors in cancer. The previous notion that the lung was sterile has been destabilized by the discovery of microbiota in the lower airway and lung, even within tumor tissues. Advances of biotechnology enable the association between intratumor microbiota and lung cancer to be revealed. Nonetheless, the origin and tumorigenicity of intratumor microbiota in lung cancer still remain implicit. Additionally, accumulating evidence indicates that intratumor microbiota might serve as an emerging biomarker for cancer diagnosis, prognosis, and even a therapeutic target across multiple cancer types, including lung cancer. However, research on intratumor microbiota's role in lung cancer is still nascent and warrants more profound exploration. Herein, this paper provides an extensive review of recent advancements in the following fields, including 1) established and emerging biotechnologies utilized to study intratumor microbiota in lung cancer, 2) causation between intratumor microbiota and lung cancer from the perspectives of translocation, cancerogenesis and metastasis, 3) potential application of intratumor microbiota as a novel biomarker for lung cancer diagnosis and prognosis, and 4) promising lung cancer therapies via regulating intratumor microbiota. Moreover, this review addresses the limitations, challenges, and future prospects of studies focused on intratumor microbiota in lung cancer.
Collapse
Affiliation(s)
- Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Jingtong Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zheshun Pi
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA
| | - Guanyu Jiang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| |
Collapse
|
2
|
Gonzalez-Valdivieso J, Vallejo R, Rodriguez-Rojo S, Santos M, Schneider J, Arias FJ, Girotti A. CD44-targeted nanoparticles for co-delivery of docetaxel and an Akt inhibitor against colorectal cancer. BIOMATERIALS ADVANCES 2023; 154:213595. [PMID: 37639856 DOI: 10.1016/j.bioadv.2023.213595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/24/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
New strategies to develop drug-loaded nanocarriers with improved therapeutic efficacy are needed for cancer treatment. Herein we report a novel drug-delivery nanosystem comprising encapsulation of the chemotherapeutic drug docetaxel (DTX) and recombinant fusion of a small peptide inhibitor of Akt kinase within an elastin-like recombinamer (ELR) vehicle. This combined approach is also precisely targeted to colorectal cancer cells by means of a chemically conjugated DNA aptamer specific for the CD44 tumor marker. This 53 nm dual-approach nanosystem was found to selectively affect cell viability (2.5 % survival) and proliferation of colorectal cancer cells in vitro compared to endothelial cells (50 % survival), and to trigger both apoptosis- and necrosis-mediated cell death. Our findings also show that the nanohybrid particles remain stable under physiological conditions, trigger sustained drug release and possess an adequate pharmacokinetic profile after systemic intravenous administration. In vivo assays showed that these dual-approach nanohybrids significantly reduced the number of tumor polyps along the colorectal tract in a murine colorectal cancer model. Furthermore, systemic administration of advanced nanohybrids induced tissue recovery by improving the morphology of gastrointestinal crypts and the tissue architecture. Taken together, these findings indicate that our strategy of an advanced dual-approach nanosystem allows us to achieve successful controlled release of chemotherapeutics in cancer cells and may have a promising potential for colorectal cancer treatment.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain
| | - Reinaldo Vallejo
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; BioEcoUVa, Research Institute on Bioeconomy, High Pressure Process Group, University of Valladolid, Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Mergelina, Valladolid, Spain
| | - Soraya Rodriguez-Rojo
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Process Group, University of Valladolid, Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Mergelina, Valladolid, Spain
| | - Mercedes Santos
- BIOFORGE Research Group (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Valladolid, Spain
| | - Jose Schneider
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; Department of Obstetrics & Gynecology, University of Valladolid, School of Medicine, Valladolid, Spain
| | - Francisco Javier Arias
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; Unidad de excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), University of Valladolid CSIC, Valladolid, Spain.
| | - Alessandra Girotti
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; Unidad de excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), University of Valladolid CSIC, Valladolid, Spain.
| |
Collapse
|
3
|
Bidwell GL. Novel Protein Therapeutics Created Using the Elastin-Like Polypeptide Platform. Physiology (Bethesda) 2021; 36:367-381. [PMID: 34486397 DOI: 10.1152/physiol.00026.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are bioengineered proteins that have a unique physical property, a thermally triggered inverse phase transition, that can be exploited for drug delivery. ELP-fusion proteins can be used as soluble biologics, thermally targeted drug carriers, self-assembling nanoparticles, and slow-release drug depots. Because of their unique physical characteristics and versatility for delivery of nearly any type of therapeutic, ELP-based drug delivery systems represent a promising platform for biologics development.
Collapse
Affiliation(s)
- Gene L Bidwell
- Departments of Neurology, Cell and Molecular Biology, and Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
4
|
Jenkins IC, Milligan JJ, Chilkoti A. Genetically Encoded Elastin-Like Polypeptides for Drug Delivery. Adv Healthc Mater 2021; 10:e2100209. [PMID: 34080796 DOI: 10.1002/adhm.202100209] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/14/2021] [Indexed: 12/19/2022]
Abstract
Elastin-like polypeptides (ELPs) are thermally responsive biopolymers that consist of a repeated amino acid motif derived from human tropoelastin. These peptides exhibit temperature-dependent phase behavior that can be harnessed to produce stimuli-responsive biomaterials, such as nanoparticles or injectable drug delivery depots. As ELPs are genetically encoded, the properties of ELP-based biomaterials can be controlled with a precision that is unattainable with synthetic polymers. Unique ELP architectures, such as spherical or rod-like micelles or injectable coacervates, can be designed by manipulating the ELP amino acid sequence and length. ELPs can be loaded with drugs to create controlled, intelligent drug delivery systems. ELPs are biodegradable, nonimmunogenic, and tolerant of therapeutic additives. These qualities make ELPs exquisitely well-suited to address current challenges in drug delivery and have spurred the development of ELP-based therapeutics to treat diseases-such as cancer and diabetes-and to promote wound healing. This review focuses on the use of ELPs in drug delivery systems.
Collapse
Affiliation(s)
- Irene C. Jenkins
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| | - Joshua J. Milligan
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| |
Collapse
|
5
|
Basheer A, Shahid S, Kang MJ, Lee JH, Lee JS, Lim DW. Switchable Self-Assembly of Elastin- and Resilin-Based Block Copolypeptides with Converse Phase Transition Behaviors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24385-24400. [PMID: 34006089 DOI: 10.1021/acsami.1c00676] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly of thermally responsive polypeptides into unique nanostructures offers intriguing attributes including dynamic physical dimensions, biocompatibility, and biodegradability for the smart bio-nanomaterials. As elastin-based polypeptide (EBP) fusion proteins with lower critical solution temperature (LCST) are studied as drug delivery systems, EBP block copolypeptides with the resilin-based polypeptide (RBP) displaying an upper critical solution temperature (UCST) have been of great interest. In this study, we report thermally triggered, dynamic self-assembly of EBP- and RBP-based diblock copolypeptides into switched nanostructures with reversibility under physiological conditions. Molecular DNA clones encoding for the EBP-RBP diblocks at different block length ratios were biosynthesized via recursive directional ligation and overexpressed, followed by nonchromatographic purification by inverse transition cycling. Genetically engineered diblock copolypeptides composed of the EBP with an LCST and the RBP with a UCST showed converse phase transition behaviors with both a distinct LCST and a distinct UCST (LCST < UCST). As temperature increased, three phases of these EBP-RBP diblocks were observed: (1) self-assembled micelles or vesicles below both LCST and UCST, (2) whole aggregates above LCST and below UCST, and (3) reversed micelles above both LCST and UCST. In conclusion, these stimuli-triggered, dynamic protein-based nanostructures are promising for advanced drug delivery systems, regenerative medicine, and biomedical nanotechnology.
Collapse
Affiliation(s)
- Aamna Basheer
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Shahzaib Shahid
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Min Jung Kang
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae Hee Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae Sang Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Woo Lim
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
6
|
Terracciano R, Demarchi D, Ruo Roch M, Aiassa S, Pagana G. Nanomaterials to Fight Cancer: An Overview on Their Multifunctional Exploitability. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2760-2777. [PMID: 33653442 DOI: 10.1166/jnn.2021.19061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years the worldwide research community has highlighted innumerable benefits of nanomaterials in cancer detection and therapy. Nevertheless, the development of cancer nanomedicines and other bionanotechnology requires a huge amount of considerations about the interactions of nanomaterials and biological systems, since long-term effects are not yet fully known. Open issues remain the determination of the nanoparticles distributions patterns and the internalization rate into the tumor while avoiding their accumulation in internal organs or other healthy tissues. The purpose of this work is to provide a standard overview of the most recent advances in nanomaterials to fight cancer and to collect trends and future directions to follow according to some critical aspects still present in this field. Complementary to the very recent review of Wolfram and Ferrari which discusses and classifies successful clinically-approved cancer nanodrugs as well as promising candidates in the pipeline, this work embraces part of their proposed classification system based on the exploitation of multifunctionality and extends the review to peer-reviewed journal articles published in the last 3 years identified through international databases.
Collapse
Affiliation(s)
- Rossana Terracciano
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Danilo Demarchi
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Massimo Ruo Roch
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Simone Aiassa
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Guido Pagana
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| |
Collapse
|
7
|
Boss MK, Oberley-Deegan RE, Batinic-Haberle I, Talmon GA, Somarelli JA, Xu S, Kosmacek EA, Griess B, Mir S, Shrishrimal S, Teoh-Fitzgerald M, Spasojevic I, Dewhirst MW. Manganese Porphyrin and Radiotherapy Improves Local Tumor Response and Overall Survival in Orthotopic Murine Mammary Carcinoma Models. Radiat Res 2021; 195:128-139. [PMID: 33264413 DOI: 10.1667/rade-20-00109.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Novel synthetic compounds, known as manganese porphyrins (MnPs), have been designed to shift the redox status of both normal cells and cancer cells. When MnPs are coupled with cancer therapies, such as radiation, they have been shown to sensitize tumor cells to treatment and protect normal tissues from damage through the modulation of the redox status of various tissue types. Until now, our preclinical studies have focused on local effects of MnPs and radiation; however, we recognize that successful outcomes for cancer patients involve control of tumor cells throughout the body. In this study, using murine orthotopic mammary tumor models, we investigated how MnPs and radiation influence the development of distant metastasis. We hypothesized that the combination of MnP (MnP/RT), such as MnTnBuOE-2-PyP5+ and radiation treatment (RT) would increase local tumor control via a shift in the intratumoral redox environment, leading to subsequent downregulation of HIF-1 in the primary tumor. Secondarily, we hypothesized that these primary tumor treatment effects would result in a reduction in pulmonary metastatic burden. Balb/c mice with orthotopic 4T1 mammary carcinomas were treated with saline, MnP, RT or MnP/RT. We found MnP/RT did extend local tumor growth delay and overall survival compared to controls and was associated with increased intratumoral oxidative stress. However, the primary tumor growth delay observed with MnP/RT was not associated with a reduced pulmonary metastatic burden. Future directions to investigate the effects of MnP/RT on the development of distant metastasis may include modifications to the radiation dose, the experimental timeline or using a murine mammary carcinoma cell line with a less aggressive metastatic behavior. Clinical trials are underway to investigate the clinical utility of MnTnBuOE-2-PyP5+ for patients undergoing radiotherapy for various tumor types. The promising preclinical data from this study, as well as others, provides support that MnP/RT has the potential to improve local tumor control for these patients.
Collapse
Affiliation(s)
- Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Rebecca E Oberley-Deegan
- Department of b Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Shengnan Xu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Elizabeth A Kosmacek
- Department of b Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Brandon Griess
- Department of b Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Shakeel Mir
- Department of b Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Shashank Shrishrimal
- Department of b Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Melissa Teoh-Fitzgerald
- Department of b Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
8
|
Lymph-directed immunotherapy - Harnessing endogenous lymphatic distribution pathways for enhanced therapeutic outcomes in cancer. Adv Drug Deliv Rev 2020; 160:115-135. [PMID: 33039497 DOI: 10.1016/j.addr.2020.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/07/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The advent of immunotherapy has revolutionised the treatment of some cancers. Harnessing the immune system to improve tumour cell killing is now standard clinical practice and immunotherapy is the first line of defence for many cancers that historically, were difficult to treat. A unifying concept in cancer immunotherapy is the activation of the immune system to mount an attack on malignant cells, allowing the body to recognise, and in some cases, eliminate cancer. However, in spite of a significant proportion of patients that respond well to treatment, there remains a subset who are non-responders and a number of cancers that cannot be treated with these therapies. These limitations highlight the need for targeted delivery of immunomodulators to both tumours and the effector cells of the immune system, the latter being highly concentrated in the lymphatic system. In this context, macromolecular therapies may provide a significant advantage. Macromolecules are too large to easily access blood capillaries and instead typically exhibit preferential uptake via the lymphatic system. In contexts where immune cells are the therapeutic target, particularly in cancer therapy, this may be advantageous. In this review, we examine in brief the current immunotherapy approaches in cancer and how macromolecular and nanomedicine strategies may improve the therapeutic profiles of these drugs. We subsequently discuss how therapeutics directed either by parenteral or mucosal administration, can be taken up by the lymphatics thereby accessing a larger proportion of the body's immune cells. Finally, we detail drug delivery strategies that have been successfully employed to target the lymphatics.
Collapse
|
9
|
Dodd RD, Scherer A, Huang W, McGivney GR, Gutierrez WR, Laverty EA, Ashcraft KA, Stephens VR, Yousefpour P, Saha S, Knepper-Adrian V, Floyd W, Chen M, Ma Y, Mastria EM, Cardona DM, Eward WC, Chilkoti A, Kirsch DG. Tumor Subtype Determines Therapeutic Response to Chimeric Polypeptide Nanoparticle-based Chemotherapy in Pten-deleted Mouse Models of Sarcoma. Clin Cancer Res 2020; 26:5036-5047. [PMID: 32718998 PMCID: PMC7641033 DOI: 10.1158/1078-0432.ccr-19-2597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Nanoparticle-encapsulated drug formulations can improve responses to conventional chemotherapy by increasing drug retention within the tumor and by promoting a more effective antitumor immune response than free drug. New drug delivery modalities are needed in sarcomas because they are often chemoresistant cancers, but the rarity of sarcomas and the complexity of diverse subtypes makes it challenging to investigate novel drug formulations. EXPERIMENTAL DESIGN New drug formulations can be tested in animal models of sarcomas where the therapeutic response of different formulations can be compared using mice with identical tumor-initiating mutations. Here, using Cre/loxP and CRISPR/Cas9 techniques, we generated two distinct mouse models of Pten-deleted soft-tissue sarcoma: malignant peripheral nerve sheath tumor (MPNST) and undifferentiated pleomorphic sarcoma (UPS). We used these models to test the efficacy of chimeric polypeptide doxorubicin (CP-Dox), a nanoscale micelle formulation, in comparison with free doxorubicin. RESULTS The CP-Dox formulation was superior to free doxorubicin in MPNST models. However, in UPS tumors, CP-Dox did not improve survival in comparison with free doxorubicin. While CP-Dox treatment resulted in elevated intratumoral doxorubicin concentrations in MPNSTs, this increase was absent in UPS tumors. In addition, elevation of CD8+ T cells was observed exclusively in CP-Dox-treated MPNSTs, although these cells were not required for full efficacy of the CP nanoparticle-based chemotherapy. CONCLUSIONS These results have important implications for treating sarcomas with nanoparticle-encapsulated chemotherapy by highlighting the tumor subtype-dependent nature of therapeutic response.
Collapse
Affiliation(s)
- Rebecca D Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa.
| | - Amanda Scherer
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Wesley Huang
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Gavin R McGivney
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Wade R Gutierrez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Emily A Laverty
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Kathleen A Ashcraft
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | | | - Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Soumen Saha
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | - Warren Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina
| | - Mark Chen
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina
| | - Yan Ma
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Eric M Mastria
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina
| | - Diana M Cardona
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - William C Eward
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - David G Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina.
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
10
|
Wang Z, Chen J, Little N, Lu J. Self-assembling prodrug nanotherapeutics for synergistic tumor targeted drug delivery. Acta Biomater 2020; 111:20-28. [PMID: 32454086 PMCID: PMC7245299 DOI: 10.1016/j.actbio.2020.05.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023]
Abstract
Self-assembling prodrugs represents a robust and effective nanotherapeutic approach for delivering poorly soluble anticancer drugs. With numerous intrinsic advantages, self-assembling prodrugs possess the maximum drug loading capacity, controlled drug release kinetics, prolonged blood circulation, and preferential tumor accumulation based on the enhanced permeability and retention (EPR) effect. These prodrug conjugates allow for efficient self-assembly into nanodrugs with the potential of encapsulating other therapeutic agents that have different molecular targets, enabling simultaneous temporal-spatial release of drugs for synergistic antitumor efficacy with reduced systemic side effects. The aim of this review is to summarize the recent progress of self-assembling prodrug cancer nanotherapeutics that are made through conjugating therapeutically active agents to Polyethylene glycol, Vitamin E, or drugs with different physicochemical properties via rational design, for synergistic tumor targeted drug delivery. Statement of Significance All current FDA-approved nanomedicines use inert biomaterials as drug delivery carriers. These biomaterials lack any therapeutic potential, contributing not only to the cost, but may also elicit severe unfavorable adverse effects. Despite the reduction in toxicity associated with the payload, these nanotherapeutics have been met with limited clinical success, likely due to the monotherapy regimen. The self-assembling prodrug (SAP) has been emerging as a powerful platform for enhancing efficacy through co-delivering other therapeutic modalities with distinct molecular targets. Herein, we opportunely present a comprehensive review article summarizing three unique approaches of making SAP for synergistic drug delivery: pegylation, vitamin E-derivatization, and drug-drug conjugation. These SAPs may inevitably pave the way for developing more efficacious, clinically translatable, combination cancer nanotherapies.
Collapse
|
11
|
Banskota S, Saha S, Bhattacharya J, Kirmani N, Yousefpour P, Dzuricky M, Zakharov N, Li X, Spasojevic I, Young K, Chilkoti A. Genetically Encoded Stealth Nanoparticles of a Zwitterionic Polypeptide-Paclitaxel Conjugate Have a Wider Therapeutic Window than Abraxane in Multiple Tumor Models. NANO LETTERS 2020; 20:2396-2409. [PMID: 32125864 DOI: 10.1021/acs.nanolett.9b05094] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Small-molecule therapeutics demonstrate suboptimal pharmacokinetics and bioavailability due to their hydrophobicity and size. One way to overcome these limitations-and improve their efficacy-is to use "stealth" macromolecular carriers that evade uptake by the reticuloendothelial system. Although unstructured polypeptides are of increasing interest as macromolecular drug carriers, current recombinant polypeptides in the clinical pipeline typically lack stealth properties. We address this challenge by developing new unstructured polypeptides, called zwitterionic polypeptides (ZIPPs), that exhibit "stealth" behavior in vivo. We show that conjugating paclitaxel to a ZIPP imparts amphiphilicity to the polypeptide chain that is sufficient to drive its self-assembly into micelles. This in turn increases the half-life of paclitaxel by 17-fold compared to free paclitaxel, and by 1.6-fold compared to the nonstealth control, i.e., ELP-paclitaxel. Treatment of mice bearing highly aggressive prostate or colon cancer with a single dose of ZIPP-paclitaxel nanoparticles leads to near-complete eradication of the tumor, and these nanoparticles have a wider therapeutic window than Abraxane, an FDA-approved taxane nanoformulation.
Collapse
Affiliation(s)
- Samagya Banskota
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Soumen Saha
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Jayanta Bhattacharya
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nadia Kirmani
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, North Carolina 27708, United States
| | - Parisa Yousefpour
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Michael Dzuricky
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Nikita Zakharov
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Xinghai Li
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ivan Spasojevic
- Department of Medicine, Pharmaceutical Research PK/PD Core Laboratory, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kenneth Young
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
12
|
Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS NANO 2020; 14:3075-3095. [PMID: 32078303 PMCID: PMC7098057 DOI: 10.1021/acsnano.9b08142] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 05/18/2023]
Abstract
Numerous studies have engineered nanoparticles with different physicochemical properties to enhance the delivery efficiency to solid tumors, yet the mean and median delivery efficiencies are only 1.48% and 0.70% of the injected dose (%ID), respectively, according to a study using a nonphysiologically based modeling approach based on published data from 2005 to 2015. In this study, we used physiologically based pharmacokinetic (PBPK) models to analyze 376 data sets covering a wide range of nanomedicines published from 2005 to 2018 and found mean and median delivery efficiencies at the last sampling time point of 2.23% and 0.76%ID, respectively. Also, the mean and median delivery efficiencies were 2.24% and 0.76%ID at 24 h and were decreased to 1.23% and 0.35%ID at 168 h, respectively, after intravenous administration. While these delivery efficiencies appear to be higher than previous findings, they are still quite low and represent a critical barrier in the clinical translation of nanomedicines. We explored the potential causes of this poor delivery efficiency using the more mechanistic PBPK perspective applied to a subset of gold nanoparticles and found that low delivery efficiency was associated with low distribution and permeability coefficients at the tumor site (P < 0.01). We also demonstrate how PBPK modeling and simulation can be used as an effective tool to investigate tumor delivery efficiency of nanomedicines.
Collapse
Affiliation(s)
- Yi-Hsien Cheng
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chunla He
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jim E. Riviere
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- 1Data
Consortium, Kansas State University, Manhattan, Kansas 66506, United States
| | - Nancy A. Monteiro-Riviere
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zhoumeng Lin
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
13
|
Wang J, Saha S, Schaal JL, Yousefpour P, Li X, Chilkoti A. Heuristics for the Optimal Presentation of Bioactive Peptides on Polypeptide Micelles. NANO LETTERS 2019; 19:7977-7987. [PMID: 31642326 DOI: 10.1021/acs.nanolett.9b03141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioactive peptides describe a very large group of compounds with diverse functions and wide applications, and their multivalent display by nanoparticles can maximize their activities. However, the lack of a universal nanoparticle platform and design rules for their optimal presentation limits the development and application of peptide ligand-decorated nanoparticles. To address this need, we developed a multivalent nanoparticle platform to study the impact of nanoparticle surface hydrophilicity and charge on peptide targeting and internalization by tumor cells. This system consists of micelles of a recombinant elastin-like polypeptide diblock copolymer (ELPBC) that present genetically encoded peptides at the micelle surface without perturbing the size, shape, stability, or peptide valency of the micelle, regardless of the peptide type. We created the largest extant set of 98 combinations of 15 tumor-homing peptides that are presented on the corona of this ELPBC micelle via 8 different peptide linkers that vary in their length and charge and also created control micelles that present the linker only. Analysis of the structure-function relationship of tumor cell targeting by this set of peptide-decorated nanoparticles enabled us to derive heuristics to optimize the delivery of peptides based on their physicochemical properties and to identify a peptide that is likely to be a widely useful ligand for targeting across nanoparticle types. This study shows that ELPBC micelles are a robust and convenient system for the presentation of diverse peptides and provides useful insights into the appropriate presentation of structurally diverse peptide ligands on nanoparticles based on their physicochemical properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
14
|
Dzuricky M, Xiong S, Weber P, Chilkoti A. Avidity and Cell Uptake of Integrin-Targeting Polypeptide Micelles is Strongly Shape-Dependent. NANO LETTERS 2019; 19:6124-6132. [PMID: 31389705 DOI: 10.1021/acs.nanolett.9b02095] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We describe a genetically encoded micelle for targeted delivery consisting of a diblock polypeptide with segments derived from repetitive protein motifs inspired by Drosophila melanogaster Rec-1 resilin and human tropoelastin with a C-terminal fusion of an integrin-targeting fibronectin type III domain. By systematically varying the weight fraction of the hydrophilic elastin-like polypeptide (ELP) block and molecular weight of the diblock polypeptide, we designed micelles of different morphologies that modulate the binding avidity of the human wild-type 10th fibronectin domain (Fn3) as a function of shape. We show that wormlike micelles that present the Fn3 domain have a 1000-fold greater avidity for the αvβ3 receptor compared to the monomer ligand and an avidity that is greater than a clinically relevant antibody that is driven by their multivalency. The amplified avidity of these micelles leads to significantly increased cellular internalization, a feature that may have utility for the intracellular delivery of drugs that are loaded into the core of these micelles.
Collapse
Affiliation(s)
- Michael Dzuricky
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Sinan Xiong
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Patrick Weber
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
- Swiss Nanoscience Institute , University of Basel , Basel 4056 , Switzerland
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
15
|
Abstract
The systemic delivery of drugs to the body via circulation after oral administration is a preferred method of drug administration during cancer treatment given its ease of implementation. However, the physicochemical properties of many current anticancer drugs limit their effectiveness when delivered by systemic routes. The use of nanoparticles (NPs) has emerged as an effective means of overcoming the inherent limitations of systemic drug delivery. We provide herein an overview of various NP formulations that facilitate improvements in the efficacy of various anticancer drugs compared with the free drug. This review will be useful to the reader who is interested in the role NP technology is playing in shaping the future of chemotherapeutic drug delivery and disease treatment.
Collapse
|
16
|
Gonzalez-Valdivieso J, Girotti A, Muñoz R, Rodriguez-Cabello JC, Arias FJ. Self-Assembling ELR-Based Nanoparticles as Smart Drug-Delivery Systems Modulating Cellular Growth via Akt. Biomacromolecules 2019; 20:1996-2007. [DOI: 10.1021/acs.biomac.9b00206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Juan Gonzalez-Valdivieso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Raquel Muñoz
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - J. Carlos Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - F. Javier Arias
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
17
|
Zhu C, Li M, Vincent T, Martin HL, Crouch BT, Martinez AF, Madonna MC, Palmer GM, Dewhirst MW, Ramanujam N. Simultaneous in vivo optical quantification of key metabolic and vascular endpoints reveals tumor metabolic diversity in murine breast tumor models. JOURNAL OF BIOPHOTONICS 2019; 12:e201800372. [PMID: 30565420 PMCID: PMC8744479 DOI: 10.1002/jbio.201800372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 05/24/2023]
Abstract
Therapeutically exploiting vascular and metabolic endpoints becomes critical to translational cancer studies because altered vascularity and deregulated metabolism are two important cancer hallmarks. The metabolic and vascular phenotypes of three sibling breast tumor lines with different metastatic potential are investigated in vivo with a newly developed quantitative spectroscopy system. All tumor lines have different metabolic and vascular characteristics compared to normal tissues, and there are strong positive correlations between metabolic (glucose uptake and mitochondrial membrane potential) and vascular (oxygen saturations and hemoglobin concentrations) parameters for metastatic (4T1) tumors but not for micrometastatic (4T07) and nonmetastatic (67NR) tumors. A longitudinal study shows that both vascular and metabolic endpoints of 4T1 tumors increased up to a specific tumor size threshold beyond which these parameters decreased. The synchronous changes between metabolic and vascular parameters, along with the strong positive correlations between these endpoints suggest that 4T1 tumors rely on strong oxidative phosphorylation in addition to glycolysis. This study illustrates the great potential of our optical technique to provide valuable dynamic information about the interplay between the metabolic and vascular status of tumors, with important implications for translational cancer investigations.
Collapse
Affiliation(s)
- Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Martin Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Thomas Vincent
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Hannah L Martin
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Brian T Crouch
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Amy F Martinez
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Office of Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Megan C Madonna
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Gregory M Palmer
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| |
Collapse
|
18
|
Fernandes RS, Silva JO, Mussi SV, Lopes SCA, Leite EA, Cassali GD, Cardoso VN, Townsend DM, Colletti PM, Ferreira LAM, Rubello D, de Barros ALB. Nanostructured Lipid Carrier Co-loaded with Doxorubicin and Docosahexaenoic Acid as a Theranostic Agent: Evaluation of Biodistribution and Antitumor Activity in Experimental Model. Mol Imaging Biol 2019; 20:437-447. [PMID: 29043471 DOI: 10.1007/s11307-017-1133-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Nanotheranostic platforms, i.e., the combination of both therapeutic and diagnostic agents on a single platform, are emerging as an interesting tool for the personalized cancer medicine. Therefore, the aim of this work was to evaluate the in vivo properties of a Tc-99m-labeled nanostructured lipid carrier (NLC) formulation, co-loaded with doxorubicin (DOX) and docosahexaenoic acid (DHA), for theranostic applications. PROCEDURES NLC-DHA-DOX were prepared busing the hot melting homogenization method using an emulsification-ultrasound and were radiolabeled with Tc-99m. Biodistribution studies, scintigraphic images, and antitumor activity were performed in 4T1 tumor-bearing mice. RESULTS NCL was successfully radiolabeled with Tc-99m. Blood clearance showed a relatively long half-life, with blood levels decaying in a biphasic manner (T1/2 α = 38.7 min; T1/2 β = 516.5 min). The biodistribution profile and scintigraphic images showed higher tumor uptake compared to contralateral muscle in all time-points investigated. Antitumor activity studies showed a substantial tumor growth inhibition ratio for NLC-DHA-DOX formulation. In addition, the formulation showed more favorable toxicity profiles when compared to equivalent doses of free administered drugs, being able to reduce heart and liver damage. CONCLUSIONS Therefore, NLC-DHA-DOX formulation demonstrated feasibility in breast cancer treatment and diagnosis/monitoring, leading to a new possibility of a theranostic platform.
Collapse
Affiliation(s)
- Renata S Fernandes
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Juliana O Silva
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Samuel V Mussi
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Sávia C A Lopes
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Elaine A Leite
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Geovanni D Cassali
- Biological Science Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Valbert N Cardoso
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick M Colletti
- Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Lucas A M Ferreira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, NeuroRadiology, Medical Physics, Clinical Pathology & Molecular Biology, Santa Maria della Misericordia Hospital, Via Tre Martiri, 140, 45100, Rovigo, Italy.
| | - André L B de Barros
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
19
|
Costa SA, Mozhdehi D, Dzuricky MJ, Isaacs FJ, Brustad EM, Chilkoti A. Active Targeting of Cancer Cells by Nanobody Decorated Polypeptide Micelle with Bio-orthogonally Conjugated Drug. NANO LETTERS 2019; 19:247-254. [PMID: 30540482 PMCID: PMC6465085 DOI: 10.1021/acs.nanolett.8b03837] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polypeptides are promising carriers for chemotherapeutics: they have minimal toxicity, can be recombinantly synthesized with precise control over molecular weight, and enhance drug pharmacokinetics as self-assembled nanoparticles. Polypeptide-based systems also provide the ability to achieve active targeting with genetically encoded targeting ligands. While passive targeting promotes accumulation of nanocarriers in solid tumors, active targeting provides an additional layer of tunable control and widens the therapeutic window. However, fusion of most targeting proteins to polypeptide carriers exposes the limitations of this approach: the residues that are used for drug attachment are also promiscuously distributed on protein surfaces. We present here a universal methodology to solve this problem by the site-specific attachment of extrinsic moieties to polypeptide drug delivery systems without cross-reactivity to fused targeting domains. We incorporate an unnatural amino acid, p-acetylphenylalanine, to provide a biorthogonal ketone for attachment of doxorubicin in the presence of reactive amino acids in a nanobody-targeted, elastin-like polypeptide nanoparticle. These nanoparticles exhibit significantly greater cytotoxicity than nontargeted controls in multiple cancer cell lines.
Collapse
Affiliation(s)
- Simone A. Costa
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Davoud Mozhdehi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Michael J. Dzuricky
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Farren J. Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
| | - Eric M. Brustad
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
20
|
Zhang Y, Zhang J, Xu W, Xiao G, Ding J, Chen X. Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomater 2018; 77:63-73. [PMID: 30006312 DOI: 10.1016/j.actbio.2018.07.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022]
Abstract
Topical chemotherapy with complementary drugs is one of the most promising strategies to achieve an effective antitumor activity. Herein, a synergistic strategy for hepatoma therapy by the combination of tumor microenvironment-sensitive polymer-doxorubicin (DOX) conjugate thermogel, containing a DNA intercalator DOX, and docetaxel (DTX), a microtubule-interfering agent, was proposed. First, cis-aconitic anhydride-functionalized DOX (CAD) and succinic anhydride-modified DOX (SAD) were conjugated onto the terminal hydroxyl groups of poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG-PLGA), yielding the acid-sensitive CAD-PLGA-PEG-PLGA-CAD and the insensitive SAD-PLGA-PEG-PLGA-SAD conjugates, respectively. The prodrug aqueous solution exhibited a thermoreversible sol-gel transition between room and physiological temperature. Meantime, appropriate mechanical property, biodegradability, as well as a sustained release profile were revealed in such prodrug thermogels. More importantly, the addition of DTX to the DOX-conjugated thermogels (i.e., Gel-CAD and Gel-SAD) was verified with enhanced curative effect against tumor, where the antitumor efficacy of Gel-CAD+DTX was obviously higher than the other groups. A reliable security in vivo was also showed in the Gel-CAD+DTX group. Taken together, such combination of tumor microenvironment-labile prodrug thermogel and a complementary drug exhibited fascinating prospect for local synergistic antineoplastic therapy. STATEMENT OF SIGNIFICANCE Multidrug chemotherapy with synergistic effect has been proposed recently for hepatoma treatment in the clinic. However, the quick release, fast elimination, and unselectivity of multidrugs in vivo always limit their further application. To solve this problem, a synergistic combination of tumor microenvironment-sensitive polymeric doxorubicin (DOX) prodrug thermogel for DNA intercalation and a microtubule-interfering agent docetaxel (DTX) is developed in the present study for the local chemotherapy of hepatoma. Interestingly, a pH-triggered sustained release behavior, an enhanced antitumor efficacy, and a favorable security in vivo are observed in the combined dual-drug delivery platform. Therefore, effectively combining tumor microenvironment-labile polymeric prodrug thermogel with a complementary drug provides an advanced system and a promising prospect for local synergistic hepatoma chemotherapy.
Collapse
Affiliation(s)
- Yanbo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Gao Xiao
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, PR China; John A. Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
21
|
Borišev I, Mrđanovic J, Petrovic D, Seke M, Jović D, Srđenović B, Latinovic N, Djordjevic A. Nanoformulations of doxorubicin: how far have we come and where do we go from here? NANOTECHNOLOGY 2018; 29:332002. [PMID: 29798934 DOI: 10.1088/1361-6528/aac7dd] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanotechnology, focused on discovery and development of new pharmaceutical products is known as nanopharmacology, and one research area this branch is engaged in are nanopharmaceuticals. The importance of being nano has been particularly emphasized in scientific areas dealing with nanomedicine and nanopharmaceuticals. Nanopharmaceuticals, their routes of administration, obstacles and solutions concerning their improved application and enhanced efficacy have been briefly yet comprehensively described. Cancer is one of the leading causes of death worldwide and evergrowing number of scientific research on the topic only confirms that the needs have not been completed yet and that there is a wide platform for improvement. This is undoubtedly true for nanoformulations of an anticancer drug doxorubicin, where various nanocarrriers were given an important role to reduce the drug toxicity, while the efficacy of the drug was supposed to be retained or preferably enhanced. Therefore, we present an interdisciplinary comprehensive overview of interdisciplinary nature on nanopharmaceuticals based on doxorubicin and its nanoformulations with valuable information concerning trends, obstacles and prospective of nanopharmaceuticals development, mode of activity of sole drug doxorubicin and its nanoformulations based on different nanocarriers, their brief descriptions of biological activity through assessing in vitro and in vivo behavior.
Collapse
Affiliation(s)
- Ivana Borišev
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Cacicedo ML, Islan GA, León IE, Álvarez VA, Chourpa I, Allard-Vannier E, García-Aranda N, Díaz-Riascos ZV, Fernández Y, Schwartz S, Abasolo I, Castro GR. Bacterial cellulose hydrogel loaded with lipid nanoparticles for localized cancer treatment. Colloids Surf B Biointerfaces 2018; 170:596-608. [PMID: 29975908 DOI: 10.1016/j.colsurfb.2018.06.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
The use of hybrid materials, where a matrix sustains nanoparticles controlling the release of the chemotherapeutic drug, could be beneficial for the treatment of primary tumors prior or after surgery. This localized chemotherapy would guarantee high drug concentrations at the tumor site while precluding systemic drug exposure minimizing undesirable side effects. We combined bacterial cellulose hydrogel (BC) and nanostructured lipid carriers (NLCs) including doxorubicin (Dox) as a drug model. NLCs loaded with cationic Dox (NLCs-H) or neutral Dox (NLCs-N) were fully characterized and their cell internalization and cytotoxic efficacy were evaluated in vitro against MDA-MB-231 cells. Thereafter, a fixed combination of NLCs-H and NLCs-N loaded into BC (BC-NLCs-NH) was assayed in vivo into an orthotopic breast cancer mouse model. NLCs-H showed low encapsulation efficiency (48%) and fast release of the drug while NLCs-N showed higher encapsulation (97%) and sustained drug release. Both NLCs internalized via endocytic pathway, while allowing a sustained release of the Dox, which in turn rendered IC50 values below of those of free Dox. Taking advantage of the differential drug release, a mixture of NLCs-N and NLCs-H was encapsulated into BC matrix (BC-NLCs-NH) and assayed in vivo, showing a significant reduction of tumor growth, metastasis incidence and local drug toxicities.
Collapse
Affiliation(s)
- M L Cacicedo
- Nanobiomaterials Lab, CINDEFI, School of Sciences, National University of La Plata-CONICET (CCT La Plata), 50 & 115 street, CP 1900 AJL, City of La Plata, Buenos Aires, Argentina
| | - G A Islan
- Nanobiomaterials Lab, CINDEFI, School of Sciences, National University of La Plata-CONICET (CCT La Plata), 50 & 115 street, CP 1900 AJL, City of La Plata, Buenos Aires, Argentina
| | - I E León
- Chemical Inorganic Center (CEQUINOR, UNLP, CONICET), School of Sciences, National University of La Plata-CONICET (CCT La Plata), CP 1900 AJL, City of La Plata, Buenos Aires, Argentina
| | - V A Álvarez
- CoMP (Composite Materials Group), Research Institute of Material Science and Technology (INTEMA), Engineering School, National University of Mar del Plata, Av. Colón 10890, B7608FDQ, Mar del Plata, Argentina
| | - I Chourpa
- Université Francois-Rabelais de Tours, EA6295″Nanomedicaments et Nanosondes", 31 Avenue Monge, 37200, Tours, France
| | - E Allard-Vannier
- Université Francois-Rabelais de Tours, EA6295″Nanomedicaments et Nanosondes", 31 Avenue Monge, 37200, Tours, France
| | - N García-Aranda
- Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Z V Díaz-Riascos
- Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Y Fernández
- Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - S Schwartz
- Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| | - I Abasolo
- Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Drug Delivery & Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| | - G R Castro
- Nanobiomaterials Lab, CINDEFI, School of Sciences, National University of La Plata-CONICET (CCT La Plata), 50 & 115 street, CP 1900 AJL, City of La Plata, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Cai C, Lin J, Lu Y, Zhang Q, Wang L. Polypeptide self-assemblies: nanostructures and bioapplications. Chem Soc Rev 2018; 45:5985-6012. [PMID: 27722321 DOI: 10.1039/c6cs00013d] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polypeptide copolymers can self-assemble into diverse aggregates. The morphology and structure of aggregates can be varied by changing molecular architectures, self-assembling conditions, and introducing secondary components such as polymers and nanoparticles. Polypeptide self-assemblies have gained significant attention because of their potential applications as delivery vehicles for therapeutic payloads and as additives in the biomimetic mineralization of inorganics. This review article provides an overview of recent advances in nanostructures and bioapplications related to polypeptide self-assemblies. We highlight recent contributions to developing strategies for the construction of polypeptide assemblies with increasing complexity and novel functionality that are suitable for bioapplications. The relationship between the structure and properties of the polypeptide aggregates is emphasized. Finally, we briefly outline our perspectives and discuss the challenges in the field.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
24
|
Ye G, Jiang Y, Yang X, Hu H, Wang B, Sun L, Yang VC, Sun D, Gao W. Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:278-289. [PMID: 29260563 DOI: 10.1021/acsami.7b15978] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inefficient cellular uptake and intracellular drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. To overcome both problems, we designed a smart nanoparticle that undergoes phase transition in a tumor microenvironment (TME). The smart nanoparticle is generated using a lipid-polypetide hybrid nanoparticle, which comprises a PEGylated lipid monolayer shell and a pH-sensitive hydrophobic poly-l-histidine core and is loaded with the antitumor drug doxorubicin (DOX). The smart nanoparticle undergoes a two-step phase transition at two different pH values in the TME: (i) At the TME (pHe: 7.0-6.5), the smart nanoparticle swells, and its surface potential turns from negative to neutral, facilitating the cellular uptake; (ii) After internalization, at the acid endolysosome (pHendo: 6.5-4.5), the smart nanoparticle dissociates and induces endolysosome escape to release DOX into the cytoplasm. In addition, a tumor-penetrating peptide iNRG was modified on the surface of the smart nanoparticle as a tumor target moiety. The in vitro studies demonstrated that the iNGR-modified smart nanoparticles promoted cellular uptake in the acidic environment (pH 6.8). The in vivo studies showed that the iNGR-modified smart nanoparticles exerted more potent antitumor efficacy against late-stage aggressive breast carcinoma than free DOX. These data suggest that the smart nanoparticles may serve as a promising delivery system for sequential uptake and intracellular drug release of antitumor agents. The easy preparation of these smart nanoparticles may also have advantages in the future manufacture for clinical trials and clinical use.
Collapse
Affiliation(s)
- Guihua Ye
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University , Tianjin 300070, PR China
| | - Yajun Jiang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University , Tianjin 300070, PR China
| | - Xiaoying Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University , Tianjin 300070, PR China
| | - Hongxiang Hu
- College of Pharmacy, University of Michigan , 428 Church Street, Ann Arbor, Michigan 48108, United States
| | - Beibei Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University , Tianjin 300070, PR China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University , Tianjin 300070, PR China
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University , Tianjin 300070, PR China
- College of Pharmacy, University of Michigan , 428 Church Street, Ann Arbor, Michigan 48108, United States
| | - Duxin Sun
- College of Pharmacy, University of Michigan , 428 Church Street, Ann Arbor, Michigan 48108, United States
| | - Wei Gao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University , Tianjin 300070, PR China
- College of Pharmacy, University of Michigan , 428 Church Street, Ann Arbor, Michigan 48108, United States
| |
Collapse
|
25
|
Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release. J Control Release 2017; 268:390-399. [DOI: 10.1016/j.jconrel.2017.10.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
|
26
|
Mastria EM, Cai LY, Kan MJ, Li X, Schaal JL, Fiering S, Gunn MD, Dewhirst MW, Nair SK, Chilkoti A. Nanoparticle formulation improves doxorubicin efficacy by enhancing host antitumor immunity. J Control Release 2017; 269:364-373. [PMID: 29146246 DOI: 10.1016/j.jconrel.2017.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/15/2017] [Accepted: 11/11/2017] [Indexed: 12/14/2022]
Abstract
Strategies that enhance the host antitumor immune response promise to revolutionize cancer therapy. Optimally mobilizing the immune system will likely require a multi-pronged approach to overcome the resistance developed by tumors to therapy. Recently, it has become recognized that doxorubicin can contribute to re-establishing host antitumor immunity through the generation of immunogenic cell death. However, the potential for delivery strategies to further enhance the immunological effects of doxorubicin has not been adequately examined. We report herein that Chimeric Polypeptide Doxorubicin (CP-Dox), a nanoparticle formulation of doxorubicin, enhances antitumor immunity. Compared to free doxorubicin, a single intravenous (IV) administration of CP-Dox at the maximum tolerated dose increases the infiltration of leukocytes into the tumor, slowing tumor growth and preventing metastasis in poorly immunogenic 4T1 mammary carcinoma. We demonstrate that the full efficacy of CP-Dox is dependent on CD8+ T cells and IFN-γ. CP-dox treatment also repolarized intratumoral myeloid cells towards an antitumor phenotype. These findings demonstrate that a nanoparticle drug is distinct from the free drug in its ability to productively stimulate antitumor immunity. Our study strongly argues for the use of antitumor immunotherapies combined with nanoparticle-packaged chemotherapy.
Collapse
Affiliation(s)
- Eric M Mastria
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Leon Y Cai
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew J Kan
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jeffrey L Schaal
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Michael D Gunn
- Department of Immunology, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Mark W Dewhirst
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Smita K Nair
- Department of Surgery, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Center for Biologically Inspired Materials and Materials Systems, Duke University, Durham, NC, USA.
| |
Collapse
|
27
|
Luginbuhl KM, Mozhdehi D, Dzuricky M, Yousefpour P, Huang FC, Mayne NR, Buehne KL, Chilkoti A. Recombinant Synthesis of Hybrid Lipid-Peptide Polymer Fusions that Self-Assemble and Encapsulate Hydrophobic Drugs. Angew Chem Int Ed Engl 2017; 56:13979-13984. [PMID: 28879687 PMCID: PMC5909378 DOI: 10.1002/anie.201704625] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/14/2017] [Indexed: 11/06/2022]
Abstract
Inspired by biohybrid molecules that are synthesized in Nature through post-translational modification (PTM), we have exploited a eukaryotic PTM to recombinantly synthesize lipid-polypeptide hybrid materials. By co-expressing yeast N-myristoyltransferase with an elastin-like polypeptide (ELP) fused to a short recognition sequence in E. coli, we show robust and high-yield modification of the ELP with myristic acid. The ELP's reversible phase behavior is retained upon myristoylation and can be tuned to span a 30-60 °C. Myristoylated ELPs provide a versatile platform for genetically pre-programming self-assembly into micelles of varied size and shape. Their lipid cores can be loaded with hydrophobic small molecules by passive diffusion. Encapsulated doxorubicin and paclitaxel exhibit cytotoxic effects on 4T1 and PC3-luc cells, respectively, with potencies similar to chemically conjugated counterparts, and longer plasma circulation than free drug upon intravenous injection in mice.
Collapse
Affiliation(s)
- Kelli M Luginbuhl
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Davoud Mozhdehi
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Michael Dzuricky
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
| | - Fred C Huang
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
| | - Nicholas R Mayne
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
| | - Kristen L Buehne
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
28
|
Abstract
Covalent modification of therapeutic compounds is a clinically proven strategy to devise prodrugs with enhanced treatment efficacies. This prodrug strategy relies on the modified drugs that possess advantageous pharmacokinetic properties and administration routes over their parent drug. Self-assembling prodrugs represent an emerging class of therapeutic agents capable of spontaneously associating into well-defined supramolecular nanostructures in aqueous solutions. The self-assembly of prodrugs expands the functional space of conventional prodrug design, affording a possible pathway to more effective therapies as the assembled nanostructure possesses distinct physicochemical properties and interaction potentials that can be tailored to specific administration routes and disease treatment. In this review, we will discuss the various types of self-assembling prodrugs in development, providing an overview of the methods used to control their structure and function and, ultimately, our perspective on their current and future potential.
Collapse
Affiliation(s)
- Andrew G Cheetham
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
| | | | | | | |
Collapse
|
29
|
Wang J, Dzuricky M, Chilkoti A. The Weak Link: Optimization of the Ligand-Nanoparticle Interface To Enhance Cancer Cell Targeting by Polymer Micelles. NANO LETTERS 2017; 17:5995-6005. [PMID: 28853896 PMCID: PMC6372105 DOI: 10.1021/acs.nanolett.7b02225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Many promising targeting ligands are hydrophobic peptides, and these ligands often show limited accessibility to receptors, resulting in suboptimal targeting. A systematic study to elucidate the rules for the design of linkers that optimize their presentation on nanoparticles has not been carried out to date. In this study, we recombinantly synthesized an elastin-like polypeptide diblock copolymer (ELPBC) that self-assembles into monodisperse micelles. AHNP and EC1, two hydrophobic ErbB2-targeted peptide ligands, were incorporated at the C-terminus of the ELPBC with an intervening peptide linker. We tested more than 20 designs of peptide linkers, where the linker could be precisely engineered at the gene level to systematically investigate the molecular parameters-sequence, length, and charge-of the peptide linker that optimally assist ligands in targeting the ErbB2 receptor on cancer cells. We found that peptide linkers with a minimal length of 12 hydrophilic amino acids and an overall cationic charge-and that impart a zeta potential of the micelle that is close to neutral-were necessary to enhance the uptake of peptide-modified ELPBC micelles by cancer cells that overexpress the ErbB2 receptor. This work advances our understanding of the optimal presentation of hydrophobic ligands by nanoparticles and suggests design rules for peptide linkers for targeted delivery by polymer micelles, an emerging class of nanoparticle carriers for drugs and imaging agents.
Collapse
|
30
|
Luginbuhl KM, Mozhdehi D, Dzuricky M, Yousefpour P, Huang FC, Mayne NR, Buehne KL, Chilkoti A. Recombinant Synthesis of Hybrid Lipid–Peptide Polymer Fusions that Self‐Assemble and Encapsulate Hydrophobic Drugs. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kelli M. Luginbuhl
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
- NSF Research Triangle Materials Research Science and Engineering Center Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Davoud Mozhdehi
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
- NSF Research Triangle Materials Research Science and Engineering Center Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Michael Dzuricky
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
- NSF Research Triangle Materials Research Science and Engineering Center Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Parisa Yousefpour
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
| | - Fred C. Huang
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
| | - Nicholas R. Mayne
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
| | - Kristen L. Buehne
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
- NSF Research Triangle Materials Research Science and Engineering Center Department of Biomedical Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
31
|
Wang J, Bhattacharyya J, Mastria E, Chilkoti A. A quantitative study of the intracellular fate of pH-responsive doxorubicin-polypeptide nanoparticles. J Control Release 2017; 260:100-110. [PMID: 28576641 DOI: 10.1016/j.jconrel.2017.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/13/2017] [Accepted: 05/26/2017] [Indexed: 11/27/2022]
Abstract
Nanoscale carriers with an acid-labile linker between the carrier and drug are commonly used for drug delivery. However, their efficacy is potentially limited by inefficient linker cleavage, and lysosomal entrapment of drugs. To address these critical issues, we developed a new imaging method that spatially overlays the location of a nanoparticle and the released drug from the nanoparticle, on a map of the local intracellular pH that delineates individual endosomes and lysosomes, and the therapeutic intracellular target of the drug-the nucleus. We used this method to quantitatively map the intracellular fate of micelles of a recombinant polypeptide conjugated with doxorubicin via an acid-labile hydrazone linker as a function of local pH and time within live cells. We found that hydrolysis of the acid-labile linker is incomplete because the pH range of 4-7 in the endosomes and lysosomes does not provide complete cleavage of the drug from the nanoparticle, but that once cleaved, the drug escapes the acidic endo-lysosomal compartment into the cytosol and traffics to its therapeutic destination-the nucleus. This study also demonstrated that unlike free drug, which enters the cytosol directly through the cell membrane and then traffics into the nucleus, the nanoparticle-loaded drug almost exclusively traffics into endosomes and lysosomes upon intracellular uptake, and only reaches the nucleus after acid-triggered drug release in the endo-lysosomes. This methodology provides a better and more quantitative understanding of the intracellular behavior of drug-loaded nanoparticles, and provides insights for the design of the next-generation of nanoscale drug delivery systems.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Jayanta Bhattacharyya
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Eric Mastria
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States.
| |
Collapse
|
32
|
Han W, Chilkoti A, López GP. Self-assembled hybrid elastin-like polypeptide/silica nanoparticles enable triggered drug release. NANOSCALE 2017; 9:6178-6186. [PMID: 28447683 DOI: 10.1039/c7nr00172j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The discovery of biomimetic polypeptides that enable the biomineralization of synthetic and biosynthetic materials has resulted in the development of hybrid materials that incorporate inorganic components for potential application in drug delivery, enzyme immobilization, and surface modification. Here, we describe an approach that uses micellar assemblies of an elastin-like polypeptide (ELP) modified with silica-promoting sequences and drug conjugates that are subsequently encapsulated within a silica matrix. Incorporation of a lysine-rich tag derived from the silaffin R5 peptide into the N-terminus of a hydrophilic ELP that self-assembles upon conjugation of hydrophobic molecules at the C-terminus results in the formation of spherical micelles with a conjugated drug embedded in the core and a corona that is decorated with the silaffin peptide. These micelles serve as the building blocks for the polycondensation of silica into uniform, hybrid polypeptide-silica nanoparticles. We demonstrate proof-of-concept examples using a model hydrophobic small molecule and doxorobucin, a small molecule chemotherapeutic, and further show pH-dependent doxorubicin release from the hybrid nanoparticles.
Collapse
Affiliation(s)
- Wei Han
- Research Triangle Materials Science and Engineering Center, Durham, North Carolina 27708, USA.
| | | | | |
Collapse
|
33
|
Yin L, Yuvienco C, Montclare JK. Protein based therapeutic delivery agents: Contemporary developments and challenges. Biomaterials 2017; 134:91-116. [PMID: 28458031 DOI: 10.1016/j.biomaterials.2017.04.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
As unique biopolymers, proteins can be employed for therapeutic delivery. They bear important features such as bioavailability, biocompatibility, and biodegradability with low toxicity serving as a platform for delivery of various small molecule therapeutics, gene therapies, protein biologics and cells. Depending on size and characteristic of the therapeutic, a variety of natural and engineered proteins or peptides have been developed. This, coupled to recent advances in synthetic and chemical biology, has led to the creation of tailor-made protein materials for delivery. This review highlights strategies employing proteins to facilitate the delivery of therapeutic matter, addressing the challenges for small molecule, gene, protein and cell transport.
Collapse
Affiliation(s)
- Liming Yin
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Carlo Yuvienco
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York, NY 10003, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States.
| |
Collapse
|
34
|
Fernandes RS, Silva JO, Monteiro LOF, Leite EA, Cassali GD, Rubello D, Cardoso VN, Ferreira LAM, Oliveira MC, de Barros ALB. Doxorubicin-loaded nanocarriers: A comparative study of liposome and nanostructured lipid carrier as alternatives for cancer therapy. Biomed Pharmacother 2016; 84:252-257. [PMID: 27664949 DOI: 10.1016/j.biopha.2016.09.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023] Open
Abstract
Nowadays cancer is one of the most common causes of deaths worldwide. Conventional antitumor agents still present various problems related to specificity for tumor cells often leading to therapeutic failure. Nanoscale particles are considered potential alternative to direct access of drugs into tumor cells, therefore increasing the drug accumulation and performance. The aim of this study was to evaluate the antitumor activity of doxorubicin (DOX)-loaded nanostructured lipid carriers (NLC) versus liposomes against a breast cancer animal experimental model. NLC-DOX and liposomes-DOX were successfully prepared and characterized. Tumor-bearing mice were divided into five groups (blank-NLC, blank-liposome, DOX, NLC-DOX, liposome-DOX). Each animal received by the tail vein four doses of antitumoral drugs (total dose, 16mg/kg), every 3 days. Antitumor efficacy was assessed by measuring 1) tumor volume, calculating the inhibitory ratio (TV-IR, see after) and 2) acquiring scintigraphic images of the tumor using doxorubicin radiolabeled with technetium-99m as an imaging tumor probe. Liposome-DOX and free DOX did not showed differences in the tumor mean volume, whereas NLC-DOX proved to be the best treatments in controlling the tumor growth. NLC-DOX showed an inhibition ration (TV-IR) of 73.5% while free DOX and liposome-DOX decreased TV-RI of 48.8% and 68.0%, respectively. Tumor was clearly visualized in controls, DOX, and liposome-DOX groups. Yet, regarding the NLC-DOX group, tumor was barely identified by the image, indicating antitumor efficacy. Moreover, both NLC and liposomes proved to be able to delay the occurrence of lung metastasis. In conclusion, results of this study indicated that NLC-DOX might be an alternative strategy to achieve an efficient antitumor activity.
Collapse
Affiliation(s)
- Renata S Fernandes
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana O Silva
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Liziane O F Monteiro
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine A Leite
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Geovanni D Cassali
- Biological Science Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Domenico Rubello
- Department of Nuclear Medicine, Molecular Imaging, Radiology, NeuroRadiology, Interventional Radiology, Medical Physics, Clinical Laboratory, Microbiology & Pathology, Santa Maria dela Misericordia Hospital, Via Tre Martiri 140, Rovigo, 45100, Italy.
| | - Valbert N Cardoso
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas A M Ferreira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Mônica C Oliveira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - André L B de Barros
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
35
|
Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery. Colloids Surf B Biointerfaces 2016; 146:924-37. [PMID: 27472455 DOI: 10.1016/j.colsurfb.2016.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023]
Abstract
The development of effective drug carriers can lead to improved outcomes in a variety of disease conditions. Aminoglycosides have been used as antibacterial therapeutics, and are attractive as monomers for the development of polymeric materials in various applications. Here, we describe the development of novel aminoglycoside-derived amphiphilic nanoparticles for drug delivery, with an eye towards ablation of cancer cells. The aminoglycoside paromomycin was first cross-linked with resorcinol diglycidyl ether leading to the formation of a poly (amino ether), PAE. PAE molecules were further derivatized with methoxy-terminated poly(ethylene glycol) or mPEG resulting in the formation of mPEG-PAE polymer, which self-assembled to form nanoparticles. Formation of the mPEG-PAE amphiphile was characterized using (1)H NMR, (13)C NMR, gel permeation chromatography (GPC) and FTIR spectroscopy. Self-assembly of the polymer into nanoparticles was characterized using dynamic light scattering, zeta potential analyses, atomic force microscopy (AFM) and the pyrene fluorescence assay. mPEG-PAE nanoparticles were able to carry significant amounts of doxorubicin (DOX), presumably by means of hydrophobic interactions between the drug and the core. Cell-based studies indicated that mPEG-PAE nanoparticles, loaded with doxorubicin, were able to induce significant loss in viabilities of PC3 human prostate cancer, MDA-MB-231 human breast cancer, and MB49 murine bladder cancer cells; empty nanoparticles resulted in negligible losses of cell viability under the conditions investigated. Taken together, our results indicate that the mPEG-PAE nanoparticle platform is attractive for drug delivery in different applications, including cancer.
Collapse
|
36
|
Camacho KM, Menegatti S, Vogus DR, Pusuluri A, Fuchs Z, Jarvis M, Zakrewsky M, Evans MA, Chen R, Mitragotri S. DAFODIL: A novel liposome-encapsulated synergistic combination of doxorubicin and 5FU for low dose chemotherapy. J Control Release 2016; 229:154-162. [PMID: 27034194 DOI: 10.1016/j.jconrel.2016.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/25/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
PEGylated liposomes have transformed chemotherapeutic use of doxorubicin by reducing its cardiotoxicity; however, it remains unclear whether liposomal doxorubicin is therapeutically superior to free doxorubicin. Here, we demonstrate a novel PEGylated liposome system, named DAFODIL (Doxorubicin And 5-Flurouracil Optimally Delivered In a Liposome) that inarguably offers superior therapeutic efficacies compared to free drug administrations. Delivery of synergistic ratios of this drug pair led to greater than 90% reduction in tumor growth of murine 4T1 mammary carcinoma in vivo. By exploiting synergistic ratios, the effect was achieved at remarkably low doses, far below the maximum tolerable drug doses. Our approach re-invents the use of liposomes for multi-drug delivery by providing a chemotherapy vehicle which can both reduce toxicity and improve therapeutic efficacy. This methodology is made feasible by the extension of the ammonium-sulfate gradient encapsulation method to nucleobase analogues, a liposomal entrapment method once conceived useful only for anthracyclines. Therefore, our strategy can be utilized to efficiently evaluate various chemotherapy combinations in an effort to translate more effective combinations into the clinic.
Collapse
Affiliation(s)
- Kathryn M Camacho
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, Department of Biomedical Engineering, Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Douglas R Vogus
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Anusha Pusuluri
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Zoë Fuchs
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Maria Jarvis
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Michael Zakrewsky
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Michael A Evans
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Renwei Chen
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Samir Mitragotri
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
37
|
Zhao P, Xia G, Dong S, Jiang ZX, Chen M. An iTEP-salinomycin nanoparticle that specifically and effectively inhibits metastases of 4T1 orthotopic breast tumors. Biomaterials 2016; 93:1-9. [PMID: 27060212 DOI: 10.1016/j.biomaterials.2016.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/24/2016] [Accepted: 03/17/2016] [Indexed: 01/24/2023]
Abstract
Cancer stem cell (CSC) inhibitors are a new category of investigational drugs to treat metastasis. Salinomycin (Sali) is one of most studied CSC inhibitors and has reached clinical tests. Several drug carriers have been developed to improve efficacy of Sali. However, Sali has not been shown to inhibit metastasis from orthotopic tumors, the gold standard for metastasis. To fill this gap, we developed an immune-tolerant, elastin-like polypeptide (iTEP)-based nanoparticle (iTEP-Sali-ABA NP) that released 4-(aminomethyl)benzaldehyde-modified Sali (Sali-ABA) under acidic conditions. We found that the NP increased the area under the curve (AUC) of Sali-ABA by 30-fold and the tumor accumulation by 3.4-fold. Furthermore, no metastasis was detected in any of the mice given the NP. However, all the mice died of primary tumor burdens. To overcome primary tumor growth and improve the overall survival, we applied a combination therapy consisting of the iTEP-Sali-ABA NP and iTEP NP-delivered paclitaxel. This therapy effectively retarded primary tumor growth, and most importantly, improved the overall survival. In conclusion, delivery of Sali-ABA by the NP, alone or in combination with paclitaxel, was more effective than free Sali-ABA in decreasing metastasis and increasing survival. This iTEP-Sali-ABA NP represents a novel and clinically promising therapy to combat metastasis.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Guiquan Xia
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Shuyun Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Zhaong-Xing Jiang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
38
|
Nawroth JF, McDaniel JR, Chilkoti A, Jordan R, Luxenhofer R. Maleimide-Functionalized Poly(2-Oxazoline)s and Their Conjugation to Elastin-Like Polypeptides. Macromol Biosci 2016; 16:322-33. [PMID: 26756582 PMCID: PMC5320936 DOI: 10.1002/mabi.201500376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/16/2015] [Indexed: 11/08/2022]
Abstract
The design of drug delivery systems capable of efficiently delivering poorly soluble drugs to target sites still remains a major challenge. Such materials require several different functionalities; typically, these materials should be biodegradable and nontoxic, nonimmunogenic, responsive to their environment, and soluble in aqueous solution while retaining the ability to solubilize hydrophobic drugs. Here, a polypeptide-polymer hybrid of elastin-like polypeptides (ELPs) and poly(2-oxazoline)s (POx) is reported. This paper describes the chemical synthesis, physical characteristics, and drug loading potential of these novel hybrid macromolecules. A novel method is introduced for terminal functionalization of POx with protected maleimide moieties. Following recovery of the maleimide group via a retro Diels-Alder reaction, the consecutive Michael addition of thiol-functionalized ELPs yields the desired protein-polymer conjugate. These conjugates form nanoparticles in aqueous solution capable of solubilizing the anti-cancer drug paclitaxel with up to 8 wt% loading.
Collapse
Affiliation(s)
- Jonas F Nawroth
- Department Chemie, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - Jonathan R McDaniel
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
| | - Rainer Jordan
- Department Chemie, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - Robert Luxenhofer
- Department Chemie, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| |
Collapse
|
39
|
Rodríguez-Cabello JC, Arias FJ, Rodrigo MA, Girotti A. Elastin-like polypeptides in drug delivery. Adv Drug Deliv Rev 2016; 97:85-100. [PMID: 26705126 DOI: 10.1016/j.addr.2015.12.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
The use of recombinant elastin-like materials, or elastin-like recombinamers (ELRs), in drug-delivery applications is reviewed in this work. Although ELRs were initially used in similar ways to other, more conventional kinds of polymeric carriers, their unique properties soon gave rise to systems of unparalleled functionality and efficiency, with the stimuli responsiveness of ELRs and their ability to self-assemble readily allowing the creation of advanced systems. However, their recombinant nature is likely the most important factor that has driven the current breakthrough properties of ELR-based delivery systems. Recombinant technology allows an unprecedented degree of complexity in macromolecular design and synthesis. In addition, recombinant materials easily incorporate any functional domain present in natural proteins. Therefore, ELR-based delivery systems can exhibit complex interactions with both their drug load and the tissues and cells towards which this load is directed. Selected examples, ranging from highly functional nanocarriers to macrodepots, will be presented.
Collapse
|
40
|
Abstract
The convergence of nanoscience and drug delivery has prompted the formation of the field of nanomedicine, one that exploits the novel physicochemical and biological properties of nanostructures for improved medical treatments and reduced side effects. Until recently, this nanostructure-mediated strategy considered the drug to be solely a biologically active compound to be delivered, and its potential as a molecular building unit remained largely unexplored. A growing trend within nanomedicine has been the use of drug molecules to build well-defined nanostructures of various sizes and shapes. This strategy allows for the creation of self-delivering supramolecular nanomedicines containing a high and fixed drug content. Through rational design of the number and type of the drug incorporated, the resulting nanostructures can be tailored to assume various morphologies (e.g. nanospheres, rods, nanofibers, or nanotubes) for a particular mode of administration such as systemic, topical, and local delivery. This review covers the recent advances in this rapidly developing field, with the aim of providing an in-depth evaluation of the exciting opportunities that this new field could create to improve the current clinical practice of nanomedicine.
Collapse
Affiliation(s)
- Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou, Henan 450052, China
| | - Andrew G. Cheetham
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou, Henan 450052, China
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, USA
| |
Collapse
|
41
|
Su H, Koo JM, Cui H. One-component nanomedicine. J Control Release 2015; 219:383-395. [PMID: 26423237 PMCID: PMC4656119 DOI: 10.1016/j.jconrel.2015.09.056] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/06/2023]
Abstract
One-component nanomedicine (OCN) represents an emerging class of therapeutic nanostructures that contain only one type of chemical substance. This one-component feature allows for fine-tuning and optimization of the drug loading and physicochemical properties of nanomedicine in a precise manner through molecular engineering of the underlying building blocks. Using a precipitation procedure or effective molecular assembly strategies, molecularly crafted therapeutic agents (e.g. polymer-drug conjugates, small molecule prodrugs, or drug amphiphiles) could involuntarily aggregate, or self-assemble into nanoscale objects of well-defined sizes and shapes. Unlike traditional carrier-based nanomedicines that are inherently multicomponent systems, an OCN does not require the use of additional carriers and could itself possess desired physicochemical features for preferential accumulation at target sites. We review here recent progress in the molecular design, conjugation methods, and fabrication strategies of OCN, and analyze the opportunities that this emerging platform could open for the new and improved treatment of devastating diseases such as cancer.
Collapse
Affiliation(s)
- Hao Su
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Jin Mo Koo
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA.
| |
Collapse
|
42
|
Gothwal A, Khan I, Gupta U. Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs. Pharm Res 2015. [PMID: 26381278 DOI: 10.1007/s11095‐015‐1784‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanotechnology, in health and medicine, extensively improves the safety and efficacy of different therapeutic agents, particularly the aspects related to drug delivery and targeting. Among various nano-carriers, polymer based macromolecular approaches have resulted in improved drug delivery for the diseases like cancers, diabetes, autoimmune disorders and many more. Polymeric micelles consisting of hydrophilic exterior and hydrophobic core have established a record of anticancer drug delivery from the laboratory to commercial reality. The nanometric size, tailor made functionality, multiple choices of polymeric micelle synthesis and stability are the unique properties, which have attracted scientists and researchers around the world to work upon in this opportunistic drug carrier. The capability of polymeric micelles as nano-carriers are nowhere less significant than nanoparticles, liposomes and other nanocarriers, as per as the commercial feasibility and presence is concerned. In fact polymeric micelles are among the most extensively studied delivery platforms for the effective treatment of different cancers as well as non-cancerous disorders. The present review highlights the sequential and recent developments in the design, synthesis, characterization and evaluation of polymeric micelles to achieve the effective anticancer drug delivery. The future possibilities and clinical outcome have also been discussed, briefly.
Collapse
Affiliation(s)
- Avinash Gothwal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Iliyas Khan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
43
|
Gothwal A, Khan I, Gupta U. Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs. Pharm Res 2015; 33:18-39. [PMID: 26381278 DOI: 10.1007/s11095-015-1784-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/24/2015] [Indexed: 12/24/2022]
Abstract
Nanotechnology, in health and medicine, extensively improves the safety and efficacy of different therapeutic agents, particularly the aspects related to drug delivery and targeting. Among various nano-carriers, polymer based macromolecular approaches have resulted in improved drug delivery for the diseases like cancers, diabetes, autoimmune disorders and many more. Polymeric micelles consisting of hydrophilic exterior and hydrophobic core have established a record of anticancer drug delivery from the laboratory to commercial reality. The nanometric size, tailor made functionality, multiple choices of polymeric micelle synthesis and stability are the unique properties, which have attracted scientists and researchers around the world to work upon in this opportunistic drug carrier. The capability of polymeric micelles as nano-carriers are nowhere less significant than nanoparticles, liposomes and other nanocarriers, as per as the commercial feasibility and presence is concerned. In fact polymeric micelles are among the most extensively studied delivery platforms for the effective treatment of different cancers as well as non-cancerous disorders. The present review highlights the sequential and recent developments in the design, synthesis, characterization and evaluation of polymeric micelles to achieve the effective anticancer drug delivery. The future possibilities and clinical outcome have also been discussed, briefly.
Collapse
Affiliation(s)
- Avinash Gothwal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Iliyas Khan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|