1
|
Wen P, Dirisala A, Guo H, Liu X, Kobayashi S, Kinoh H, Anada T, Tanaka M, Kataoka K, Li J. Engineering durable antioxidative nanoreactors as synthetic organelles for autoregulatory cellular protection against oxidative stress. J Control Release 2025:113683. [PMID: 40185336 DOI: 10.1016/j.jconrel.2025.113683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Polymersomes, which are polymer vesicles containing an aqueous cavity enclosed in a polymer membrane, hold enormous potential for biomedical applications. In recent years, enzyme-loaded polymersomes, serving as therapeutic nanoreactors, have drawn substantial interest. A crucial requirement for effective catalytic function is to impart semipermeability to the vesicular membrane while maintaining its role as a protective barrier for encapsulated enzymes. However, achieving both long-term stability and optimal membrane permeability for sustained functionality remains a challenge in many reported examples. In this study, we introduce ROS-responsive polyion complex vesicles (PICsomes) loaded with antioxidant enzymes (catalase) as antioxidative nanoreactors. The intrinsic semipermeability and crosslinked network structure of the membrane enable long-lasting catalytic function of catalase. The nanoreactor exhibits inherent cell-protective properties against oxidative stress in fibroblasts due to the ROS-scavenging ability of polymers. Notably, triggered by ROS, the nanoreactor demonstrates autoregulatory control of redox homeostasis. This is because the cysteamine released by PICsomes not only acts as a free radical scavenger but also facilitates the transport of L-cysteine into cells, thereby enhancing glutathione (GSH) biosynthesis. The results further demonstrate significant long blood circulation of PICsomes loaded with catalase and strong protection effects against bloodstream oxidative stress, paving the way for the further development of truly effective in vivo therapeutics. These findings underscore the potential of the engineered antioxidative nanoreactor with durable functionality as synthetic organelles for cellular protection against oxidative stress.
Collapse
Affiliation(s)
- Panyue Wen
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Haocheng Guo
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Xueying Liu
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroaki Kinoh
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
| | - Junjie Li
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Imantay A, Mashurov N, Zhaisanbayeva BA, Mun EA. Doxorubicin-Conjugated Nanoparticles for Potential Use as Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:133. [PMID: 39852748 PMCID: PMC11768029 DOI: 10.3390/nano15020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Doxorubicin (DOX) is one of the most widely used chemotherapy drugs in the treatment of both solid and liquid tumors in patients of all age groups. However, it is likely to produce several side effects that include doxorubicin cardiomyopathy. Nanoparticles (NPs) can offer targeted delivery and release of the drug, potentially increasing treatment efficiency and alleviating side effects. This makes them a viable vector for novel drug delivery systems. Currently, DOX is commonly conjugated to NPs by non-covalent conjugation-physical entrapping of the drug using electrostatic interactions, van der Waals forces, or hydrogen bonding. The reported downside of these methods is that they provide a low drug loading capacity and a higher drug leakage possibility. In comparison to this, the covalent conjugation of DOX via amide (typically formed by coupling carboxyl groups on DOX with amine groups on the nanoparticle or a linker, often facilitated by carbodiimide reagents), hydrazone (which results from the reaction between hydrazines and carbonyl groups, offering pH-sensitive cleavage for controlled release), or disulfide bonds (formed through the oxidation of thiol groups and cleavable by intracellular reducing agents such as glutathione) is more promising as it offers greater bonding strength. This review covers the covalent conjugation of DOX to three different types of NPs-metallic, silica/organosilica, and polymeric-including their corresponding release rates and mechanisms.
Collapse
Affiliation(s)
| | | | | | - Ellina A. Mun
- School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (A.I.); (N.M.); (B.A.Z.)
| |
Collapse
|
3
|
Shi G, Li Z, Li N, Zhang Z, Zhang H, Yu X, He J, Hao L. Gelatin-coated glutathione depletion and oxygen generators in potentiated chemotherapy for pancreatic cancer. Int J Biol Macromol 2024; 280:135973. [PMID: 39322148 DOI: 10.1016/j.ijbiomac.2024.135973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/01/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Chemotherapy is generally acknowledged as an effective method for pancreatic cancer (PC). However, its treatment efficacy is often compromised due to inefficient drug delivery and drug resistance propensity of tumor tissues. The purpose of this study is to design and develop a novel drug delivery system (Manganese-doped mesoporous silica nanoparticles, Mn-MSN) in which paclitaxel (PTX), a conventional chemotherapeutic agent used to effectively treat pancreatic cancer clinically. Through cross-linking with glutaraldehyde, gelatin (Ge) was encapsulated on the carrier surface, endowing the nanoparticles (Ge-Mn-MSN@PTX) with excellent biocompatibility, low hemolytic activity, and enzyme-responsive degradation. Mn was added for the following purposes: (1) catalyzing hydrogen peroxide (H2O2) to generate oxygen (O2), thereby alleviating tumor hypoxia and drug resistance; (2) depleting glutathione (GSH), inducing intracellular lipid peroxidation and ferroptosis; (3) enabling real-time monitoring of the therapeutic efficacy of the nanoparticles via magnetic resonance imaging (MRI). The experimental results demonstrated that Ge-Mn-MSN@PTX has satisfactory biosafety, antitumor activity, controlled drug release as well as imaging tracking capabilities. In the SW1990 nude mice model, the Ge-Mn-MSN@PTX effectively inhibited tumor growth by suppressing the expression of the resistance protein P-glycoprotein (P-gp) and inducing ferroptosis. In conclusion, the designed gelatin-coated Mn-MSN shows potential for application in future pancreatic cancer therapy.
Collapse
Affiliation(s)
- Guangyue Shi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | - Zhongtao Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Sichuan, Chengdu 610031, PR China
| | - Na Li
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | - Zhichen Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | - Hao Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | - Xiaoyang Yu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | - Jialong He
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China; Department of Molecular Imaging, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161041, PR China.
| |
Collapse
|
4
|
Fan MH, Pi JK, Zou CY, Jiang YL, Li QJ, Zhang XZ, Xing F, Nie R, Han C, Xie HQ. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact Mater 2024; 38:1-30. [PMID: 38699243 PMCID: PMC11061651 DOI: 10.1016/j.bioactmat.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.
Collapse
Affiliation(s)
- Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, 610212, PR China
| |
Collapse
|
5
|
Chu B, Deng H, Niu T, Qu Y, Qian Z. Stimulus-Responsive Nano-Prodrug Strategies for Cancer Therapy: A Focus on Camptothecin Delivery. SMALL METHODS 2024; 8:e2301271. [PMID: 38085682 DOI: 10.1002/smtd.202301271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Indexed: 08/18/2024]
Abstract
Camptothecin (CPT) is a highly cytotoxic molecule with excellent antitumor activity against various cancers. However, its clinical application is severely limited by poor water solubility, easy inactivation, and severe toxicity. Structural modifications and nanoformulations represent two crucial avenues for camptothecin's development. However, the potential for further structural modifications is limited, and camptothecin nanoparticles fabricated via physical loading have the drawbacks of low drug loading and leakage. Prodrug-based CPT nanoformulations have shown unique advantages, including increased drug loading, reduced burst release, improved bioavailability, and minimal toxic side effects. Stimulus-responsive CPT nano-prodrugs that respond to various endogenous or exogenous stimuli by introducing various activatable linkers to achieve spatiotemporally responsive drug release at the tumor site. This review comprehensively summarizes the latest research advances in stimulus-responsive CPT nano-prodrugs, including preparation strategies, responsive release mechanisms, and their applications in cancer therapy. Special focus is placed on the release mechanisms and characteristics of various stimulus-responsive CPT nano-prodrugs and their application in cancer treatment. Furthermore, clinical applications of CPT prodrugs are discussed. Finally, challenges and future research directions for CPT nano-prodrugs are discussed. This review to be valuable to readers engaged in prodrug research is expected.
Collapse
Affiliation(s)
- Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Zhou Z, Liu Y, Xie P, Yin Z. A ROS-responsive multifunctional targeted prodrug micelle for atherosclerosis treatment. Int J Pharm 2024; 660:124352. [PMID: 38901540 DOI: 10.1016/j.ijpharm.2024.124352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Atherosclerosis is a chronic multifactorial cardiovascular disease. To combat atherosclerosis effectively, it is necessary to develop precision and targeted therapy in the early stages of plaque formation. In this study, a simvastatin (SV)-containing prodrug micelle SPCPV was developed by incorporating a peroxalate ester bond (PO). SPCPV could specifically target VCAM-1 overexpressed at atherosclerotic lesions. SPCPV contains a carrier (CP) composed of cyclodextrin (CD) and polyethylene glycol (PEG). At the lesions, CP and SV exerted multifaceted anti-atherosclerotic effects. In vitro studies demonstrated that intracellular reactive oxygen species (ROS) could induce the release of SV from SPCPV. The uptake of SPCPV was higher in inflammatory cells than in normal cells. Furthermore, in vitro experiments showed that SPCPV effectively reduced ROS levels, possessed anti-inflammatory properties, inhibited foam cell formation, and promoted cholesterol efflux. In vivo studies using atherosclerotic rats showed that SPCPV reduced the thickness of the vascular wall and low-density lipoprotein (LDL). This study developed a drug delivery strategy that could target atherosclerotic plaques and treat atherosclerosis by integrating the carrier with SV. The findings demonstrated that SPCPV possessed high stability and safety and had great therapeutic potential for treating early-stage atherosclerosis.
Collapse
Affiliation(s)
- Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaxue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pei Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Forenzo C, Larsen J. Bridging clinical radiotherapy and space radiation therapeutics through reactive oxygen species (ROS)-triggered delivery. Free Radic Biol Med 2024; 219:88-103. [PMID: 38631648 DOI: 10.1016/j.freeradbiomed.2024.04.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
This review explores the convergence of clinical radiotherapy and space radiation therapeutics, focusing on ionizing radiation (IR)-generated reactive oxygen species (ROS). IR, with high-energy particles, induces precise cellular damage, particularly in cancer treatments. The paper discusses parallels between clinical and space IR, highlighting unique characteristics of high-charge and energy particles in space and potential health risks for astronauts. Emphasizing the parallel occurrence of ROS generation in both clinical and space contexts, the review identifies ROS as a crucial factor with dual roles in cellular responses and potential disease initiation. The analysis covers ROS generation mechanisms, variations, and similarities in terrestrial and extraterrestrial environments leading to innovative ROS-responsive delivery systems adaptable for both clinical and space applications. The paper concludes by discussing applications of personalized ROS-triggered therapeutic approaches and discussing the challenges and prospects of implementing these strategies in clinical radiotherapy and extraterrestrial missions. Overall, it underscores the potential of ROS-targeted delivery for advancing therapeutic strategies in terrestrial clinical settings and space exploration, contributing to human health improvement on Earth and beyond.
Collapse
Affiliation(s)
- Chloe Forenzo
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29631, USA
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29631, USA; Department of Bioengineering, Clemson University, Clemson, SC, 29631, USA.
| |
Collapse
|
8
|
Ali T, Li D, Ponnamperumage TNF, Peterson AK, Pandey J, Fatima K, Brzezinski J, Jakusz JAR, Gao H, Koelsch GE, Murugan DS, Peng X. Generation of Hydrogen Peroxide in Cancer Cells: Advancing Therapeutic Approaches for Cancer Treatment. Cancers (Basel) 2024; 16:2171. [PMID: 38927877 PMCID: PMC11201821 DOI: 10.3390/cancers16122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer cells show altered antioxidant defense systems, dysregulated redox signaling, and increased generation of reactive oxygen species (ROS). Targeting cancer cells through ROS-mediated mechanisms has emerged as a significant therapeutic strategy due to its implications in cancer progression, survival, and resistance. Extensive research has focused on selective generation of H2O2 in cancer cells for selective cancer cell killing by employing various strategies such as metal-based prodrugs, photodynamic therapy, enzyme-based systems, nano-particle mediated approaches, chemical modulators, and combination therapies. Many of these H2O2-amplifying approaches have demonstrated promising anticancer effects and selectivity in preclinical investigations. They selectively induce cytotoxicity in cancer cells while sparing normal cells, sensitize resistant cells, and modulate the tumor microenvironment. However, challenges remain in achieving selectivity, addressing tumor heterogeneity, ensuring efficient delivery, and managing safety and toxicity. To address those issues, H2O2-generating agents have been combined with other treatments leading to optimized combination therapies. This review focuses on various chemical agents/approaches that kill cancer cells via H2O2-mediated mechanisms. Different categories of compounds that selectively generate H2O2 in cancer cells are summarized, their underlying mechanisms and function are elucidated, preclinical and clinical studies as well as recent advancements are discussed, and their prospects as targeted therapeutic agents and their therapeutic utility in combination with other treatments are explored. By understanding the potential of these compounds, researchers can pave the way for the development of effective and personalized cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, USA; (T.A.); (D.L.); (T.N.F.P.); (A.K.P.); (J.P.); (K.F.); (J.B.); (J.A.R.J.); (H.G.); (G.E.K.); (D.S.M.)
| |
Collapse
|
9
|
Pan H, Chen X, Xiao M, Xu H, Guo J, Lu Z, Cen D, Yu X, Shi S. Multifunctional RGD coated a single-atom iron nanozyme: A highly selective approach to inducing ferroptosis and enhancing immunotherapy for pancreatic cancer. NANO RESEARCH 2024; 17:5469-5478. [DOI: 10.1007/s12274-024-6492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2025]
|
10
|
Li X, Gao J, Wu C, Wang C, Zhang R, He J, Xia ZJ, Joshi N, Karp JM, Kuai R. Precise modulation and use of reactive oxygen species for immunotherapy. SCIENCE ADVANCES 2024; 10:eadl0479. [PMID: 38748805 PMCID: PMC11095489 DOI: 10.1126/sciadv.adl0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Reactive oxygen species (ROS) play an important role in regulating the immune system by affecting pathogens, cancer cells, and immune cells. Recent advances in biomaterials have leveraged this mechanism to precisely modulate ROS levels in target tissues for improving the effectiveness of immunotherapies in infectious diseases, cancer, and autoimmune diseases. Moreover, ROS-responsive biomaterials can trigger the release of immunotherapeutics and provide tunable release kinetics, which can further boost their efficacy. This review will discuss the latest biomaterial-based approaches for both precise modulation of ROS levels and using ROS as a stimulus to control the release kinetics of immunotherapeutics. Finally, we will discuss the existing challenges and potential solutions for clinical translation of ROS-modulating and ROS-responsive approaches for immunotherapy, and provide an outlook for future research.
Collapse
Affiliation(s)
- Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jingjing Gao
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Engineering, Material Science and Engineering Graduate Program and The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chengcheng Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ruoshi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziting Judy Xia
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nitin Joshi
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey M. Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
11
|
Sun B, Zheng X, Zhang X, Zhang H, Jiang Y. Oxaliplatin-Loaded Mil-100(Fe) for Chemotherapy-Ferroptosis Combined Therapy for Gastric Cancer. ACS OMEGA 2024; 9:16676-16686. [PMID: 38617668 PMCID: PMC11007804 DOI: 10.1021/acsomega.4c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Oxaliplatin (Oxa) is a commonly used chemotherapy drug in the treatment of gastric cancer, but its toxic side effects and drug resistance after long-term use have seriously limited its efficacy. Loading chemotherapy drugs with nanomaterials and delivering them to the tumor site are common ways to overcome the above problems. However, nanomaterials as carriers do not have therapeutic functions on their own, and the effect of single chemotherapy is relatively limited, so there is still room for progress in related research. Herein, we construct Oxa@Mil-100(Fe) nanocomposites by loading Oxa with a metal-organic framework (MOF) Mil-100(Fe) with high biocompatibility and a large specific surface area. The pore structure of Mil-100(Fe) is conducive to a large amount of Oxa loading with a drug-loading rate of up to 27.2%. Oxa@Mil-100(Fe) is responsive to the tumor microenvironment (TME) and can release Oxa and Fe3+ under external stimulation. On the one hand, Oxa can inhibit the synthesis of DNA and induce the apoptosis of gastric cancer cells. On the other hand, Fe3+ can clear overexpressed glutathione (GSH) in TME and be reduced to Fe2+, inhibiting the activity of glutathione peroxidase 4 (GPX4), leading to the accumulation of intracellular lipid peroxides (LPO), and at the same time releasing a large number of reactive oxygen species (ROS) through the Fenton reaction, inducing ferroptosis in gastric cancer cells. With the combination of apoptosis and ferroptosis, Oxa@Mil-100(Fe) shows a good therapeutic effect, and the killing effect on gastric cancer cells is obvious. In a nude mouse model of subcutaneous tumor transplantation, Oxa@Mil-100(Fe) shows a significant inhibitory effect on tumor growth, with an inhibition rate of nearly 60%. In addition to its excellent antitumor activity, Oxa@Mil-100(Fe) has no obvious toxic or side effects. This study provides a new idea and method for the combined treatment of gastric cancer.
Collapse
Affiliation(s)
- Boyao Sun
- Department
of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, P. R. China
| | - Xuewei Zheng
- Department
of Radiology, China-Japan Union Hospital
of Jilin University, Changchun 130031, P. R. China
| | - Xiaoyu Zhang
- Department
of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, P. R. China
| | - Huaiyu Zhang
- Department
of Rehabilitation Medicine, China-Japan
Union Hospital of Jilin University, Changchun 130031, P. R. China
| | - Yang Jiang
- Department
of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, P. R. China
| |
Collapse
|
12
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
13
|
Chi T, Sang T, Wang Y, Ye Z. Cleavage and Noncleavage Chemistry in Reactive Oxygen Species (ROS)-Responsive Materials for Smart Drug Delivery. Bioconjug Chem 2024; 35:1-21. [PMID: 38118277 DOI: 10.1021/acs.bioconjchem.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.
Collapse
Affiliation(s)
- Teng Chi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ting Sang
- School of Stomatology of Nanchang University & Jiangxi Province Clinical Research Center for Oral Diseases & The Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Yanjing Wang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| |
Collapse
|
14
|
Shen KH, Chiu TH, Teng KC, Yu J, Yeh YC. Fabrication of triple-crosslinked gelatin/alginate hydrogels for controlled release applications. Int J Biol Macromol 2023; 250:126133. [PMID: 37543263 DOI: 10.1016/j.ijbiomac.2023.126133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Hydrogels have been demonstrated as smart drug carriers to recognize the tumor microenvironment for cancer treatment, where the dynamic crosslinks in the hydrogel network contribute to the stimuli-responsive features but also result in poor stability and weak mechanical property of the hydrogels. Here, phenylboronic acid-grafted polyethyleneimine (PBA-PEI)-modified gelatin (PPG) was synthesized to crosslink alginate dialdehyde (ADA) through imine bonds and boronate ester bonds, and then calcium ions (Ca2+) were added to introduce the third calcium-carboxylate crosslinking in the network to form the triple-crosslinked PPG/ADA-Ca2+ hydrogels. Given the three types of dynamic bonds in the network, PPG/ADA-Ca2+ hydrogels possessed a self-healing manner, stimuli-responsiveness, and better mechanical properties compared to single- or double-crosslinked hydrogels. The controlled release capability of PPG/ADA-Ca2+ hydrogels was also demonstrated, showing the encapsulated molecules can be rapidly released from the hydrogel network in the presence of hydrogen peroxide while the release rate can be slowed down at acidic pH. Furthermore, PPG/ADA-Ca2+ hydrogels presented selected cytotoxicity and drug delivery to cancer cells due to the regulated degradation by the cellular microenvironment. Taken together, PPG/ADA-Ca2+ hydrogels have been demonstrated as promising biomaterials with multiple desirable properties and dynamic features to perform controlled molecule release for biomedical applications.
Collapse
Affiliation(s)
- Ke-Han Shen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Hsiang Chiu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kuang-Chih Teng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
15
|
Chasara RS, Ajayi TO, Leshilo DM, Poka MS, Witika BA. Exploring novel strategies to improve anti-tumour efficiency: The potential for targeting reactive oxygen species. Heliyon 2023; 9:e19896. [PMID: 37809420 PMCID: PMC10559285 DOI: 10.1016/j.heliyon.2023.e19896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The cellular milieu in which malignant growths or cancer stem cells reside is known as the tumour microenvironment (TME). It is the consequence of the interactivity amongst malignant and non-malignant cells and directly affects cancer development and progression. Reactive oxygen species (ROS) are chemically reactive molecules that contain oxygen, they are generated because of numerous endogenous and external factors. Endogenous ROS produced from mitochondria is known to significantly increase intracellular oxidative stress. In addition to playing a key role in several biological processes both in healthy and malignant cells, ROS function as secondary messengers in cell signalling. At low to moderate concentrations, ROS serves as signalling transducers to promote cancer cell motility, invasion, angiogenesis, and treatment resistance. At high concentrations, ROS can induce oxidative stress, leading to DNA damage, lipid peroxidation and protein oxidation. These effects can result in cell death or trigger signalling pathways that lead to apoptosis. The creation of innovative therapies and cancer management techniques has been aided by a thorough understanding of the TME. At present, surgery, chemotherapy, and radiotherapy, occasionally in combination, are the most often used methods for tumour treatment. The current challenge that these therapies face is the lack of spatiotemporal application specifically at the lesion which results in toxic effects on healthy cells associated with off-target drug delivery and undesirably high doses. Nanotechnology can be used to specifically deliver various chemicals via nanocarriers to target tumour cells, thereby increasing the accumulation of ROS-inducing agents at the site of the tumour. Nanoparticles can be engineered to release ROS-inducing agents in a controlled manner to the TME that will in turn react with the ROS to either increase or decrease it, thereby improving antitumour efficiency. Nano-delivery systems such as liposomes, nanocapsules, solid lipid nanoparticles and nanostructured lipid carriers were explored for the up/down-regulation of ROS. This review will discuss the use of nanotechnology in targeting and altering the ROS in the TME.
Collapse
Affiliation(s)
- Rumbidzai Sharon Chasara
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Taiwo Oreoluwa Ajayi
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Dineo Motjoadi Leshilo
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Madan Sai Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| |
Collapse
|
16
|
Xu M, Han X, Xiong H, Gao Y, Xu B, Zhu G, Li J. Cancer Nanomedicine: Emerging Strategies and Therapeutic Potentials. Molecules 2023; 28:5145. [PMID: 37446806 DOI: 10.3390/molecules28135145] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer continues to pose a severe threat to global health, making pursuing effective treatments more critical than ever. Traditional therapies, although pivotal in managing cancer, encounter considerable challenges, including drug resistance, poor drug solubility, and difficulties targeting tumors, specifically limiting their overall efficacy. Nanomedicine's application in cancer therapy signals a new epoch, distinguished by the improvement of the specificity, efficacy, and tolerability of cancer treatments. This review explores the mechanisms and advantages of nanoparticle-mediated drug delivery, highlighting passive and active targeting strategies. Furthermore, it explores the transformative potential of nanomedicine in tumor therapeutics, delving into its applications across various treatment modalities, including surgery, chemotherapy, immunotherapy, radiotherapy, photodynamic and photothermal therapy, gene therapy, as well as tumor diagnosis and imaging. Meanwhile, the outlook of nanomedicine in tumor therapeutics is discussed, emphasizing the need for addressing toxicity concerns, improving drug delivery strategies, enhancing carrier stability and controlled release, simplifying nano-design, and exploring novel manufacturing technologies. Overall, integrating nanomedicine in cancer treatment holds immense potential for revolutionizing cancer therapeutics and improving patient outcomes.
Collapse
Affiliation(s)
- Manman Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinpu Han
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hongtai Xiong
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yijie Gao
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guanghui Zhu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
17
|
Wu L, Chen L, Qian Z, Wang T, Dong Q, Zhang Y, Zong S, Cui Y, Wang Z. A 3D-printed SERS bionic taster for dynamic tumor metabolites detection. Talanta 2023; 264:124766. [PMID: 37285698 DOI: 10.1016/j.talanta.2023.124766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
The variation of tumor-associated metabolites in extracellular microenvironment timely reflects the development, the progression and the treatment of cancers. Conventional methods for metabolite detection lack the efficiency to grasp the dynamic metabolic alterations. Herein, we developed a SERS bionic taster which enabled real-time analysis of extracellular metabolites. The instant information of cell metabolism was provided by the responsive Raman reporters, which experienced SERS spectral changes upon metabolite activation. Such a SERS sensor was integrated into a 3D-printed fixture which fits the commercial-standard cell culture dishes, allowing in-situ acquisition of the vibrational spectrum. The SERS taster can not only accomplish simultaneous and quantitative analysis of multiple tumor-associated metabolites, but also fulfill the dynamic monitoring of cellular metabolic reprogramming, which is expected to become a promising tool for investigating cancer biology and therapeutics.
Collapse
Affiliation(s)
- Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Lu Chen
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Ziting Qian
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Tingyu Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Qianqian Dong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Yizhi Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Nanjing 211106, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China.
| |
Collapse
|
18
|
Negut I, Bita B. Polymeric Micellar Systems-A Special Emphasis on "Smart" Drug Delivery. Pharmaceutics 2023; 15:976. [PMID: 36986837 PMCID: PMC10056703 DOI: 10.3390/pharmaceutics15030976] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Concurrent developments in anticancer nanotechnological treatments have been observed as the burden of cancer increases every year. The 21st century has seen a transformation in the study of medicine thanks to the advancement in the field of material science and nanomedicine. Improved drug delivery systems with proven efficacy and fewer side effects have been made possible. Nanoformulations with varied functions are being created using lipids, polymers, and inorganic and peptide-based nanomedicines. Therefore, thorough knowledge of these intelligent nanomedicines is crucial for developing very promising drug delivery systems. Polymeric micelles are often simple to make and have high solubilization characteristics; as a result, they seem to be a promising alternative to other nanosystems. Even though recent studies have provided an overview of polymeric micelles, here we included a discussion on the "intelligent" drug delivery from these systems. We also summarized the state-of-the-art and the most recent developments of polymeric micellar systems with respect to cancer treatments. Additionally, we gave significant attention to the clinical translation potential of polymeric micellar systems in the treatment of various cancers.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| |
Collapse
|
19
|
Ding Y, Pan Q, Gao W, Pu Y, Luo K, He B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater Sci 2023; 11:1182-1214. [PMID: 36606593 DOI: 10.1039/d2bm01833k] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play a crucial role in physiological and pathological processes, emerging as a therapeutic target in cancer. Owing to the high concentration of ROS in solid tumor tissues, ROS-based treatments, such as photodynamic therapy and chemodynamic therapy, and ROS-responsive drug delivery systems have been widely explored to powerfully and specifically suppress tumors. However, their anticancer efficacy is still hampered by the heterogeneous ROS levels, and thus comprehensively upregulating the ROS levels in tumor tissues can ensure an enhanced therapeutic effect, which can further sensitize and/or synergize with other therapies to inhibit tumor growth and metastasis. Herein, we review the recently emerging drug delivery strategies and technologies for increasing the H2O2, ˙OH, 1O2, and ˙O2- concentrations in cancer cells, including the efficient delivery of natural enzymes, nanozymes, small molecular biological molecules, and nanoscale Fenton-reagents and semiconductors and neutralization of intracellular antioxidant substances and localized input of mechanical and electromagnetic waves (such as ultrasound, near infrared light, microwaves, and X-rays). The applications of these ROS-upregulating nanosystems in enhancing and synergizing cancer therapies including chemotherapy, chemodynamic therapy, phototherapy, and immunotherapy are surveyed. In addition, we discuss the challenges of ROS-upregulating systems and the prospects for future studies.
Collapse
Affiliation(s)
- Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
20
|
Wang G, Su Y, Chen X, Zhou Y, Huang P, Huang W, Yan D. H 2O 2-responsive polymer prodrug nanoparticles with glutathione scavenger for enhanced chemo-photodynamic synergistic cancer therapy. Bioact Mater 2023; 25:189-200. [PMID: 36817822 PMCID: PMC9932349 DOI: 10.1016/j.bioactmat.2023.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The combination of chemotherapy and photodynamic therapy (PDT) based on nanoparticles (NPs) has been extensively developed to improve the therapeutic effect and decrease the systemic toxicity of current treatments. However, overexpressed glutathione (GSH) in tumor cells efficiently scavenges singlet oxygens (1O2) generated from photosensitizers and results in the unsatisfactory efficacy of PDT. To address this obstacle, here we design H2O2-responsive polymer prodrug NPs with GSH-scavenger (Ce6@P(EG-a-CPBE) NPs) for chemo-photodynamic synergistic cancer therapy. They are constructed by the co-self-assembly of photosensitizer chlorin e6 (Ce6) and amphiphilic polymer prodrug P(EG-a-CPBE), which is synthesized from a hydrophilic alternating copolymer P(EG-a-PD) by conjugating hydrophobic anticancer drug chlorambucil (CB) via an H2O2-cleavable linker 4-(hydroxymethyl)phenylboronic acid (PBA). Ce6@P(EG-a-CPBE) NPs can efficiently prevent premature drug leakage in blood circulation because of the high stability of the PBA linker under the physiological environment and facilitate the delivery of Ce6 and CB to the tumor site after intravenous injection. Upon internalization of Ce6@P(EG-a-CPBE) NPs by tumor cells, PBA is cleaved rapidly triggered by endogenous H2O2 to release CB and Ce6. Ce6 can effectively generate abundant 1O2 under 660 nm light irradiation to synergistically kill cancer cells with CB. Concurrently, PBA can be transformed into a GSH-scavenger (quinine methide, QM) under intracellular H2O2 and prevent the depletion of 1O2, which induces the cooperatively strong oxidative stress and enhanced cancer cell apoptosis. Collectively, such H2O2-responsive polymer prodrug NPs loaded with photosensitizer provide a feasible approach to enhance chemo-photodynamic synergistic cancer treatment.
Collapse
Affiliation(s)
- Guanchun Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinliang Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China,Corresponding author.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China,Corresponding author.
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
21
|
Rajana N, Mounika A, Chary PS, Bhavana V, Urati A, Khatri D, Singh SB, Mehra NK. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J Control Release 2022; 352:1024-1047. [PMID: 36379278 DOI: 10.1016/j.jconrel.2022.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Breast cancer is the most prevalent non-cutaneous malignancy in women, with greater than a million new cases every year. In the last decennium, numerous diagnostic and treatment approaches have been enormously studied for Breast cancer. Among the different approaches, nanotechnology has appeared as a promising approach in preclinical and clinical studies for early diagnosis of primary tumors and metastases and eradicating tumor cells. Each of these nanocarriers has its particular advantages and drawbacks. Combining two or more than two constituents in a single nanocarrier system leads to the generation of novel multifunctional Hybrid Nanocarriers with improved structural and biological properties. These novel Hybrid Nanocarriers have the capability to overcome the drawbacks of individual constituents while having the advantages of those components. Various hybrid nanocarriers such as lipid polymer hybrid nanoparticles, inorganic hybrid nanoparticles, metal-organic hybrid nanoparticles, and hybrid carbon nanocarriers are utilized for the diagnosis and treatment of various cancers. Certainly, Hybrid Nanocarriers have the capability to encapsulate multiple cargos, targeting agents, enhancement in encapsulation, stability, circulation time, and structural disintegration compared to non-hybrid nanocarriers. Many studies have been conducted to investigate the utilization of Hybrid nanocarriers in breast cancer for imaging platforms, photothermal and photodynamic therapy, chemotherapy, gene therapy, and combinational therapy. In this review, we mainly discussed in detailed about of preparation techniques and toxicological considerations of hybrid nanoparticles. This review also discussed the role of hybrid nanocarriers as a diagnostic and therapeutic agent for the treatment of breast cancer along with alternative treatment approaches apart from chemotherapy including photothermal and photodynamic therapy, gene therapy, and combinational therapy.
Collapse
Affiliation(s)
- Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aare Mounika
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Anuradha Urati
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Khatri
- Department of Biological science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
22
|
Dual (pH- and ROS-) Responsive Antibacterial MXene-Based Nanocarrier for Drug Delivery. Int J Mol Sci 2022; 23:ijms232314925. [PMID: 36499252 PMCID: PMC9739462 DOI: 10.3390/ijms232314925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, a novel MXene (Ti3C2Tx)-based nanocarrier was developed for drug delivery. MXene nanosheets were functionalized with 3, 3'-diselanediyldipropionic acid (DSeDPA), followed by grafting doxorubicin (DOX) as a model drug to the surface of functionalized MXene nanosheets (MXene-Se-DOX). The nanosheets were characterized using scanning electron microscopy, atomic force microscopy (AFM), transmission electron microscopy, energy-dispersive X-ray spectroscopy (EDX), nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and zeta potential techniques. The drug-loading capacity (17.95%) and encapsulation efficiency (41.66%) were determined using ultraviolet-visible spectroscopy. The lateral size and thickness of the MXene nanosheets measured using AFM were 200 nm and 1.5 nm, respectively. The drug release behavior of the MXene-Se-DOX nanosheets was evaluated under different medium conditions, and the nanosheets demonstrated outstanding dual (reactive oxygen species (ROS)- and pH-) responsive properties. Furthermore, the MXene-Se-DOX nanosheets exhibited excellent antibacterial activity against both Gram-negative E. coli and Gram-positive B. subtilis.
Collapse
|
23
|
Zhou Z, Wang C, Bai J, Zeng Z, Yang X, Wei B, Yang Z. Cinnamaldehyde-modified chitosan hybrid nanoparticles for DOX delivering to produce synergistic anti-tumor effects. Front Bioeng Biotechnol 2022; 10:968065. [PMID: 36304902 PMCID: PMC9592695 DOI: 10.3389/fbioe.2022.968065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer cells are under oxidative stress associated with the increased generation of reactive oxygen species (ROS). Therefore, increasing the oxidative stress of tumor cells by delivering ROS generators is an effective strategy to induce apoptosis of cancer cells. Herein, we reported a hybrid nanoparticle based on lactobionic acid (LA) modified chitosan and cinnamaldehyde (CA) modified chitosan, which possesses both active tumor-targeting ability and ROS regulation ability, in order to have a synergistic effect with the anti-tumor drug doxorubicin (DOX). LA can improve the tumor-targeting ability and cellular accumulation of these nanoparticles, and CA can induce apoptotic cell death through ROS generation, mitochondrial permeability transition and caspase activation. The particle size and distribution as well as drug release profiles of these nanoparticles were observed. In vitro and in vivo antitumor studies demonstrated that the hybrid nanoparticles show a significant synergistic antitumor effect. Thus, we anticipate that the hybrid nanoparticles have promising potential as an anticancer drug carrier.
Collapse
Affiliation(s)
- Zuoqin Zhou
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
- Anhui Ecological Fermentation Engineering Research Center for Functional Fruit Beverage, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Caiyun Wang
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Jingqi Bai
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Zihan Zeng
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Xiaoyu Yang
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Bing Wei
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
- *Correspondence: Bing Wei, ; Zheng Yang,
| | - Zheng Yang
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
- *Correspondence: Bing Wei, ; Zheng Yang,
| |
Collapse
|
24
|
Guan Y, Xing C, Tong T, Zhang X, Li J, Chen H, Zhu J, Kang Y, Pang J. Smart dual responsive nanocarriers with reactive oxygen species amplification assisted synergistic chemotherapy against prostate cancer. J Colloid Interface Sci 2022; 622:789-803. [DOI: 10.1016/j.jcis.2022.04.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
25
|
Zhao J, Ruan J, Lv G, Shan Q, Fan Z, Wang H, Du Y, Ling L. Cell membrane-based biomimetic nanosystems for advanced drug delivery in cancer therapy: A comprehensive review. Colloids Surf B Biointerfaces 2022; 215:112503. [PMID: 35429736 DOI: 10.1016/j.colsurfb.2022.112503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022]
Abstract
Natural types of cells display distinct characteristics with homotypic targeting and extended circulation in the blood, which are worthy of being explored as promising drug delivery systems (DDSs) for cancer therapy. To enhance their delivery efficiency, these cells can be combined with therapeutic agents and artificial nanocarriers to construct the next generation of DDSs in the form of biomimetic nanomedicines. In this review, we present the recent advances in cell membrane-based DDSs (CDDSs) and their applications for efficient cancer therapy. Different sources of cell membranes are discussed, mainly including red blood cells (RBC), leukocytes, cancer cells, stem cells and hybrid cells. Moreover, the extraction methods used for obtaining such cells and the mechanism contributing to the functional action of these biomimetic CDDSs are explained. Finally, a future perspective is proposed to highlight the limitations of CDDSs and the possible resolutions toward clinical transformation of currently developed biomimetic chemotherapies.
Collapse
Affiliation(s)
- Jianing Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264005, China
| | - Guangyao Lv
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Qi Shan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Longbing Ling
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
26
|
Xiang J, Liu J, Liu X, Zhou Q, Zhao Z, Piao Y, Shao S, Zhou Z, Tang J, Shen Y. Enzymatic drug release cascade from polymeric prodrug nanoassemblies enables targeted chemotherapy. J Control Release 2022; 348:444-455. [PMID: 35691498 DOI: 10.1016/j.jconrel.2022.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 11/19/2022]
Abstract
Cancer drug delivery systems often suffer from premature drug leakage during transportation and/or inefficient drug release within cancer cells. We present here a polymeric prodrug nanoassembly that addresses these problems simultaneously. This nanoassembly comprises a polymeric prodrug with novel trivalent phenylboronate moieties for drug conjugation via ether linkages, as well as β-lapachone (Lapa). While the ether linkage enables nearly no drug release under physiological conditions, the Lapa molecules can induce the reactive oxygen species (ROS) burst specifically in cancer cells via NAD(P)H: quinone oxidoreductase-1 catalysis, which triggers the cleavage of the ether bonds and thus cascade amplification drug release in cancer cells. As a result, the nanoassemblies exhibit much higher cytotoxicity against cancer cells than normal cells, and also increased therapeutic efficacy and reduced side effects compared to the clinically used irinotecan. We anticipate that this strategy can be applied to other drug delivery platforms to enable more precise drug release.
Collapse
Affiliation(s)
- Jiajia Xiang
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China
| | - Jing Liu
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China
| | - Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Quan Zhou
- School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihao Zhao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China.
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
27
|
Han Y, Wen P, Li J, Kataoka K. Targeted nanomedicine in cisplatin-based cancer therapeutics. J Control Release 2022; 345:709-720. [PMID: 35367476 DOI: 10.1016/j.jconrel.2022.03.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
Since its license in 1978, cisplatin has proved to be one of the most successful chemotherapeutic agents in the world. However, two acute challenges facing cisplatin, resistance and toxicity, have resulted in a bottleneck of clinical application. Targeted nanomedicine shows great promise in delivering cisplatin for maximizing efficacy while minimizing off-target toxicity. This article surveyed the recent progress and challenges of targeted nanomedicine in managing resistance and toxicity of cisplatin in both fundamental and clinical aspects. Particularly, we focused on three major mechanisms counteracting cisplatin sensitivity (decreased intracellular accumulation, increased cisplatin deactivation, and enhanced DNA repair/translesion synthesis) and correspondingly highlighted a few representative approaches to increase cisplatin sensitivity through improving the intracellular concentration of cisplatin and implementing combination therapy. Moreover, the requirements for future advancements in cisplatin delivery systems are rendered with emphasis on (i) understanding of nano-bio interaction and post-accumulation biological effects instead of overwhelmingly improving tumor accumulation, (ii) development of stimuli-responsive and/or actively-targeted nanomedicines, (iii) optimization of combination therapy, (iv) novel combinations targeting tumor microenvironment and immunotherapy. We postulate that cisplatin-based nanomedicines will continuously advance and potentially revolutionize oncological treatment.
Collapse
Affiliation(s)
- Yu Han
- Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230061, China
| | - Panyue Wen
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Junjie Li
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
| |
Collapse
|
28
|
Li X, Song Q, Zhou T, Chen H, Nan W, Xie L, Wang H, Zhang Q, Hao Y. Facile fabrication of a biodegradable multi-hollow iron phosphate nanoplatform for tumor-specific nanocatalytic therapy and chemotherapy. Biomater Sci 2022; 10:6818-6827. [DOI: 10.1039/d2bm01033j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Doxorubicin-loaded iron phosphate could be disintegrated in a low pH environment, releasing both ferric and ferrous ions as well as doxorubicin, and achieve combination tumor therapy.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Qingxia Song
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Ting Zhou
- School of Basic Medical Science, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Hongli Chen
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
- The Third Affiliated Hospital of Xinxiang Medical University, 599 Hualan Avenue, Xinxiang 453003, P. R. China
| | - Wenbin Nan
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Liqin Xie
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Haijiao Wang
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Qiqing Zhang
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Yongwei Hao
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| |
Collapse
|
29
|
Meng Q, Hu H, Jing X, Sun Y, Zhou L, Zhu Y, Yu B, Cong H, Shen Y. A modular ROS-responsive platform co-delivered by 10-hydroxycamptothecin and dexamethasone for cancer treatment. J Control Release 2021; 340:102-113. [PMID: 34718005 DOI: 10.1016/j.jconrel.2021.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 10/24/2021] [Indexed: 01/10/2023]
Abstract
Traditional and single treatment strategies are difficult to achieve good results due to tumor resistance and complex mechanisms. Combination therapy through co-delivery systems is one of the methods to improve the effectiveness of cancer treatment. The polyprodrug platform has inherent advantages such as high drug loading and strong stability. Herein, a new reactive oxygen species (ROS)-responsive micelle composed of poly 10-hydroxycamptothecin (pHCPT) and PEG is reported, which loaded dexamethasone (DEX) as synergistic drugs. The micelles collapse in the complex microenvironment of tumor cells to release DEX. The first released DEX can increase the ROS level of tumor cells, thereby facilitating the cleavage of thioketal bonds to release intact HCPT molecules. Meanwhile, DEX can normalize tumor blood vessels, reduce adverse reactions, and further improve the efficacy of HCPT. This co-delivery system shows an ideal tumor suppressive effect in vivo and in vitro. Designing drugs into a modular multi-drug platform and selecting appropriate synergistic drugs according to the treatment plan provides a convenient strategy for future clinical treatment.
Collapse
Affiliation(s)
- Qingye Meng
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaodong Jing
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ying Sun
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Liping Zhou
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yaowei Zhu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Yao W, Liu C, Wang N, Zhou H, Chen H, Qiao W. Anisamide-modified dual-responsive drug delivery system with MRI capacity for cancer targeting therapy. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
GSH/ROS Dual-Responsive Supramolecular Nanoparticles Based on Pillar[6]arene and Betulinic Acid Prodrug for Chemo-Chemodynamic Combination Therapy. Molecules 2021; 26:molecules26195900. [PMID: 34641443 PMCID: PMC8512399 DOI: 10.3390/molecules26195900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Chemodynamic therapy (CDT) based on intracellular Fenton reactions is attracting increasing interest in cancer treatment. A simple and novel method to regulate the tumor microenvironment for improved CDT with satisfactory effectiveness is urgently needed. Therefore, glutathione (GSH)/ROS (reactive oxygen species) dual-responsive supramolecular nanoparticles (GOx@BNPs) for chemo–chemodynamic combination therapy were constructed via host–guest complexation between water-soluble pillar[6]arene and the ferrocene-modified natural anticancer product betulinic acid (BA) prodrug, followed by encapsulation of glucose oxidase (GOx) in the nanoparticles. The novel supramolecular nanoparticles could be activated by the overexpressed GSH and ROS in the tumor microenvironment (TME), not only accelerating the dissociation of nanoparticles—and, thus, improving the BA recovery and release capability in tumors—but also showing the high-efficiency conversion of glucose into hydroxyl radicals (·OH) in succession through intracellular Fenton reactions. Investigation of antitumor activity and mechanisms revealed that the dramatic suppression of cancer cell growth induced by GOx@BNPs was derived from the elevation of ROS, decrease in ATP and mitochondrial transmembrane potential (MTP) and, finally, cell apoptosis. This work presents a novel method for the regulation of the tumor microenvironment for improved CDT, and the preparation of novel GSH/ROS dual-responsive supramolecular nanoparticles, which could exert significant cytotoxicity against cancer cells through the synergistic interaction of chemodynamic therapy, starvation therapy, and chemotherapy (CDT/ST/CT).
Collapse
|
32
|
Tan R, Tian D, Liu J, Wang C, Wan Y. Doxorubicin-Bound Hydroxyethyl Starch Conjugate Nanoparticles with pH/Redox Responsive Linkage for Enhancing Antitumor Therapy. Int J Nanomedicine 2021; 16:4527-4544. [PMID: 34276212 PMCID: PMC8277972 DOI: 10.2147/ijn.s314705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chemotherapeutic drugs used for tumor treatments often show limited efficiency due to their short lifetime, nonspecific delivery, and slow or insufficient intracellular drug release, and also, they can cause severe system or organ toxicity. The development of chemotherapeutic nanomedicines with high efficacy and satisfactory safety still remains a challenge for current tumor chemotherapy. METHODS A novel type of conjugate was synthesized using hydroxyethyl starch (HES) as a carrier while binding doxorubicin (DOX) onto HES backbone through a pH/redox responsive linker containing both disulfide and hydrazone bonds in series. The built conjugates were self-assembled into nanoparticles (NPs) (HES-SS-hyd-DOX NPs) for achieving enhanced antitumor therapy and adequate safety. RESULTS HES-SS-hyd-DOX NPs had a certain ability for the tumor-orientated drug accumulation and were capable of releasing DOX itself rather than DOX derivatives. It was found that the pH/redox responsive linkage enabled the NPs to achieve fast and sufficient intracellular drug release. Based on the tumor-bearing mouse model, antitumor results demonstrated that these NPs were able to inhibit the growth of the advanced tumors with significantly enhanced efficacy when compared to free DOX, and to those conjugate NPs containing only a single responsive or unresponsive bond. Besides, HES-SS-hyd-DOX NPs also showed adequate safety to the normal organs of the treated mice. CONCLUSION The pH/redox responsive linkage in HES-SS-hyd-DOX was found to play a critical role in mediating the drug accumulation and the fast and sufficient intracellular drug release. The HES-exposed surface of HES-SS-hyd-DOX NPs endowed the NPs with long circulation capability and remarkably reduced the DOX-induced side effects.
Collapse
Affiliation(s)
- Ronghua Tan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Danlei Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Jiaoyan Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Congcong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| |
Collapse
|
33
|
Lu N, Xi L, Zha Z, Wang Y, Han X, Ge Z. Acid-responsive endosomolytic polymeric nanoparticles with amplification of intracellular oxidative stress for prodrug delivery and activation. Biomater Sci 2021; 9:4613-4629. [PMID: 34190224 DOI: 10.1039/d1bm00159k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prodrug strategy especially in the field of chemotherapy of cancers possesses significant advantages reducing the side toxicity of anticancer drugs. However, high-efficiency delivery and in situ activation of prodrugs for tumor growth suppression are still a great challenge. Herein, we report rationally engineered pH-responsive endosomolytic polymeric micelles for the delivery of an oxidation-activable prodrug into the cytoplasm of cancer cells and amplification of intracellular oxidative stress for further prodrug activation. The prepared block copolymers consist of a poly(ethylene glycol) (PEG) block and a segment grafted by endosomolytic moieties and acetal linkage-connected cinnamaldehyde groups. The amphiphilic diblock copolymers can self-assemble to form micelles in water for loading the oxidation-activable phenylboronic pinacol ester-caged camptothecin prodrug (ProCPT). The obtained micelles can release free cinnamaldehyde under acidic conditions in tumor tissues and endo/lysosomes followed by efficient endosomal escape, which further induces enhancement of intracellular reactive oxygen species (ROS) to activate the prodrugs. Simultaneously, intracellular glutathione (GSH) can be reduced by quinone methide that was produced during prodrug activation. The ProCPT-loaded micelles can finally achieve efficient tumor accumulation and retention as well as effective tumor growth inhibition. More importantly, hematological and pathological analysis of toxicity reveals that the ProCPT-loaded micelles do not cause obvious toxic side effects toward important organs of mice. A positive immunomodulatory microenvironment in tumor tissue and serum can be detected after treatment with ProCPT-loaded micelles. Therefore, the endosomolytic ProCPT-loaded micelles exert synergistic therapeutic effects toward tumors through amplification of intracellular oxidative stress and activation of the prodrugs.
Collapse
Affiliation(s)
- Nannan Lu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| | - Longchang Xi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Xinghua Han
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
34
|
Zhu D, Chen W, Lin W, Li Y, Liu X. Reactive oxygen species-responsive nanoplatforms for nucleic acid-based gene therapy of cancer and inflammatory diseases. Biomed Mater 2021; 16. [PMID: 34116517 DOI: 10.1088/1748-605x/ac0a8f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022]
Abstract
Nucleic acid-based gene therapy has recently made important progress toward clinical implementation, and holds tremendous promise for the treatment of some life-threatening diseases, such as cancer and inflammation. However, the on-demand delivery of nucleic acid therapeutics in target cells remains highly challenging. The development of delivery systems responsive to specific pathological cues of diseases is expected to offer promising alternatives for overcoming this problem. Among them, the reactive oxygen species (ROS)-responsive delivery systems, which in response to elevated ROS in cancer cells or activated inflammatory cells, can deliver nucleic acid therapeutics on-demand via ROS-induced structural and assembly behavior changes, constitute a promising approach for cancer and anti-inflammation therapies. In this short review, we briefly introduce the ROS-responsive chemical structures, ROS-induced release mechanisms and some representative examples to highlight the current progress in constructing ROS-responsive delivery systems. We aim to provide new insights into the rational design of on-demand gene delivery vectors.
Collapse
Affiliation(s)
- Dandan Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wang Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wenyi Lin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ying Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
35
|
Huang Y, Wang T, Tan Q, He D, Wu M, Fan J, Yang J, Zhong C, Li K, Zhang J. Smart Stimuli-Responsive and Mitochondria Targeting Delivery in Cancer Therapy. Int J Nanomedicine 2021; 16:4117-4146. [PMID: 34163163 PMCID: PMC8214531 DOI: 10.2147/ijn.s315368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Dysfunction in the mitochondria (Mc) contributes to tumor progression. It is a major challenge to deliver therapeutic agents specifically to the Mc for precise treatment. Smart drug delivery systems are based on stimuli-responsiveness and active targeting. Here, we give a whole list of documented pathways to achieve smart stimuli-responsive (St-) and Mc-targeted DDSs (St-Mc-DDSs) by combining St and Mc targeting strategies. We present the formulations, targeting characteristics of St-Mc-DDSs and clarify their anti-cancer mechanisms as well as improvement in efficacy and safety. St-Mc-DDSs usually not only have Mc-targeting groups, molecules (lipophilic cations, peptides, and aptamers) or materials but also sense the surrounding environment and correspondingly respond to internal biostimulators such as pH, redox changes, enzyme and glucose, and/or externally applied triggers such as light, magnet, temperature and ultrasound. St-Mc-DDSs exquisitely control the action site, increase therapeutic efficacy and decrease side effects of the drug. We summarize the clinical research progress and propose suggestions for follow-up research. St-Mc-DDSs may be an innovative and sensitive precision medicine for cancer treatment.
Collapse
Affiliation(s)
- Yongjia Huang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, People's Republic of China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jingchuan Fan
- Institute of Life Science, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
36
|
Su J, Zhang S, Wang C, Li M, Wang J, Su F, wang Z. MACA Fast and Efficient Method for Detecting H 2O 2 by a Dual-Locked Model Chemosensor. ACS OMEGA 2021; 6:14819-14823. [PMID: 34151063 PMCID: PMC8209827 DOI: 10.1021/acsomega.1c00384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
A pentafluorobenzene-containing fluorescent probe GW-1 was designed and synthesized for monitoring hydrogen peroxide. The probe's fluorescence was activated by a dual-locked model system that consists of a spiro location and a target analyte, which avoids the "alkalizing effect." The smart GW-1 exhibited high selectivity toward hydrogen peroxide over other reactive oxygen species (ROS) by a dual-controlled molecular switch. These features are favorable for H2O2 sensing and pH changes in bioanalytical and biomedical applications.
Collapse
Affiliation(s)
- Jing Su
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| | - Shuping Zhang
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| | - Cairong Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| | - Min Li
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| | - Jiajia Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| | - Feng Su
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| | - Zhijun wang
- Department of Chemistry, Changzhi University, Changzhi 046011, P. R. China
| |
Collapse
|
37
|
Zhang G, Ma L, Bai L, Li M, Guo T, Tian B, He Z, Fu Q. Inflammatory microenvironment-targeted nanotherapies. J Control Release 2021; 334:114-126. [PMID: 33887284 DOI: 10.1016/j.jconrel.2021.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory microenvironments (IMEs) are common pathological characteristics and drive the development of multiple chronic diseases. Thus, IME-targeted therapies exhibit potential for the treatment of inflammatory diseases. Nanoplatforms have significant advantages in improving the efficiency of anti-inflammatory treatments. Owing to their improved therapeutic effects and reduced side effects, IME-targeted nanotherapies have recently drawn interest from the research community. This review introduces IMEs and discusses the application of IME-targeted nanotherapies for inflammatory diseases. The development of rational targeting strategies tailored to IMEs in damaged tissues can help promote therapies for chronic diseases.
Collapse
Affiliation(s)
- Guangshuai Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Lixue Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lijun Bai
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Tiange Guo
- Laboratory Animal Department, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
38
|
Sun Y, Wang Z, Zhang P, Wang J, Chen Y, Yin C, Wang W, Fan C, Sun D. Mesoporous silica integrated with Fe 3O 4 and palmitoyl ascorbate as a new nano-Fenton reactor for amplified tumor oxidation therapy. Biomater Sci 2021; 8:7154-7165. [PMID: 33155581 DOI: 10.1039/d0bm01738h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Co-delivery of H2O2-generating agent and catalyst via a nano-Fenton reactor to the tumor acidic microenvironment for amplified tumor oxidation therapy has been widely studied. However, high side effects and low efficiency remain the limitations of the design and development of this process. Herein, a new nano-Fenton reactor in which mesoporous silica is integrated with Fe3O4 and palmitoyl ascorbate (Fe3O4@SiO2-PA) was designed, with the product exhibiting good dispersion, stability, uniformity and consistent spectral characteristics. The results show that Fe3O4@mSiO2-PA successfully enters cancer cells, significantly inhibits HeLa cells and 3D tumor spheroid growth in vitro via the induction of apoptosis. Meanwhile, Fe3O4@mSiO2-PA administration in vivo markedly suppresses HeLa tumor xenografts growth via the induction of apoptosis, followed by caspase-3 activation and cytochrome C release. Further investigation revealed that Fe3O4@mSiO2-PA causes enhanced production of reactive oxygen species (ROS), which subsequently triggers DNA damage and causes dysfunction of the MAPK and PI3K/AKT pathways. Importantly, Fe3O4@mSiO2-PA shows few side effects and good biocompatibility in vivo. Taken together, these results suggest that Fe3O4@mSiO2-PA inhibits HeLa cell growth in vitro and in vivo by triggering enhanced oxidative damage and regulating multiple signal pathways. Our findings validate the rational design that mesoporous silica integrated with Fe3O4 and palmitoyl ascorbate can act as a new nano-Fenton reactor for amplified tumor oxidation therapy.
Collapse
Affiliation(s)
- Yu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
40
|
Xu M, Yao C, Zhang W, Gao S, Zou H, Gao J. Anti-Cancer Activity Based on the High Docetaxel Loaded Poly(2-Oxazoline)s Micelles. Int J Nanomedicine 2021; 16:2735-2749. [PMID: 33859475 PMCID: PMC8043799 DOI: 10.2147/ijn.s298093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Nanocarriers, with a high drug loading content and good safety, to achieve desirable therapeutic effect are always the goals for industry and research. METHODS AND RESULTS In the present study, we developed a docetaxel loaded poly-2-oxazoline polymer micellar system which employed poly-2-butyl-2 oxazoline and poly-2-methyl-2 oxazoline as the hydrophobic chain and hydrophilic chain, respectively. This micellar system achieves a high load up to 25% against the docetaxel, and further demonstrates an IC50 as low as 40% of the commercialized docetaxel injection in vitro and a double maximum tolerated dose in MCF-7 cells in vivo. CONCLUSION The high drug loading content, superior safety, and considerable anti-cancer activity make this newly developed docetaxel loaded poly(2-oxazoline) micelle go further in future clinical research.
Collapse
Affiliation(s)
- Min Xu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
- Department of Pharmacy, Changzheng Hospital, Shanghai, 200003, People's Republic of China
| | - Chong Yao
- Clinical Pharmacy Center, Department of Pharmacy, Chinese PLA General Hospital, Beijing, 100850, People's Republic of China
| | - Wei Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Shen Gao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Hao Zou
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jing Gao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| |
Collapse
|
41
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
42
|
Xu S, Ling S, Shan Q, Ye Q, Zhan Q, Jiang G, Zhuo J, Pan B, Wen X, Feng T, Lu H, Wei X, Xie H, Zheng S, Xiang J, Shen Y, Xu X. Self-Activated Cascade-Responsive Sorafenib and USP22 shRNA Co-Delivery System for Synergetic Hepatocellular Carcinoma Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003042. [PMID: 33717848 PMCID: PMC7927615 DOI: 10.1002/advs.202003042] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/17/2020] [Indexed: 05/06/2023]
Abstract
Resistance to sorafenib severely hinders its effectiveness against hepatocellular carcinoma (HCC). Cancer stemness is closely connected with resistance to sorafenib. Methods for reversing the cancer stemness remains one of the largest concerns in research and the lack of such methods obstructs current HCC therapeutics. Ubiquitin-specific protease 22 (USP22) is reported to play a pivotal role in HCC stemness and multidrug resistance (MDR). Herein, a galactose-decorated lipopolyplex (Gal-SLP) is developed as an HCC-targeting self-activated cascade-responsive nanoplatform to co-delivery sorafenib and USP22 shRNA (shUSP22) for synergetic HCC therapy. Sorafenib, entrapped in the Gal-SLPs, induced a reactive oxygen species (ROS) cascade and triggered rapid shUSP22 release. Thus, Gal-SLPs dramatically suppressed the expression of USP22. The downregulation of USP22 suppresses multidrug resistance-associated protein 1 (MRP1) to induce intracellular sorafenib accumulation and hampers glycolysis of HCC cells. As a result, Gal-SLPs efficiently inhibit the viability, proliferation, and colony formation of HCC cells. A sorafenib-insensitive patient-derived xenograft (PDX) model is established and adopted to evaluate in vivo antitumor effect of Gal-SLPs. Gal-SLPs exhibit potent antitumor efficiency and biosafety. Therefore, Gal-SLPs are expected to have great potential in the clinical treatment of HCC.
Collapse
Affiliation(s)
- Shengjun Xu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Sunbin Ling
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Qiaonan Shan
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Qianwei Ye
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Qifan Zhan
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Guangjiang Jiang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Binhua Pan
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Xue Wen
- Department of Pathologythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
| | - Tingting Feng
- Department of Abdominal Medical OncologyZhejiang Cancer HospitalHangzhouZhejiang310022China
| | - Haohao Lu
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Haiyang Xie
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouZhejiang310000China
| | - Jiajia Xiang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalSchool of Medicine Zhejiang UniversityHangzhouZhejiang310003China
- NHC Key Lab of Combined Multi‐Organ TransplantationHangzhouZhejiang310003China
| |
Collapse
|
43
|
Lim J, Lee J, Jung S, Kim WJ. Phenylboronic-acid-based nanocomplex as a feasible delivery platform of immune checkpoint inhibitor for potent cancer immunotherapy. J Control Release 2021; 330:1168-1177. [DOI: 10.1016/j.jconrel.2020.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
|
44
|
Han X, Zhang L, Zhang Q, Sui X, Qian M, Chen Q, Wang J. Construction of a Novel Reactive Oxygen Species-responsive Cationic Copolymer and Its Performance in Gene Delivery. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Zhang X, Wang S, Cheng G, Yu P, Chang J, Chen X. Cascade Drug-Release Strategy for Enhanced Anticancer Therapy. MATTER 2021; 4:26-53. [PMID: 33718863 PMCID: PMC7945719 DOI: 10.1016/j.matt.2020.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chemotherapy serves as one of the most effective approaches in numerous tumor treatments but also suffers from the limitations of low bioavailability and adverse side effects due to premature drug leakage. Therefore, it is crucial to realize accurate on-demand drug release for promoting the application of chemotherapeutic agents. To achieve this, stimuli-responsive nanomedicines that can be activated by delicately designed cascade reactions have been developed in recent years. In general, the nanomedicines are triggered by an internal or external stimulus, generating an intermediate stimulus at tumor site, which can intensify the differences between tumor and normal tissues; the drug release process is then further activated by the intermediate stimulus. In this review, the latest progress made in cascade reactions-driven drug-release modes, based on the intermediate stimuli of heat, hypoxia, and reactive oxygen species, is systematically summarized. The perspectives and challenges of cascade strategy for drug delivery are also discussed.
Collapse
Affiliation(s)
- Xu Zhang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
| | - Sheng Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
- Correspondence: (S.W.), (J.C.), (X.C.)
| | - Guohui Cheng
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
| | - Peng Yu
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
- Correspondence: (S.W.), (J.C.), (X.C.)
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Correspondence: (S.W.), (J.C.), (X.C.)
| |
Collapse
|
46
|
Li J, Kataoka K. Chemo-physical Strategies to Advance the in Vivo Functionality of Targeted Nanomedicine: The Next Generation. J Am Chem Soc 2020; 143:538-559. [PMID: 33370092 DOI: 10.1021/jacs.0c09029] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The past few decades have witnessed an evolution of nanomedicine from biologically inert entities to more smart systems, aimed at advancing in vivo functionality. However, we should recognize that most systems still rely on reasonable explanation-including some over-explanation-rather than definitive evidence, which is a watershed radically determining the speed and extent of advancing nanomedicine. Probing nano-bio interactions and desirable functionality at the tissue, cellular, and molecular levels is most frequently overlooked. Progress toward answering these questions will provide instructive insight guiding more effective chemo-physical strategies. Thus, in the next generation, we argue that much effort should be made to provide definitive evidence for proof-of-mechanism, in lieu of creating many new and complicated systems for similar proof-of-concept.
Collapse
Affiliation(s)
- Junjie Li
- Innovation Center of NanoMedicne, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicne, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.,Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
47
|
Zheng D, Wan C, Yang H, Xu L, Dong Q, Du C, Du J, Li F. Her2-Targeted Multifunctional Nano-Theranostic Platform Mediates Tumor Microenvironment Remodeling and Immune Activation for Breast Cancer Treatment. Int J Nanomedicine 2020; 15:10007-10028. [PMID: 33376321 PMCID: PMC7756023 DOI: 10.2147/ijn.s271213] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The treatment of breast cancer is often ineffective due to the protection of the tumor microenvironment and the low immunogenicity of tumor cells, leading to a poor therapeutic effect. In this study, we designed a nano-theranostic platform for these obstacles: a photothermal effect mediated by a gold shell could remodel the tumor microenvironment by decreasing cancer-associated fibroblasts (CAFs) and promote the release of doxorubicin (DOX) from nanoparticles. In addition, it could realize photoacoustic (PA)/MRI dual-model imaging for diagnose breast cancer and targeted identification of Her2-positive breast cancer. Methods Her2-DOX-superparamagnetic iron oxide nanoparticles (SPIOs)@Poly (D, L-lactide-co-glycolide) acid (PLGA)@Au nanoparticles (Her2-DSG NPs) were prepared based on a single emulsion oil-in-water (O/W) solvent evaporation method, gold seed growing method, and carbon diimide method. The size distribution, morphology, PA/MRI imaging, drug loading capacity, and drug release were investigated. Cytotoxicity, antitumor effect, cellular uptake, immunogenic cell death (ICD) effect, and targeted performance on human Her2-positive BT474 cell line were investigated in vitro. BT474/Adr cells were constructed and the antitumor effect of NPs on it was evaluated in vitro. Moreover, chemical-photothermal therapy effect, PA/MRI dual-model imaging, ICD effect induced by NPs, and tumor microenvironment remodeling in human BT474 breast cancer nude mice model were also investigated. Results Nanoparticles were spherical, uniform in size and covered with a gold shell. NPs had a photothermal effect, and can realize photothermal-controlled drug release in vitro. Chemical-photothermal therapy had a good antitumor effect on BT474/Adr cells and on BT474 cells in vitro. The targeting evaluation in vitro showed that Her2-DSG NPs could actively target and identify Her2-positive tumor cells. The PA/MRI imaging was successfully validated in vitro/vivo. Similarly, NPs could enhance the ICD effect in vitro/vivo, which could activate an immune response. Immunofluorescence results also proved that photothermal effect could decrease CAFs to remodel the tumor microenvironment and enhance the accessibility of NPs to tumor cells. According to the toxicity results, targeted drug delivery combined with photothermal-responsive drug release proved that NPs had good biosafety in vivo. Chemical-photothermal therapy of Her2-targeted NPs has a good antitumor effect in the BT474 nude mice model. Conclusion Our study showed that chemical-photothermal therapy combined with tumor microenvironment remodeling and immune activation based on the Her2-DSG NPs we developed are very promising for Her2-positive breast cancer.
Collapse
Affiliation(s)
- Dongdong Zheng
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Caifeng Wan
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hong Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Li Xu
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qi Dong
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chengrun Du
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Jing Du
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fenghua Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
48
|
Wu H, Chen F, You C, Zhang Y, Sun B, Zhu Q. Smart Porous Core-Shell Cuprous Oxide Nanocatalyst with High Biocompatibility for Acid-Triggered Chemo/Chemodynamic Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001805. [PMID: 33079449 DOI: 10.1002/smll.202001805] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/21/2020] [Indexed: 06/11/2023]
Abstract
The rational integration of chemotherapy and hydroxyl radical (·OH)-mediated chemodynamic therapy (CDT) holds great potential for cancer treatment. Herein, a smart biocompatible nanocatalyst based on porous core-shell cuprous oxide nanocrystals (Cu2 O-PEG (polyethylene glycol) NCs) is reported for acid-triggered chemo/chemodynamic synergistic therapy. The in situ formed high density of hydrophilic PEG outside greatly improves the stability and compatibility of NCs. The porosity of Cu2 O-PEG NCs shows the admirable capacity of doxorubicin (DOX) loading (DOX@Cu2 O-PEG NCs) and delivery. Excitingly, Cu (Cu+/2+ ) and DOX can be controllably released from DOX@Cu2 O-PEG NCs in a pH-responsive approach. The released Cu+ exerts Fenton-like catalytic activity to generate toxic ·OH from intracellular overexpressed hydrogen peroxide (H2 O2 ) for CDT via reactive oxygen species (ROS)-involved oxidative damage. Exactly, DOX can not only induce cell death for chemotherapy but also enhance CDT by self-supplying endogenous H2 O2 . After the intravenous injection, Cu2 O-PEG NCs can effectively accumulate in tumor region via passive targeting improved by external high-density PEG shell. Additionally, the effect of boosted CDT combined with chemotherapy presents excellent in vivo antitumor ability without causing distinct systemic toxicity. It is believed that this smart nanocatalyst responding to the acidity provides a novel paradigm for site-specific cancer synergetic therapy.
Collapse
Affiliation(s)
- Hongshuai Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Fanghui Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Chaoqun You
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Qing Zhu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
49
|
Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020; 49:9057-9094. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various therapeutic techniques have been studied for treating cancer precisely and effectively, such as targeted drug delivery, phototherapy, tumor-specific catalytic therapy, and synergistic therapy, which, however, evoke numerous challenges due to the inherent limitations of these therapeutic modalities and intricate biological circumstances as well. With the remarkable advances of nanotechnology, nanoplatform-based cascade engineering, as an efficient and booming strategy, has been tactfully introduced to optimize these cancer therapies. Based on the designed nanoplatforms, pre-supposed cascade processes could be triggered under specific conditions to generate/deliver more therapeutic species or produce stronger tumoricidal effects inside tumors, aiming to achieve cancer therapy with increased anti-tumor efficacy and diminished side effects. In this review, the recent advances in nanoplatform-based cascade engineering for cancer therapy are summarized and discussed, with an emphasis on the design of smart nanoplatforms with unique structures, compositions and properties, and the implementation of specific cascade processes by means of endogenous tumor microenvironment (TME) resources and/or exogenous energy inputs. This fascinating strategy presents unprecedented potential in the enhancement of cancer therapies, and offers better controllability, specificity and effectiveness of therapeutic functions compared to the corresponding single components/functions. In the end, challenges and prospects of such a burgeoning strategy in the field of cancer therapy will be discussed, hopefully to facilitate its further development to meet the personalized treatment demands.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | | | | | | |
Collapse
|
50
|
van Eerden RAG, Mathijssen RHJ, Koolen SLW. Recent Clinical Developments of Nanomediated Drug Delivery Systems of Taxanes for the Treatment of Cancer. Int J Nanomedicine 2020; 15:8151-8166. [PMID: 33132699 PMCID: PMC7592152 DOI: 10.2147/ijn.s272529] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Conventional taxanes are used as cornerstone of the chemotherapeutical treatment for a variety of malignancies. Nevertheless, a large proportion of patients do not benefit from their treatment while they do suffer from severe adverse events related to the solvent or to the active compound. Cremophor EL and polysorbate 80 free formulations, conjugates, oral formulations and different types of drug delivery systems are some examples of the several attempts to improve the treatment with taxanes. In this review article, we discuss recent clinical developments of nanomediated drug delivery systems of taxanes for the treatment of cancer. Targeting mechanisms of drug delivery systems and characteristics of the most commonly used taxane-containing drug delivery systems in the clinical setting will be discussed in this review.
Collapse
Affiliation(s)
- Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.,Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|