1
|
Sen M, Al-Amin M, Kicková E, Sadeghi A, Puranen J, Urtti A, Caliceti P, Salmaso S, Arango-Gonzalez B, Ueffing M. Retinal neuroprotection by controlled release of a VCP inhibitor from self-assembled nanoparticles. J Control Release 2021; 339:307-320. [PMID: 34606936 DOI: 10.1016/j.jconrel.2021.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
Mutations in rhodopsin lead to its misfolding resulting in autosomal dominant retinitis pigmentosa (adRP). Pharmacological inhibition of the ATP-driven chaperone valosin-containing protein (VCP), a molecular checkpoint for protein quality control, slows down retinal degeneration in animal models. However, poor water-solubility of VCP inhibitors poses a challenge to their clinical translation as intravitreal injections for retinal treatment. In order to enable the delivery of VCP inhibitors, we have developed and investigated two formulations for the VCP inhibitor ML240. Nanoformulations of ML240 were obtained by using amphiphilic polymers methoxy-poly (ethylene glycol)5kDa-cholane (mPEG5kDa-cholane) and methoxy-poly (ethylene glycol)5kDa-cholesterol (mPEG5kDa-cholesterol). Both formulations increased the water-solubility of ML240 by two orders of magnitude and prolonged the drug released over ten days. In addition, encapsulation of ML240 in mPEG5kDa-cholane showed superior photoreceptor protection at lower drug concentrations, normalized rhodopsin localization, and alleviated inflammatory microglial responses in an ex vivo rat model of retinal degeneration. The study demonstrates the potential of VCP inhibitor nanoformulations to treat adRP, a pharmacologically orphan disease.
Collapse
Affiliation(s)
- Merve Sen
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Md Al-Amin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Eva Kicková
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Amir Sadeghi
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jooseppi Puranen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Blanca Arango-Gonzalez
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Caimano M, Lospinoso Severini L, Loricchio E, Infante P, Di Marcotullio L. Drug Delivery Systems for Hedgehog Inhibitors in the Treatment of SHH-Medulloblastoma. Front Chem 2021; 9:688108. [PMID: 34164380 PMCID: PMC8215655 DOI: 10.3389/fchem.2021.688108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Medulloblastoma (MB) is a highly aggressive pediatric tumor of the cerebellum. Hyperactivation of the Hedgehog (HH) pathway is observed in about 30% of all MB diagnoses, thereby bringing out its pharmacological blockade as a promising therapeutic strategy for the clinical management of this malignancy. Two main classes of HH inhibitors have been developed: upstream antagonists of Smoothened (SMO) receptor and downstream inhibitors of GLI transcription factors. Unfortunately, the poor pharmacological properties of many of these molecules have limited their investigation in clinical trials for MB. In this minireview, we focus on the drug delivery systems engineered for SMO and GLI inhibitors as a valuable approach to improve their bioavailability and efficiency to cross the blood-brain barrier (BBB), one of the main challenges in the treatment of MB.
Collapse
Affiliation(s)
- Miriam Caimano
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | | | - Elena Loricchio
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
3
|
Brunato S, Mastrotto F, Bellato F, Bastiancich C, Travanut A, Garofalo M, Mantovani G, Alexander C, Preat V, Salmaso S, Caliceti P. PEG-polyaminoacid based micelles for controlled release of doxorubicin: Rational design, safety and efficacy study. J Control Release 2021; 335:21-37. [PMID: 33989691 DOI: 10.1016/j.jconrel.2021.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022]
Abstract
A library of amphiphilic monomethoxypolyethylene glycol (mPEG) terminating polyaminoacid co-polymers able to self-assemble into colloidal systems was screened for the delivery and controlled release of doxorubicin (Doxo). mPEG-Glu/Leu random co-polymers were generated by Ring Opening Polymerization from 5 kDa mPEG-NH2 macroinitiator using 16:0:1, 8:8:1, 6:10:1, 4:12:1 γ-benzyl glutamic acid carboxy anhydride monomer/leucine N-carboxy anhydride monomer/PEG molar ratios. Glutamic acid was selected for chemical conjugation of Doxo, while leucine units were introduced in the composition of the polyaminoacid block as spacer between adjacent glutamic repeating units to minimize the steric hindrance that could impede the Doxo conjugation and to promote the polymer self-assembly by virtue of the aminoacid hydrophobicity. The benzyl ester protecting the γ-carboxyl group of glutamic acid was quantitatively displaced with hydrazine to yield mPEG5kDa-b-(hydGlum-r-Leun). Doxo was conjugated to the diblock co-polymers through pH-sensitive hydrazone bond. The Doxo derivatized co-polymers obtained with a 16:0:1, 8:8:1, 6:10:1 Glu/Leu/PEG ratios self-assembled into 30-40 nm spherical nanoparticles with neutral zeta-potential and CMC in the range of 4-7 μM. At pH 5.5, mimicking endosome environment, the carriers containing leucine showed a faster Doxo release than at pH 7.4, mimicking the blood conditions. Doxo-loaded colloidal formulations showed a dose dependent cytotoxicity on two cancer cell lines, CT26 murine colorectal carcinoma and 4T1 murine mammary carcinoma with IC50 slightly higher than those of free Doxo. The carrier assembled with the polymer containing 6:10:1 hydGlu/Leu/PEG molar ratio {mPEG5kDa-b-[(Doxo-hydGlu)6-r-Leu10]} was selected for subsequent in vitro and in vivo investigations. Confocal imaging on CT26 cell line showed that intracellular fate of the carrier involves a lysosomal trafficking pathway. The intratumor or intravenous injection to CT26 and 4T1 subcutaneous tumor bearing mice yielded higher antitumor activity compared to free Doxo. Furthermore, mPEG5kDa-b-[(Doxo-hydGlu)6-r-Leu10] displayed a better safety profile when compared to commercially available Caelyx®.
Collapse
Affiliation(s)
- Silvia Brunato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Chiara Bastiancich
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200 Brussels, Belgium
| | - Alessandra Travanut
- Molecular Therapeutics and Formulations Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Giuseppe Mantovani
- Molecular Therapeutics and Formulations Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Cameron Alexander
- Molecular Therapeutics and Formulations Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Veronique Preat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200 Brussels, Belgium
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy.
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
4
|
Infante P, Malfanti A, Quaglio D, Balducci S, De Martin S, Bufalieri F, Mastrotto F, Basili I, Garofalo M, Lospinoso Severini L, Mori M, Manni I, Moretti M, Nicoletti C, Piaggio G, Caliceti P, Botta B, Ghirga F, Salmaso S, Di Marcotullio L. Glabrescione B delivery by self-assembling micelles efficiently inhibits tumor growth in preclinical models of Hedgehog-dependent medulloblastoma. Cancer Lett 2020; 499:220-231. [PMID: 33249196 DOI: 10.1016/j.canlet.2020.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Aberrant activation of the Hedgehog (Hh) pathway leads to the development of several tumors, including medulloblastoma (MB), the most common pediatric brain malignancy. Hh inhibitors acting on GLI1, the final effector of Hh signaling, offer a valuable opportunity to overcome the pitfalls of the existing therapies to treat Hh-driven cancers. In this study, the toxicity, delivery, biodistribution, and anticancer efficacy of Glabrescione B (GlaB), a selective GLI1 inhibitor, were investigated in preclinical models of Hh-dependent MB. To overcome its poor water solubility, GlaB was formulated with a self-assembling amphiphilic polymer forming micelles, called mPEG5kDa-cholane. mPEG5kDa-cholane/GlaB showed high drug loading and stability, low cytotoxicity, and long permanence in the bloodstream. We found that mPEG5kDa-cholane efficiently enhanced the solubility of GlaB, thus avoiding the use of organic solvents. mPEG5kDa-cholane/GlaB possesses favorable pharmacokinetics and negligible toxicity. Remarkably, GlaB encapsulated in mPEG5kDa-cholane micelles was delivered through the blood-brain barrier and drastically inhibited tumor growth in both allograft and orthotopic models of Hh-dependent MB. Our findings reveal that mPEG5kDa-cholane/GlaB is a good candidate for the treatment of Hh-driven tumors and provide relevant implications for the translation of GlaB into clinical practice.
Collapse
Affiliation(s)
- Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Roma, Italy
| | - Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, University La Sapienza, Roma, Italy
| | - Silvia Balducci
- Department of Chemistry and Technology of Drugs, University La Sapienza, Roma, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Irene Basili
- Department of Molecular Medicine, University La Sapienza, Roma, Italy
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Isabella Manni
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Marta Moretti
- Department of Experimental Medicine, University La Sapienza, Roma, Italy
| | - Carmine Nicoletti
- DAHFMO-Unit of Histology and Medical Embryology, University La Sapienza, Roma, Italy; Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, University La Sapienza, Roma, Italy
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, University La Sapienza, Roma, Italy
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Roma, Italy.
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University La Sapienza, Roma, Italy; Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, University La Sapienza, Roma, Italy.
| |
Collapse
|
5
|
Tong T, Wang L, You X, Wu J. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomater Sci 2020; 8:5804-5823. [PMID: 33016274 DOI: 10.1039/d0bm01151g] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, peptide/protein drugs have attracted considerable attention owing to their superior targeting and therapeutic effect and fewer side effects compared with chemical drugs. Oral administration modality with enhanced patient compliance is increasingly being recognized as an ideal route for peptide/protein delivery. However, the limited permeation efficiency and low oral bioavailability of peptide/protein drugs significantly hinder therapeutic advances. To address these problems, various nano and microscale delivery platforms have been developed, which offer significant advantages in oral peptide/protein delivery. In this review, we briefly introduce the transport mechanisms of oral peptide/protein delivery and the primary barriers to this delivery process. We also highlight the recent advances in various nano and microscale delivery platforms designed for oral peptide/protein delivery. We then summarize the existing strategies used in these delivery platforms to improve the oral bioavailability and permeation efficiency of peptide/protein therapeutics. Finally, we discuss the major challenges faced when nano and microscale systems are used for oral peptide/protein delivery. This review is expected to provide critical insight into the design and development of oral peptide/protein delivery systems with significant therapeutic advances.
Collapse
Affiliation(s)
- Tong Tong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong, Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | | | | | | |
Collapse
|
6
|
Massadeh S, Omer ME, Alterawi A, Ali R, Alanazi FH, Almutairi F, Almotairi W, Alobaidi FF, Alhelal K, Almutairi MS, Almalik A, Obaidat AA, Alaamery M, Yassin AE. Optimized Polyethylene Glycolylated Polymer-Lipid Hybrid Nanoparticles as a Potential Breast Cancer Treatment. Pharmaceutics 2020; 12:pharmaceutics12070666. [PMID: 32679809 PMCID: PMC7408428 DOI: 10.3390/pharmaceutics12070666] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose: The aim of this work is to optimize a polyethylene glycolated (PEGylated) polymer–lipid hybrid nanoparticulate system for the delivery of anastrozole (ANS) to enhance its biopharmaceutical attributes and overall efficacy. Methods: ANS loaded PEGylated polymer–lipid hybrid nanoparticles (PLNPs) were prepared by a direct emulsification solvent evaporation method. The physical incorporation of PEG was optimized using variable ratios. The produced particles were evaluated to discern their particle size and shape, zeta-potential, entrapment efficiency, and physical stability. The drug-release profiles were studied, and the kinetic model was analyzed. The anticancer activity of the ANS PLNPs on estrogen-positive breast cancer cell lines was determined using flow cytometry. Results: The prepared ANS-PLNPs showed particle sizes in the range of 193.6 ± 2.9 to 218.2 ± 1.9 nm, with good particle size uniformity (i.e., poly-dispersity index of around 0.1). Furthermore, they exhibited relatively low zeta-potential values ranging from −0.50 ± 0.52 to 6.01 ± 4.74. The transmission electron microscopy images showed spherical shape of ANS-PLNPs and the compliance with the sizes were revealed by light scattering. The differential scanning calorimetry DSC patterns of the ANS PLNPs revealed a disappearance of the characteristic sharp melting peak of pure ANS, supporting the incorporation of the drug into the polymeric matrices of the nanoparticles. Flow cytometry showed the apoptosis of MCF-7 cell lines in the presence of ANS-PLNPs. Conclusion: PEGylated polymeric nanoparticles presented a stable encapsulated system with which to incorporate an anticancer drug (ANS) with a high percentage of entrapment efficiency (around 80%), good size uniformity, and induction of apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Salam Massadeh
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia; (S.M.); (M.S.A.)
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Mustafa E Omer
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Asmaa Alterawi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Rizwan Ali
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia;
| | - Fayez H Alanazi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Fares Almutairi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Wejdan Almotairi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Faris F Alobaidi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Khulud Alhelal
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Mansour S Almutairi
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia; (S.M.); (M.S.A.)
| | - Abdulaziz Almalik
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
- Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Aiman A. Obaidat
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia; (S.M.); (M.S.A.)
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
- Correspondence: (M.A.); (A.E.Y.)
| | - Alaa Eldeen Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
- Correspondence: (M.A.); (A.E.Y.)
| |
Collapse
|
7
|
Nieto-Orellana A, Li H, Rosiere R, Wauthoz N, Williams H, Monteiro CJ, Bosquillon C, Childerhouse N, Keegan G, Coghlan D, Mantovani G, Stolnik S. Targeted PEG-poly(glutamic acid) complexes for inhalation protein delivery to the lung. J Control Release 2019; 316:250-262. [PMID: 31678655 DOI: 10.1016/j.jconrel.2019.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/02/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
Pulmonary delivery is increasingly seen as an attractive, non-invasive route for the delivery of forthcoming protein therapeutics. In this context, here we describe protein complexes with a new 'complexing excipient' - vitamin B12-targeted poly(ethylene glycol)-block-poly(glutamic acid) copolymers. These form complexes in sub-200nm size with a model protein, suitable for cellular targeting and intracellular delivery. Initially we confirmed expression of vitamin B12-internalization receptor (CD320) by Calu-3 cells of the in vitro lung epithelial model used, and demonstrated enhanced B12 receptor-mediated cellular internalization of B12-targeted complexes, relative to non-targeted counterparts or protein alone. To develop an inhalation formulation, the protein complexes were spray dried adopting a standard protocol into powders with aerodynamic diameter within the suitable range for lower airway deposition. The cellular internalization of targeted complexes from dry powders applied directly to Calu-3 model was found to be 2-3 fold higher compared to non-targeted complexes. The copolymer complexes show no complement activation, and in vivo lung tolerance studies demonstrated that repeated administration of formulated dry powders over a 3 week period in healthy BALB/c mice induced no significant toxicity or indications of lung inflammation, as assessed by cell population count and quantification of IL-1β, IL-6, and TNF-α pro-inflammatory markers. Importantly, the in vivo data appear to suggest that B12-targeted polymer complexes administered as dry powder enhance lung retention of their protein payload, relative to protein alone and non-targeted counterparts. Taken together, our data illustrate the potential developability of novel B12-targeted poly(ethylene glycol)-poly(glutamic acid) copolymers as excipients suitable to be formulated into a dry powder product for the inhalation delivery of proteins, with no significant lung toxicity, and with enhanced protein retention at their in vivo target tissue.
Collapse
Affiliation(s)
- A Nieto-Orellana
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - H Li
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - R Rosiere
- Laboratory of Pharmaceutics and Biopharmaceutics (ULBGAL), Université Libre de Bruxelles, Bruxelles, BE, Belgium
| | - N Wauthoz
- Laboratory of Pharmaceutics and Biopharmaceutics (ULBGAL), Université Libre de Bruxelles, Bruxelles, BE, Belgium
| | - H Williams
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - C J Monteiro
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - C Bosquillon
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - G Keegan
- Vectura Group plc, Chippenhafm, UK
| | | | - G Mantovani
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK.
| | - S Stolnik
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
8
|
Mastrotto F, Bellato F, Andretto V, Malfanti A, Garofalo M, Salmaso S, Caliceti P. Physical PEGylation to Prevent Insulin Fibrillation. J Pharm Sci 2019; 109:900-910. [PMID: 31639392 DOI: 10.1016/j.xphs.2019.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 11/19/2022]
Abstract
Insulin is one of the most marketed therapeutic proteins worldwide. However, its formulation suffers from fibrillation, which affects the long-term storage limiting the development of novel devices for sustained delivery including portable infusion devices. We have investigated the effect of physical PEGylation on structural and colloidal stability of insulin by using 2 PEGylating agents terminating with polycyclic hydrophobic moieties, cholane and cholesterol: mPEG5kDa-cholane and mPEG5kDa-cholesterol, respectively. Microcalorimetric analyses showed that mPEG5kDa-cholane and mPEG5kDa-cholesterol efficiently bind insulin with binding constants (Ka) of 3.98 104 and 1.14 105 M-1, respectively. At room temperature, the 2 PEGylating agents yielded comparable structural stabilization of α-helix conformation and decreased dimerization of insulin. However, melting studies showed that mPEG5kDa-cholesterol has superior stabilizing effect of the protein conformation than mPEG5kDa-cholane. Furthermore, the fibrillation study showed that at a 1:1 and 1:5 insulin/polymer molar ratios, mPEG5kDa-cholesterol delays insulin fibrillation 40% and 26% more efficiently, respectively, as compared to mPEG5kDa-cholane which was confirmed by transmission electron microscopy imaging. Insulin was released from the mPEG5kDa-cholane and mPEG5kDa-cholesterol assemblies with comparable kinetic profiles. The physical PEGylation has a beneficial effect on the stabilization and shielding of the insulin structure into the monomeric form, which is not prone to fibrillation and aggregation.
Collapse
Affiliation(s)
- Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Valentina Andretto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy.
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
9
|
Rangel-Argote M, Claudio-Rizo JA, Mata-Mata JL, Mendoza-Novelo B. Characteristics of Collagen-Rich Extracellular Matrix Hydrogels and Their Functionalization with Poly(ethylene glycol) Derivatives for Enhanced Biomedical Applications: A Review. ACS APPLIED BIO MATERIALS 2018; 1:1215-1228. [DOI: 10.1021/acsabm.8b00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Magdalena Rangel-Argote
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Guanajuato, México
- Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Guanajuato, México
| | - Jesús A. Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Venustiano Carranza s/n, 25280 Saltillo, Coahuila, México
| | - José L. Mata-Mata
- Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Guanajuato, México
| | - Birzabith Mendoza-Novelo
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Guanajuato, México
| |
Collapse
|
10
|
Ambrosio E, Podmore A, Gomes dos Santos AL, Magarkar A, Bunker A, Caliceti P, Mastrotto F, van der Walle CF, Salmaso S. Control of Peptide Aggregation and Fibrillation by Physical PEGylation. Biomacromolecules 2018; 19:3958-3969. [DOI: 10.1021/acs.biomac.8b00887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elena Ambrosio
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Adrian Podmore
- Formulation Sciences, MedImmune Ltd., Granta Park, Cambridge CB21 6GH, United Kingdom
| | | | - Aniket Magarkar
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki FI-00014, Finland
| | - Alex Bunker
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki FI-00014, Finland
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | | | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
11
|
Kurinomaru T, Kuwada K, Tomita S, Kameda T, Shiraki K. Noncovalent PEGylation through Protein–Polyelectrolyte Interaction: Kinetic Experiment and Molecular Dynamics Simulation. J Phys Chem B 2017. [DOI: 10.1021/acs.jpcb.7b02741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Takaaki Kurinomaru
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kengo Kuwada
- Faculty
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Shunsuke Tomita
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoshi Kameda
- Artificial
Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto, Tokyo 135-0064, Japan
| | - Kentaro Shiraki
- Faculty
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
12
|
Novel strategies in the oral delivery of antidiabetic peptide drugs - Insulin, GLP 1 and its analogs. Eur J Pharm Biopharm 2017; 115:257-267. [PMID: 28336368 DOI: 10.1016/j.ejpb.2017.03.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/30/2017] [Accepted: 03/19/2017] [Indexed: 12/25/2022]
Abstract
As diabetes is a complex disorder being a major cause of mortality and morbidity in epidemic rates, continuous research has been done on new drug types and administration routes. Up to now, a large number of therapeutic peptides have been produced to treat diabetes including insulin, glucagon-like peptide-1 (GLP-1) and its analogs. The most common route of administration of these antidiabetic peptides is parenteral. Due to several drawbacks associated with this invasive route, delivery of these antidiabetic peptides by the oral route has been a goal of pharmaceutical technology for many decades. Dosage form development should focus on overcoming the limitations facing oral peptides delivery as degradation by proteolytic enzymes and poor absorption in the gastrointestinal tract (GIT). This review focuses on currently developed strategies to improve oral bioavailability of these peptide based drugs; evaluating their advantages and limitations in addition to discussing future perspectives on oral peptides delivery. Depending on the previous reports and papers, the area of nanocarriers systems including polymeric nanoparticles, solid lipid nanoparticles, liposomes and micelles seem to be the most promising strategy that could be applied for successful oral peptides delivery; but still further potential attempts are required to be able to achieve the FDA approved oral antidiabetic peptide delivery system.
Collapse
|
13
|
Goel R, Sharma AK, Gupta A. Self-assembled amphiphilic mixed α/β-tetrapeptoid nanostructures as promising drug delivery vehicles. NEW J CHEM 2017. [DOI: 10.1039/c6nj03281h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetrapeptoid nanostructures have been prepared and their potential used for delivering hydrophobic drug molecules.
Collapse
Affiliation(s)
- Rahul Goel
- Department of Chemistry
- Dyal Singh College
- University of Delhi
- New Delhi-110003
- India
| | - Ashwani Kumar Sharma
- NAR Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007
- India
| | - Alka Gupta
- Department of Chemistry
- Dyal Singh College
- University of Delhi
- New Delhi-110003
- India
| |
Collapse
|
14
|
Nieto-Orellana A, Di Antonio M, Conte C, Falcone FH, Bosquillon C, Childerhouse N, Mantovani G, Stolnik S. Effect of polymer topology on non-covalent polymer–protein complexation: miktoarm versus linear mPEG-poly(glutamic acid) copolymers. Polym Chem 2017. [DOI: 10.1039/c7py00169j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the design of mPEG-(poly(glutamic acid)) with different macromolecular topology – linear and miktoarm – for reversible non-covalent protein complexation.
Collapse
|
15
|
Antonik PM, Eissa AM, Round AR, Cameron NR, Crowley PB. Noncovalent PEGylation via Lectin–Glycopolymer Interactions. Biomacromolecules 2016; 17:2719-25. [DOI: 10.1021/acs.biomac.6b00766] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paweł M. Antonik
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
- Teagasc Food Research
Centre, Ashtown, Dublin 15, Ireland
| | - Ahmed M. Eissa
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
- Department
of Polymers, Chemical Industries Research Division, National Research Centre (NRC), El-Bohoos Street, Dokki, Cairo 12311, Egypt
| | - Adam R. Round
- European Molecular Biology Laboratory Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|