1
|
Fayzullina D, Manukhova T, Evtushenko E, Tsibulnikov S, Kirgizov K, Ulasov I, Nikitin N, Karpova O. Assessment of a Structurally Modified Alternanthera Mosaic Plant Virus as a Delivery System for Sarcoma Cells. Viruses 2024; 16:1621. [PMID: 39459953 PMCID: PMC11512230 DOI: 10.3390/v16101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The virions of plant viruses and their structurally modified particles (SP) represent valuable platforms for recombinant vaccine epitopes and antitumor agents. The possibility of modifying their surface with biological compounds makes them a tool for developing medical biotechnology applications. Here, we applied a new type of SP derived from virions and virus-like particles (VLP) of Alternanthera mosaic virus (AltMV) and well-studied SP from Tobacco mosaic virus (TMV). We have tested the ability of SP from AltMV (AltMV SPV) and TMV virions also as AltMV VLP to bind to and penetrate Ewing sarcoma cells. The adsorption properties of AltMV SPV and TMV SP are greater than those of the SP from AltMV VLP. Compared to normal cells, AltMV SPV adsorbed more effectively on patient-derived sarcoma cells, whereas TMV SP were more effective on the established sarcoma cells. The AltMV SPV and TMV SP were captured by all sarcoma cell lines. In the established Ewing sarcoma cell line, the effectiveness of AltMV SPV penetration was greater than that of TMV SP. The usage of structurally modified plant virus particles as a platform for drugs and delivery systems has significant potential in the development of anticancer agents.
Collapse
Affiliation(s)
- Daria Fayzullina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.F.); (S.T.); (I.U.)
| | - Tatiana Manukhova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.M.); (N.N.)
| | - Ekaterina Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.M.); (N.N.)
| | - Sergey Tsibulnikov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.F.); (S.T.); (I.U.)
| | - Kirill Kirgizov
- Research Institute of Pediatric Oncology and Hematology, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia;
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.F.); (S.T.); (I.U.)
| | - Nikolai Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.M.); (N.N.)
| | - Olga Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.M.); (N.N.)
| |
Collapse
|
2
|
Azhari Rad R, Naghdi Y, Majidi Jamalabadi M, Masoumi S, Rezakhani L, Alizadeh M. Tissue Engineering Scaffolds Loaded With a Variety of Plant Extracts: Novel Model in Breast Cancer Therapy. Breast Cancer (Auckl) 2024; 18:11782234241236358. [PMID: 38476474 PMCID: PMC10929036 DOI: 10.1177/11782234241236358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Despite recent improvements in detecting and managing breast cancer (BC), it continues to be a major worldwide health concern that annually affects millions of people. Exploring the anti-BC potentials of natural compounds has received a lot of scientific attention due to their multi-target mode of action and good safety profiles because of these unmet needs. Drugs made from herbs are secure and have a lot fewer negative effects than those made from synthetic materials. Early stage patients benefit from breast-conserving surgery, but the risk of local recurrence remains, necessitating implanted scaffolds. These scaffolds provide residual cancer cell killing and tailored drug delivery. This review looks at plant extract-infused tissue engineering scaffolds, which provide a novel approach to treating BC. By offering patient individualized, safer treatments, these scaffolds could completely change how BC is treated.
Collapse
Affiliation(s)
- Reyhaneh Azhari Rad
- Student Research Committee, School of Paramedicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Yasaman Naghdi
- Student Research Committee, School of Paramedicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mobina Majidi Jamalabadi
- Student Research Committee, School of Nursing and Midwifery, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sima Masoumi
- Graduate of Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
3
|
Dogbey DM, Torres VES, Fajemisin E, Mpondo L, Ngwenya T, Akinrinmade OA, Perriman AW, Barth S. Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy. Drug Deliv Transl Res 2023; 13:2719-2738. [PMID: 37301780 PMCID: PMC10257536 DOI: 10.1007/s13346-023-01362-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 06/12/2023]
Abstract
The burden of cancer is increasing globally. Several challenges facing its mainstream treatment approaches have formed the basis for the development of targeted delivery systems to carry and distribute anti-cancer payloads to their defined targets. This site-specific delivery of drug molecules and gene payloads to selectively target druggable biomarkers aimed at inducing cell death while sparing normal cells is the principal goal for cancer therapy. An important advantage of a delivery vector either viral or non-viral is the cumulative ability to penetrate the haphazardly arranged and immunosuppressive tumour microenvironment of solid tumours and or withstand antibody-mediated immune response. Biotechnological approaches incorporating rational protein engineering for the development of targeted delivery systems which may serve as vehicles for packaging and distribution of anti-cancer agents to selectively target and kill cancer cells are highly desired. Over the years, these chemically and genetically modified delivery systems have aimed at distribution and selective accumulation of drug molecules at receptor sites resulting in constant maintenance of high drug bioavailability for effective anti-tumour activity. In this review, we highlighted the state-of-the art viral and non-viral drug and gene delivery systems and those under developments focusing on cancer therapy.
Collapse
Affiliation(s)
- Dennis Makafui Dogbey
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Emmanuel Fajemisin
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Liyabona Mpondo
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Takunda Ngwenya
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Olusiji Alex Akinrinmade
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, Bristol, UK
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
4
|
Villanueva-Flores F, Pastor AR, Palomares LA, Huerta-Saquero A. A Novel Formulation of Asparaginase Encapsulated into Virus-like Particles of Brome Mosaic Virus: In Vitro and In Vivo Evidence. Pharmaceutics 2023; 15:2260. [PMID: 37765229 PMCID: PMC10535207 DOI: 10.3390/pharmaceutics15092260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
The interest in plant-derived virus-like particles (pVLPs) for the design of a new generation of nanocarriers is based on their lack of infection for humans, their immunostimulatory properties to fight cancer cells, and their capability to contain and release cargo molecules. Asparaginase (ASNase) is an FDA-approved drug to treat acute lymphoblastic leukemia (LLA); however, it exhibits high immunogenicity which often leads to discontinuation of treatment. In previous work, we encapsulated ASNase into bacteriophage P22-based VLPs through genetic-directed design to form the ASNase-P22 nanobioreactors. In this work, a commercial ASNase was encapsulated into brome mosaic virus-like particles (BMV-VLPs) to form stable ASNase-BMV nanobioreactors. According to our results, we observed that ASNase-BMV nanobioreactors had similar cytotoxicity against MOLT-4 and Reh cells as the commercial drug. In vivo assays showed a higher specific anti-ASNase IgG response in BALB/c mice immunized with ASNase encapsulated into BMV-VLPs compared with those immunized with free ASNase. Nevertheless, we also detected a high and specific IgG response against BMV capsids on both ASNase-filled capsids (ASNase-BMV) and empty BMV capsids. Despite the fact that our in vivo studies showed that the BMV-VLPs stimulate the immune response either empty or with cargo proteins, the specific cytotoxicity against leukemic cells allows us to propose ASNase-BMV as a potential novel formulation for LLA treatment where in vitro and in vivo evidence of functionality is provided.
Collapse
Affiliation(s)
- Francisca Villanueva-Flores
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, Ensenada 22860, BC, Mexico
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, MO, Mexico
- Tecnológico de Monterrey, Escuela Nacional de Medicina y Ciencias de la Salud, Avenida Heroico Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, CH, Mexico
| | - Ana Ruth Pastor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, MO, Mexico
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, MO, Mexico
| | - Alejandro Huerta-Saquero
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, Ensenada 22860, BC, Mexico
| |
Collapse
|
5
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein nanoparticles (Part 1): Pharmaceutical characteristics. Eur J Pharm Sci 2023; 187:106460. [PMID: 37156338 DOI: 10.1016/j.ejps.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Viral protein nanoparticles fill the gap between viruses and synthetic nanoparticles. Combining advantageous properties of both systems, they have revolutionized pharmaceutical research. Virus-like particles are characterized by a structure identical to viruses but lacking genetic material. Another type of viral protein nanoparticles, virosomes, are similar to liposomes but include viral spike proteins. Both systems are effective and safe vaccine candidates capable of overcoming the disadvantages of both traditional and subunit vaccines. Besides, their particulate structure, biocompatibility, and biodegradability make them good candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze viral protein nanoparticles from a pharmaceutical perspective and examine current research focused on their development process, from production to administration. Advances in synthesis, modification and formulation of viral protein nanoparticles are critical so that large-scale production of viral protein nanoparticle products becomes viable and affordable, which ultimately will increase their market penetration in the future. We will discuss their expression systems, modification strategies, formulation, biopharmaceutical properties, and biocompatibility.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
7
|
Caparco AA, González-Gamboa I, Hays SS, Pokorski JK, Steinmetz NF. Delivery of Nematicides Using TMGMV-Derived Spherical Nanoparticles. NANO LETTERS 2023. [PMID: 37327572 DOI: 10.1021/acs.nanolett.3c01684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spherical nanoparticles (SNPs) from tobacco mild green mosaic virus (TMGMV) were developed and characterized, and their application for agrochemical delivery was demonstrated. Specifically, we set out to develop a platform for pesticide delivery targeting nematodes in the rhizosphere. SNPs were obtained by thermal shape-switching of the TMGMV. We demonstrated that cargo can be loaded into the SNPs during thermal shape-switching, enabling the one-pot synthesis of functionalized nanocarriers. Cyanine 5 and ivermectin were encapsulated into SNPs to achieve 10% mass loading. SNPs demonstrated good mobility and soil retention slightly higher than that of TMGMV rods. Ivermectin delivery to Caenorhabditis elegans using SNPs was determined after passing the formulations through soil. Using a gel burrowing assay, we demonstrate the potent efficacy of SNP-delivered ivermectin against nematodes. Like many pesticides, free ivermectin is adsorbed in the soil and did not show efficacy. The SNP nanotechnology offers good soil mobility and a platform technology for pesticide delivery to the rhizosphere.
Collapse
Affiliation(s)
- Adam A Caparco
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ivonne González-Gamboa
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Samuel S Hays
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Chaudhary V, Chowdhury R, Thukral P, Pathania D, Saklani S, Rustagi S, Gautam A, Mishra YK, Singh P, Kaushik A. Biogenic green metal nano systems as efficient anti-cancer agents. ENVIRONMENTAL RESEARCH 2023; 229:115933. [PMID: 37080272 DOI: 10.1016/j.envres.2023.115933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Metal/metal oxide nano systems (M-NSs) of tunable and manipulative properties are emerging suitable for cancer management via immunity development, early-stage diagnosis, nanotherapeutics, and targeted drug delivery systems. However, noticeable toxicity, off-targeted actions, lacking biocompatibility, and being expensive limit their acceptability. Moreover, involving high energy (top-down routes) and hazardous chemicals (bottom-up chemical routes) is altering human cycle. To manage such challenges, biomass (plants, microbes, animals) and green chemistry-based M-NSs due to scalability, affordability, are cellular, tissue, and organ acceptability are emerging as desired biogenic M-NSs for cancer management with enhanced features. The state-of-art and perspective of green metal/metal oxide nano systems (GM-NSs) as an efficient anti-cancer agent including, imaging, immunity building elements, site-specific drug delivery, and therapeutics developments are highlighted in this review critically. It is expected that this report will serve as guideline for design and develop high-performance GM-NSs for establishing them as next-generation anti-cancer agent capable to manage cancer in personalized manner.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell & Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India; SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India.
| | - Ruchita Chowdhury
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Chemistry, Netaji Subhas University of Technology, New Delhi, 110078, India
| | - Prachi Thukral
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Shivani Saklani
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, 500046, India.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400, Sønderborg, Denmark
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, 173229, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805, USA; School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India.
| |
Collapse
|
9
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
10
|
Bischoff AJ, Harper CC, Williams ER, Francis MB. Characterizing Heterogeneous Mixtures of Assembled States of the Tobacco Mosaic Virus Using Charge Detection Mass Spectrometry. J Am Chem Soc 2022; 144:23368-23378. [PMID: 36525679 PMCID: PMC10395586 DOI: 10.1021/jacs.2c09160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The tobacco mosaic viral capsid protein (TMV) is a frequent target for derivatization for myriad applications, including drug delivery, biosensing, and light harvesting. However, solutions of the stacked disk assembly state of TMV are difficult to characterize quantitatively due to their large size and multiple assembled states. Charge detection mass spectrometry (CDMS) addresses the need to characterize heterogeneous populations of large protein complexes in solution quickly and accurately. Using CDMS, previously unobserved assembly states of TMV, including 16-monomer disks and odd-numbered disk stacks, have been characterized. We additionally employed a peptide-protein conjugation reaction in conjunction with CDMS to demonstrate that modified TMV proteins do not redistribute between disks. Finally, this technique was used to discriminate between protein complexes of near-identical mass but different configurations. We have gained a greater understanding of the behavior of TMV, a protein used across a broad variety of fields and applications, in the solution state.
Collapse
Affiliation(s)
- Amanda J. Bischoff
- College of Chemistry, University of California, Berkeley, California, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California, 94720, United States
| | - Conner C. Harper
- College of Chemistry, University of California, Berkeley, California, 94720, United States
| | - Evan R. Williams
- College of Chemistry, University of California, Berkeley, California, 94720, United States
| | - Matthew B. Francis
- College of Chemistry, University of California, Berkeley, California, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California, 94720, United States
| |
Collapse
|
11
|
Multifunctional Plant Virus Nanoparticles for Targeting Breast Cancer Tumors. Vaccines (Basel) 2022; 10:vaccines10091431. [PMID: 36146510 PMCID: PMC9502313 DOI: 10.3390/vaccines10091431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer treatment using plant-virus-based nanoparticles (PVNPs) has achieved considerable success in preclinical studies. PVNP-based breast cancer therapies include non-targeted and targeted nanoplatforms for delivery of anticancer therapeutic chemo and immune agents and cancer vaccines for activation of local and systemic antitumor immunity. Interestingly, PVNP platforms combined with other tumor immunotherapeutic options and other modalities of oncotherapy can improve tumor efficacy treatment. These applications can be achieved by encapsulation of a wide range of active ingredients and conjugating ligands for targeting immune and tumor cells. This review presents the current breast cancer treatments based on PVNP platforms.
Collapse
|
12
|
Kondakova OA, Evtushenko EA, Baranov OA, Nikitin NA, Karpova OV. Structurally Modified Plant Viruses and Bacteriophages with Helical Structure. Properties and Applications. BIOCHEMISTRY (MOSCOW) 2022; 87:548-558. [PMID: 35790410 PMCID: PMC9201271 DOI: 10.1134/s0006297922060062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Structurally modified virus particles can be obtained from the rod-shaped or filamentous virions of plant viruses and bacteriophages by thermal or chemical treatment. They have recently attracted attention of the researchers as promising biogenic platforms for the development of new biotechnologies. This review presents data on preparation, structure, and properties of the structurally modified virus particles. In addition, their biosafety for animals is considered, as well as the areas of application of such particles in biomedicine. A separate section is devoted to one of the most relevant and promising areas for the use of structurally modified plant viruses – design of vaccine candidates based on them.
Collapse
Affiliation(s)
- Olga A Kondakova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Oleg A Baranov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Nikolai A Nikitin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga V Karpova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
13
|
Xue F, Cornelissen JJ, Yuan Q, Cao S. Delivery of MicroRNAs by plant virus-based nanoparticles to functionally alter the osteogenic differentiation of human mesenchymal stem cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Shin MD, Hochberg JD, Pokorski JK, Steinmetz NF. Bioconjugation of Active Ingredients to Plant Viral Nanoparticles Is Enhanced by Preincubation with a Pluronic F127 Polymer Scaffold. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59618-59632. [PMID: 34890195 DOI: 10.1021/acsami.1c13183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteinaceous nanoparticles can be used to deliver large payloads of active ingredients, which is advantageous in medicine and agriculture. However, the conjugation of hydrophobic ligands to hydrophilic nanocarriers such as plant viral nanoparticles (plant VNPs) can result in aggregation by reducing overall solubility. Given the benefits of hydrophilic nanocarrier platforms for targeted delivery and multivalent ligand display, coupled with the versatility of hydrophobic drugs, contrast agents, and peptides, this is an issue that must be addressed to realize their full potential. Here, we report two preincubation strategies that use a Pluronic F127 polymer scaffold to prevent the aggregation of conjugated plant VNPs: a plant VNP-polymer precoat (COAT) and an active ingredient formulation combined with a plant VNP-polymer precoat (FORMCOAT). The broad applications of these modified conjugation strategies were highlighted by testing their compatibility with three types of bioconjugation chemistry: N-hydroxysuccinimide ester-amine coupling, maleimide-thiol coupling, and copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). The COAT and FORMCOAT strategies promoted efficient bioconjugation and prevented the aggregation that accompanies conventional bioconjugation methods, thus improving the stability, homogeneity, and translational potential of plant VNP conjugates in medicine and agriculture.
Collapse
Affiliation(s)
- Matthew D Shin
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Justin D Hochberg
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| |
Collapse
|
15
|
Liao Z, Tu L, Li X, Liang XJ, Huo S. Virus-inspired nanosystems for drug delivery. NANOSCALE 2021; 13:18912-18924. [PMID: 34757354 DOI: 10.1039/d1nr05872j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With over millions of years of evolution, viruses can infect cells efficiently by utilizing their unique structures. Similarly, the drug delivery process is designed to imitate the viral infection stages for maximizing the therapeutic effect. From drug administration to therapeutic effect, nanocarriers must evade the host's immune system, break through multiple barriers, enter the cell, and release their payload by endosomal escape or nuclear targeting. Inspired by the virus infection process, a number of virus-like nanosystems have been designed and constructed for drug delivery. This review aims to present a comprehensive summary of the current understanding of the drug delivery process inspired by the viral infection stages. The most recent construction of virus-inspired nanosystems (VINs) for drug delivery is sorted, emphasizing their novelty and design principles, as well as highlighting the mechanism of these nanosystems for overcoming each biological barrier during drug delivery. A perspective on the VINs for therapeutic applications is provided in the end.
Collapse
Affiliation(s)
- Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Li Tu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuejian Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xing-Jie Liang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
16
|
Li D, Luo Y, Onidas D, He L, Jin M, Gazeau F, Pinson J, Mangeney C. Surface functionalization of nanomaterials by aryl diazonium salts for biomedical sciences. Adv Colloid Interface Sci 2021; 294:102479. [PMID: 34237631 DOI: 10.1016/j.cis.2021.102479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Nanoparticles (NPs) can be prepared by simple reactions and methods from a number of materials. Their small size opens up a number of applications in different fields, among which biomedicine, including: i) drug delivery, ii) biosensors, iii) bioimaging, iv) antibacterial activity. To be able to perform such tasks, NPs must be modified with a variety of functional molecules, such as drugs, targeting groups, chemical tags or antibacterial agents, and must also be prevented from aggregation. The attachment must be stable to resist during the transportation to the targeted location. Diazonium salts, which have been widely used for coupling applications and surface modification, fulfil such criteria. Moreover, they are simple to prepare and can be easily substituted with a large number of organic groups. This review describes the use of these compounds in nanomedicine with a focus on the construction of nanohybrids derived from metal, oxide and carbon-based NPs as well as viruses.
Collapse
Affiliation(s)
- Da Li
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | - Yun Luo
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France.
| | | | - Li He
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | - Ming Jin
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | | | - Jean Pinson
- Université de Paris, ITODYS, CNRS, F-75013 Paris, France.
| | | |
Collapse
|
17
|
Wu Y, Darland DC, Zhao JX. Nanozymes-Hitting the Biosensing "Target". SENSORS (BASEL, SWITZERLAND) 2021; 21:5201. [PMID: 34372441 PMCID: PMC8348677 DOI: 10.3390/s21155201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Nanozymes are a class of artificial enzymes that have dimensions in the nanometer range and can be composed of simple metal and metal oxide nanoparticles, metal nanoclusters, dots (both quantum and carbon), nanotubes, nanowires, or multiple metal-organic frameworks (MOFs). They exhibit excellent catalytic activities with low cost, high operational robustness, and a stable shelf-life. More importantly, they are amenable to modifications that can change their surface structures and increase the range of their applications. There are three main classes of nanozymes including the peroxidase-like, the oxidase-like, and the antioxidant nanozymes. Each of these classes catalyzes a specific group of reactions. With the development of nanoscience and nanotechnology, the variety of applications for nanozymes in diverse fields has expanded dramatically, with the most popular applications in biosensing. Nanozyme-based novel biosensors have been designed to detect ions, small molecules, nucleic acids, proteins, and cancer cells. The current review focuses on the catalytic mechanism of nanozymes, their application in biosensing, and the identification of future directions for the field.
Collapse
Affiliation(s)
- Yingfen Wu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Diane C. Darland
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA;
| |
Collapse
|
18
|
Frontiers in Bioengineering and Biotechnology: Plant Nanoparticles for Anti-Cancer Therapy. Vaccines (Basel) 2021; 9:vaccines9080830. [PMID: 34451955 PMCID: PMC8402531 DOI: 10.3390/vaccines9080830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/26/2022] Open
Abstract
Naturally occurring viral nanomaterials have gained popularity owing to their biocompatible and biodegradable nature. Plant virus nanoparticles (VNPs) can be used as nanocarriers for a number of biomedical applications. Plant VNPs are inexpensive to produce, safe to administer and efficacious as treatments. The following review describes how plant virus architecture facilitates the use of VNPs for imaging and a variety of therapeutic applications, with particular emphasis on cancer. Examples of plant viruses which have been engineered to carry drugs and diagnostic agents for specific types of cancer are provided. The drug delivery system in response to the internal conditions is known as stimuli response, recently becoming more applicable using plant viruses based VNPs. The review concludes with a perspective of the future of plant VNPs and plant virus-like particles (VLPs) in cancer research and therapy.
Collapse
|
19
|
Lumata JL, Ball D, Shahrivarkevishahi A, Luzuriaga MA, Herbert FC, Brohlin O, Lee H, Hagge LM, D'Arcy S, Gassensmith JJ. Identification and physical characterization of a spontaneous mutation of the tobacco mosaic virus in the laboratory environment. Sci Rep 2021; 11:15109. [PMID: 34302022 PMCID: PMC8302582 DOI: 10.1038/s41598-021-94561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022] Open
Abstract
Virus-like particles are an emerging class of nano-biotechnology with the Tobacco Mosaic Virus (TMV) having found a wide range of applications in imaging, drug delivery, and vaccine development. TMV is typically produced in planta, and, as an RNA virus, is highly susceptible to natural mutation that may impact its properties. Over the course of 2 years, from 2018 until 2020, our laboratory followed a spontaneous point mutation in the TMV coat protein-first observed as a 30 Da difference in electrospray ionization mass spectrometry (ESI-MS). The mutation would have been difficult to notice by electrophoretic mobility in agarose or SDS-PAGE and does not alter viral morphology as assessed by transmission electron microscopy. The mutation responsible for the 30 Da difference between the wild-type (wTMV) and mutant (mTMV) coat proteins was identified by a bottom-up proteomic approach as a change from glycine to serine at position 155 based on collision-induced dissociation data. Since residue 155 is located on the outer surface of the TMV rod, it is feasible that the mutation alters TMV surface chemistry. However, enzyme-linked immunosorbent assays found no difference in binding between mTMV and wTMV. Functionalization of a nearby residue, tyrosine 139, with diazonium salt, also appears unaffected. Overall, this study highlights the necessity of standard workflows to quality-control viral stocks. We suggest that ESI-MS is a straightforward and low-cost way to identify emerging mutants in coat proteins.
Collapse
Affiliation(s)
- Jenica L Lumata
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Darby Ball
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Arezoo Shahrivarkevishahi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Michael A Luzuriaga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Olivia Brohlin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Hamilton Lee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Laurel M Hagge
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA.
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA.
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA.
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
20
|
Zheng D, Zhao J, Li Y, Zhu L, Jin M, Wang L, Liu J, Lei J, Li Z. Self-Assembled pH-Sensitive Nanoparticles Based on Ganoderma lucidum Polysaccharide-Methotrexate Conjugates for the Co-delivery of Anti-tumor Drugs. ACS Biomater Sci Eng 2021; 7:3764-3773. [PMID: 34213326 DOI: 10.1021/acsbiomaterials.1c00663] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In tumor therapy, polymer nanoparticles are ideal drug delivery materials because they can mask the disadvantages of anti-tumor drugs such as poor solubility in water, high toxicity, and side effects. However, most polymer-based nanoparticles do not themselves have anti-tumor properties. Herein, a novel pH-sensitive nanoparticle drug delivery system based on Ganoderma lucidum polysaccharides (GLPs), which have demonstrated anti-tumor activities, was designed to enable the delivery of methotrexate (MTX) and 10-hydroxycamptothecin (HCPT) to tumor cells, where they could exert synergistic anti-tumor effects. The prepared nanoparticles were irregularly spherical in shape with a uniform particle size of ∼190 nm, and they exhibited a high drug-loading capacity (MTX 21.5% and HCPT 22.6%) and excellent biocompatibility. Moreover, the loaded MTX and HCPT units were rapidly released under acidic conditions within the tumor cells while remaining stable under normal physiological conditions. Meanwhile, compared to free MTX and HCPT, the GLP-APBA-MTX/HCPT nanoparticles presented exhibited better tumor suppressive effects and fewer side effects in vivo, which indicates that they may be an effective anti-tumor treatment strategy.
Collapse
Affiliation(s)
- Dan Zheng
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jingyang Zhao
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Yucheng Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Mengchen Jin
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Zhonglong Li
- Department of Acupuncture and Massage, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, No. 1 Dongdan Dahua Road, Dongcheng District, Beijing 100730, China
| |
Collapse
|
21
|
Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther 2021; 6:225. [PMID: 34099630 PMCID: PMC8182741 DOI: 10.1038/s41392-021-00631-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Over the past decades, great interest has been given to biomimetic nanoparticles (BNPs) since the rise of targeted drug delivery systems and biomimetic nanotechnology. Biological vectors including cell membranes, extracellular vesicles (EVs), and viruses are considered promising candidates for targeted delivery owing to their biocompatibility and biodegradability. BNPs, the integration of biological vectors and functional agents, are anticipated to load cargos or camouflage synthetic nanoparticles to achieve targeted delivery. Despite their excellent intrinsic properties, natural vectors are deliberately modified to endow multiple functions such as good permeability, improved loading capability, and high specificity. Through structural modification and transformation of the vectors, they are pervasively utilized as more effective vehicles that can deliver contrast agents, chemotherapy drugs, nucleic acids, and genes to target sites for refractory disease therapy. This review summarizes recent advances in targeted delivery vectors based on cell membranes, EVs, and viruses, highlighting the potential applications of BNPs in the fields of biomedical imaging and therapy industry, as well as discussing the possibility of clinical translation and exploitation trend of these BNPs.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqi Hong
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Ren
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Synthesis and cytotoxicity evaluation of gemcitabine-tobacco mosaic virus conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Varanda CMR, Félix MDR, Campos MD, Patanita M, Materatski P. Plant Viruses: From Targets to Tools for CRISPR. Viruses 2021; 13:141. [PMID: 33478128 PMCID: PMC7835971 DOI: 10.3390/v13010141] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/26/2022] Open
Abstract
Plant viruses cause devastating diseases in many agriculture systems, being a serious threat for the provision of adequate nourishment to a continuous growing population. At the present, there are no chemical products that directly target the viruses, and their control rely mainly on preventive sanitary measures to reduce viral infections that, although important, have proved to be far from enough. The current most effective and sustainable solution is the use of virus-resistant varieties, but which require too much work and time to obtain. In the recent years, the versatile gene editing technology known as CRISPR/Cas has simplified the engineering of crops and has successfully been used for the development of viral resistant plants. CRISPR stands for 'clustered regularly interspaced short palindromic repeats' and CRISPR-associated (Cas) proteins, and is based on a natural adaptive immune system that most archaeal and some bacterial species present to defend themselves against invading bacteriophages. Plant viral resistance using CRISPR/Cas technology can been achieved either through manipulation of plant genome (plant-mediated resistance), by mutating host factors required for viral infection; or through manipulation of virus genome (virus-mediated resistance), for which CRISPR/Cas systems must specifically target and cleave viral DNA or RNA. Viruses present an efficient machinery and comprehensive genome structure and, in a different, beneficial perspective, they have been used as biotechnological tools in several areas such as medicine, materials industry, and agriculture with several purposes. Due to all this potential, it is not surprising that viruses have also been used as vectors for CRISPR technology; namely, to deliver CRISPR components into plants, a crucial step for the success of CRISPR technology. Here we discuss the basic principles of CRISPR/Cas technology, with a special focus on the advances of CRISPR/Cas to engineer plant resistance against DNA and RNA viruses. We also describe several strategies for the delivery of these systems into plant cells, focusing on the advantages and disadvantages of the use of plant viruses as vectors. We conclude by discussing some of the constrains faced by the application of CRISPR/Cas technology in agriculture and future prospects.
Collapse
Affiliation(s)
- Carla M. R. Varanda
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.D.C.); (M.P.)
| | - Maria do Rosário Félix
- MED—Mediterranean Institute for Agriculture, Environment and Development & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Maria Doroteia Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.D.C.); (M.P.)
| | - Mariana Patanita
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.D.C.); (M.P.)
| | - Patrick Materatski
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.D.C.); (M.P.)
| |
Collapse
|
24
|
Zhang Q, Wu W, Zhang J, Xia X. Merits of the 'good' viruses: the potential of virus-based therapeutics. Expert Opin Biol Ther 2020; 21:731-740. [PMID: 33322950 DOI: 10.1080/14712598.2021.1865304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Although viruses have generally been considered as pathogens ever since their discovery, recent research has revealed that they might assume a more important role in the survival and evolution of their hosts. Besides this, they also hold the potential as therapies for the treatment of infections, cancers, and other diseases, with several of them already commercially available on the market. In this review, we will focus on the use of different viruses for treating diseases.Areas covered: This is a comprehensive review of the application of viruses or virus-based strategies (including bacteriophages, oncolytic viruses, viral vector-based delivery, virus-like particles, and virosomes) for therapeutic purposes. The article provides an overview of the status quo of currently available virus-based therapeutics.Expert Opinion: The efficacy of virus-based therapies has been emphasized repeatedly in the clinical trials for virotherapy, gene delivery, and virus-like particles (VLPs), with multiple therapeutics approved and marketed. Compared with chemical and biological drugs, viruses represent a unique 'research niche.' As more virus-based therapeutics are moving down the pipeline, we shall expect to see a more diversified collection of related products being recognized and applied in clinical settings in the future.
Collapse
Affiliation(s)
- Qianyu Zhang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Wen Wu
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Jinqiang Zhang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Xuefeng Xia
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
25
|
Ojha SK, Pattnaik R, Singh PK, Dixit S, Mishra S, Pal S, Kumar S. Virus as nanocarrier for drug delivery redefining medical therapeutics - A status report. Comb Chem High Throughput Screen 2020; 25:1619-1629. [PMID: 33342404 DOI: 10.2174/1386207323666201218115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022]
Abstract
Over the last two decades, drug delivery systems have evolved at a tremendous rate. Synthetic nanoparticles have played an important role in the design of vaccine and their delivery as many of them have shown improved safety and efficacy over conventional formulations. Nanocarriers formulated by natural, biological building blocks have become an important tool in the field biomedicine. A successful nanocarrier must have certain properties like evading the host immune system, target specificity, cellular entry, escape from endosomes, and ability to release material into the cytoplasm. Some or all of these functions can be performed by viruses making them a suitable candidate for naturally occurring nanocarriers. Moreover, viruses can be made non-infectious and non-replicative without compromising their ability to penetrate cells thus making them useful for a vast spectrum of applications. Currently, various carrier molecules are under different stages of development to become bio-nano capsules. This review covers the advances made in the field of viruses as potential nanocarriers and discusses the related technologies and strategies to target specific cells by using virus inspired nanocarriers. In future, these virus-based nano-formulations will be able to provide solutions towards pressing and emerging infectious diseases.
Collapse
Affiliation(s)
- Sanjay Kumar Ojha
- Pandorum Technologies Pvt. Ltd., Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City Phase 1, Bengaluru - 560 100. India
| | - Ritesh Pattnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| | - Puneet Kumar Singh
- Bioenergy Lab and BDTC, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar 751 024. India
| | - Shubha Dixit
- School of Pharmacy, Lloyd Institute of Management and Technology, PlotNo.11, Knowledge Park II Greater Noida- 201310. India
| | - Snehasish Mishra
- Bioenergy Lab and BDTC, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar 751 024. India
| | - Sreyasi Pal
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| | - Subrat Kumar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| |
Collapse
|
26
|
Kurgan N, Karbivskyy V. Properties of nanowires based on the tobacco mosaic virus and gold nanoparticles. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01010-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev 2020; 156:214-235. [PMID: 32603813 PMCID: PMC7320870 DOI: 10.1016/j.addr.2020.06.024] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Viral nanoparticles (VNPs) encompass a diverse array of naturally occurring nanomaterials derived from plant viruses, bacteriophages, and mammalian viruses. The application and development of VNPs and their genome-free versions, the virus-like particles (VLPs), for nanomedicine is a rapidly growing. VLPs can encapsulate a wide range of active ingredients as well as be genetically or chemically conjugated to targeting ligands to achieve tissue specificity. VLPs are manufactured through scalable fermentation or molecular farming, and the materials are biocompatible and biodegradable. These properties have led to a wide range of applications, including cancer therapies, immunotherapies, vaccines, antimicrobial therapies, cardiovascular therapies, gene therapies, as well as imaging and theranostics. The use of VLPs as drug delivery agents is evolving, and sufficient research must continuously be undertaken to translate these therapies to the clinic. This review highlights some of the novel research efforts currently underway in the VNP drug delivery field in achieving this greater goal.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Hui Cai
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of Radiology, University of California-San Diego, La Jolla, CA 92093, United States; Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, United States; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
28
|
Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020; 12:E524. [PMID: 32521684 PMCID: PMC7355786 DOI: 10.3390/pharmaceutics12060524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has become one of the biggest concerns for oncologists in the past few decades because of its unpredictable etiopathology and nonavailability of personalized translational medicine. The number of women getting affected by breast cancer has increased dramatically, owing to lifestyle and environmental changes. Besides, the development of multidrug resistance has become a challenge in the therapeutic management of breast cancer. Studies reveal that the use of monotherapy is not effective in the management of breast cancer due to high toxicity and the development of resistance. Combination therapies, such as radiation therapy with adjuvant therapy, endocrine therapy with chemotherapy, and targeted therapy with immunotherapy, are found to be effective. Thus, multimodal and combination treatments, along with nanomedicine, have emerged as a promising strategy with minimum side effects and drug resistance. In this review, we emphasize the multimodal approaches and recent advancements in breast cancer treatment modalities, giving importance to the current data on clinical trials. The novel treatment approach by targeted therapy, according to type, such as luminal, HER2 positive, and triple-negative breast cancer, are discussed. Further, passive and active targeting technologies, including nanoparticles, bioconjugate systems, stimuli-responsive, and nucleic acid delivery systems, including siRNA and aptamer, are explained. The recent research exploring the role of nanomedicine in combination therapy and the possible use of artificial intelligence in breast cancer therapy is also discussed herein. The complexity and dynamism of disease changes require the constant upgrading of knowledge, and innovation is essential for future drug development for treating breast cancer.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Shristi Sinha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| |
Collapse
|
29
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
30
|
Qu Y, Yang Y, Du R, Zhao M. Peroxidase activities of gold nanowires synthesized by TMV as template and their application in detection of cancer cells. Appl Microbiol Biotechnol 2020; 104:3947-3957. [PMID: 32179948 DOI: 10.1007/s00253-020-10520-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 02/01/2023]
Abstract
A sensing methodology that combines Au, tobacco mosaic virus (TMV), and folic acid for selective, sensitive, and colorimetric detection of tumor cells based on the peroxidase-like activity was reported in this study. Gold nanowires with a high aspect ratio were synthesized using TMV as a template. Au@TMV nanowire (AT) complex was obtained with diameter of 4 nm and length between 200 and 300 nm. In addition, since TMV was biocompatible and had many amino and carboxyl groups on its surface, AT was conjugated by folate to form a folic acid (FA)-conjugated AT composite (ATF) and tested by FTIR measurements. Furthermore, the peroxidase-like properties were studied and the optimal conditions for mimic enzyme activity were optimized. Finally, HeLa and other tumor cells expressed excessive receptors of folate on the surface, which can specifically bind to folic acid. As the specific binding of ATF with HeLa cells, the peroxidase properties of ATF were used for detection of cancer cells (Scheme 1). The cancer cells were detected not only qualitatively but also quantitatively. In this study, as low as 2000 cancer cells/mL could be detected using the current method.
Collapse
Affiliation(s)
- Yuejun Qu
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, China
- Mudanjiang Branch of Heilongjiang Academy of Forestry Science, No. 16, East Diming Street, Mudanjiang, 157010, China
| | - Yue Yang
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, China
| | - Renjie Du
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, China
- Mudanjiang Branch of Heilongjiang Academy of Forestry Science, No. 16, East Diming Street, Mudanjiang, 157010, China
| | - Min Zhao
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin, 150040, China.
| |
Collapse
|
31
|
Wu J, Wu H, Nakagawa S, Gao J. Virus-derived materials: bury the hatchet with old foes. Biomater Sci 2020; 8:1058-1072. [DOI: 10.1039/c9bm01383k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viruses, with special architecture and unique biological nature, can be utilized for various biomedical applications.
Collapse
Affiliation(s)
- Jiahe Wu
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Honghui Wu
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Shinsaku Nakagawa
- Department of Pharmaceutics
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| | - Jianqing Gao
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
32
|
Wege C, Koch C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1591. [PMID: 31631528 DOI: 10.1002/wnan.1591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
The self-assembly of viral building blocks bears exciting prospects for fabricating new types of bionanoparticles with multivalent protein shells. These enable a spatially controlled immobilization of functionalities at highest surface densities-an increasing demand worldwide for applications from vaccination to tissue engineering, biocatalysis, and sensing. Certain plant viruses hold particular promise because they are sustainably available, biodegradable, nonpathogenic for mammals, and amenable to in vitro self-organization of virus-like particles. This offers great opportunities for their redesign into novel "green" carrier systems by spatial and structural synthetic biology approaches, as worked out here for the robust nanotubular tobacco mosaic virus (TMV) as prime example. Natural TMV of 300 x 18 nm is built from more than 2,100 identical coat proteins (CPs) helically arranged around a 6,395 nucleotides ssRNA. In vitro, TMV-like particles (TLPs) may self-assemble also from modified CPs and RNAs if the latter contain an Origin of Assembly structure, which initiates a bidirectional encapsidation. By way of tailored RNA, the process can be reprogrammed to yield uncommon shapes such as branched nanoobjects. The nonsymmetric mechanism also proceeds on 3'-terminally immobilized RNA and can integrate distinct CP types in blends or serially. Other emerging plant virus-deduced systems include the usually isometric cowpea chlorotic mottle virus (CCMV) with further strikingly altered structures up to "cherrybombs" with protruding nucleic acids. Cartoon strips and pictorial descriptions of major RNA-based strategies induct the reader into a rare field of nanoconstruction that can give rise to utile soft-matter architectures for complex tasks. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
33
|
Rybicki EP. Plant molecular farming of virus‐like nanoparticles as vaccines and reagents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1587. [DOI: 10.1002/wnan.1587] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular & Cell Biology University of Cape Town Cape Town South Africa
| |
Collapse
|
34
|
Abstract
Immunotherapy potentiates a patient’s immune response against some forms of cancer, including malignant tumors. In this Special Report, we have summarized the use of nanoparticles that have been designed for use in cancer immunotherapy with particular emphasis on plant viruses. Plant virus-based nanoparticles are an ideal choice for therapeutic applications, as these nanoparticles are not only capable of targeting the desired cells but also of being safely delivered to the body without posing any threat of infection. Plant viruses can be taken up by tumor cells and can be functionalized as drug delivery vehicles. This Special Report describes how the future of cancer immunotherapy could be a success through the merger of computer-based technology using plant-virus nanoparticles. The nonpathogenic nature of plant viral nanoparticles makes them an ideal choice for therapeutic applications such as cancer. Understanding the molecular mechanisms behind the immune response to cancer has facilitated the use of nanotechnology as an effective cancer therapy. Biologically active self-replicating plant virus particles can be introduced to the bloodstream of the human body and used as effective drug delivery vehicles. This Special Report describes how a combination of computer-based technology and plant-virus nanoparticles can assist in cancer immunotherapy.
Collapse
|
35
|
Ksenofontov AL, Fedorova NV, Badun GA, Serebryakova MV, Nikitin NA, Evtushenko EA, Chernysheva MG, Bogacheva EN, Dobrov EN, Baratova LA, Atabekov JG, Karpova OV. Surface characterization of the thermal remodeling helical plant virus. PLoS One 2019; 14:e0216905. [PMID: 31150411 PMCID: PMC6544241 DOI: 10.1371/journal.pone.0216905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/30/2019] [Indexed: 01/19/2023] Open
Abstract
Previously, we have reported that spherical particles (SPs) are formed by the thermal remodeling of rigid helical virions of native tobacco mosaic virus (TMV) at 94°C. SPs have remarkable features: stability, unique adsorption properties and immunostimulation potential. Here we performed a comparative study of the amino acid composition of the SPs and virions surface to characterize their properties and take an important step to understanding the structure of SPs. The results of tritium planigraphy showed that thermal transformation of TMV leads to a significant increase in tritium label incorporation into the following sites of SPs protein: 41-71 а.a. and 93-122 a.a. At the same time, there was a decrease in tritium label incorporation into the N- and C- terminal region (1-15 a.a., 142-158 a.a). The use of complementary physico-chemical methods allowed us to carry out a detailed structural analysis of the surface and to determine the most likely surface areas of SPs. The obtained data make it possible to consider viral protein thermal rearrangements, and to open new opportunities for biologically active complex design using information about SPs surface amino acid composition and methods of non-specific adsorption and bioconjugation.
Collapse
Affiliation(s)
- Alexander L. Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia V. Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Gennady A. Badun
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Marina V. Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolai A. Nikitin
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Elena N. Bogacheva
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Eugeny N. Dobrov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ludmila A. Baratova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Joseph G. Atabekov
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga V. Karpova
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
36
|
Chen MY, Butler SS, Chen W, Suh J. Physical, chemical, and synthetic virology: Reprogramming viruses as controllable nanodevices. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1545. [PMID: 30411529 PMCID: PMC6461522 DOI: 10.1002/wnan.1545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
The fields of physical, chemical, and synthetic virology work in partnership to reprogram viruses as controllable nanodevices. Physical virology provides the fundamental biophysical understanding of how virus capsids assemble, disassemble, display metastability, and assume various configurations. Chemical virology considers the virus capsid as a chemically addressable structure, providing chemical pathways to modify the capsid exterior, interior, and subunit interfaces. Synthetic virology takes an engineering approach, modifying the virus capsid through rational, combinatorial, and bioinformatics-driven design strategies. Advances in these three subfields of virology aim to develop virus-based materials and tools that can be applied to solve critical problems in biomedicine and biotechnology, including applications in gene therapy and drug delivery, diagnostics, and immunotherapy. Examples discussed include mammalian viruses, such as adeno-associated virus (AAV), plant viruses, such as cowpea mosaic virus (CPMV), and bacterial viruses, such as Qβ bacteriophage. Importantly, research efforts in physical, chemical, and synthetic virology have further unraveled the design principles foundational to the form and function of viruses. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | - Susan S Butler
- Department of Bioengineering, Rice University, Houston, Texas
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, Texas
| |
Collapse
|
37
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
38
|
Pitek AS, Hu H, Shukla S, Steinmetz NF. Cancer Theranostic Applications of Albumin-Coated Tobacco Mosaic Virus Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39468-39477. [PMID: 30403330 PMCID: PMC6485250 DOI: 10.1021/acsami.8b12499] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nanotechnology holds great promise in cancer drug delivery, and of particular interest are theranostic approaches in which drug delivery and imaging are integrated. In this work, we studied and developed the plant virus tobacco mosaic virus (TMV) as a platform nanotechnology for drug delivery and imaging. Specifically, a serum albumin (SA)-coated TMV formulation was produced. The SA coating fulfils two functions: SA provides a stealth coating for enhanced biocompatibility; it also acts as a targeting ligand enabling efficient tumor accumulation of SA-TMV versus TMV in mouse models of breast and prostate cancer. We demonstrate drug delivery of the chemotherapy doxorubicin (DOX); TMV-delivered DOX outperformed free DOX, resulting in significant delayed tumor growth and increased survival. Furthermore, we demonstrated the ability of SA-coated TMV loaded with chelated Gd(DOTA) for magnetic resonance imaging detection of tumors. In the future, we envision the application of such probes as theranostic, where first imaging is performed to assess whether the nanoparticles are effective at targeting a particular patient tumor. If targeting is confirmed, the therapeutic would be added and treatment can begin. The combination of imaging and therapy would allow to monitor disease progression and therefore inform about the effectiveness of the drug delivery approach.
Collapse
Affiliation(s)
- A. S. Pitek
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - H. Hu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department of NanoEngineering, Moores Cancer Center, University of California, San Diego, San Diego, California 92093, United States
| | - S. Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department of NanoEngineering, Moores Cancer Center, University of California, San Diego, San Diego, California 92093, United States
| | - N. F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department of NanoEngineering, Moores Cancer Center, University of California, San Diego, San Diego, California 92093, United States
| |
Collapse
|
39
|
Zhou L, Qiu T, Lv F, Liu L, Ying J, Wang S. Self-Assembled Nanomedicines for Anticancer and Antibacterial Applications. Adv Healthc Mater 2018; 7:e1800670. [PMID: 30080319 DOI: 10.1002/adhm.201800670] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/03/2018] [Indexed: 01/28/2023]
Abstract
Self-assembly strategies have been widely applied in the nanomedicine field, which provide a convenient approach for building various structures for delivery carriers. When cooperating with biomolecules, self-assembly systems have significant influence on the cell activity and life process and could be used for regulating nanodrug activity. In this review, self-assembled nanomedicines are introduced, including materials, encapsulation, and releasing strategies, where self-assembly strategies are involved. Furthermore, as a promising and emerging area for nanomedicine, in situ self-assembly of anticancer drugs and supramolecular antibiotic switches is also discussed about how to regulate drug activity. Selective pericellular assembly can block mass transformation of cancer cells inducing cell apoptosis, and the intracellular assembly can either cause cell death or effectively avoid drug elimination from cytosol of cancer cells because of the assembly-induced retention (AIR) effect. Host-guest interactions of drug and competitive molecules offer reversible regulations of antibiotic activity, which can reduce drug-resistance and inhibit the generation of drug-resistant bacteria. Finally, the challenges and development trend in the field are discussed.
Collapse
Affiliation(s)
- Lingyun Zhou
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Tian Qiu
- Department of Pathology; National Cancer Center/National Clinical Research Center for; Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100021 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jianming Ying
- Department of Pathology; National Cancer Center/National Clinical Research Center for; Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing 100021 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
40
|
Application of Plant Viruses as a Biotemplate for Nanomaterial Fabrication. Molecules 2018; 23:molecules23092311. [PMID: 30208562 PMCID: PMC6225259 DOI: 10.3390/molecules23092311] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Viruses are widely used to fabricate nanomaterials in the field of nanotechnology. Plant viruses are of great interest to the nanotechnology field because of their symmetry, polyvalency, homogeneous size distribution, and ability to self-assemble. This homogeneity can be used to obtain the high uniformity of the templated material and its related properties. In this paper, the variety of nanomaterials generated in rod-like and spherical plant viruses is highlighted for the cowpea chlorotic mottle virus (CCMV), cowpea mosaic virus (CPMV), brome mosaic virus (BMV), and tobacco mosaic virus (TMV). Their recent studies on developing nanomaterials in a wide range of applications from biomedicine and catalysts to biosensors are reviewed.
Collapse
|
41
|
Lin RD, Steinmetz NF. Tobacco mosaic virus delivery of mitoxantrone for cancer therapy. NANOSCALE 2018; 10:16307-16313. [PMID: 30129956 PMCID: PMC6145845 DOI: 10.1039/c8nr04142c] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mitoxantrone (MTO) is a topoisomerase II inhibitor which has been used to treat various forms of cancer either as a solo chemotherapy regimen or as a component in cocktail treatments. However, as with other anti-neoplastic agents, MTO has severe cardiac side effects. Therefore, a drug delivery approach holds promise to improve the safety and applicability of this chemotherapy. Here, we report the application of a plant virus-based nanotechnology derived from tobacco mosaic virus (TMV) as a delivery vehicle for MTO towards cancer therapy. TMV is a high aspect-ratio, soft-matter nanotube with dimensions of 300 × 18 nm and a 4 nm wide channel. The surface chemistry of the interior and exterior TMV surfaces is distinct and we established charge-driven drug loading strategies to encapsulate therapeutics for drug delivery. We demonstrate effective MTO loading into TMV yielding ∼1000 MTO per TMV carrier. The treatment efficacy of MTO-loaded TMV (MTOTMV) was assessed in in vitro and in vivo models. In vitro testing confirmed that MTO maintained its efficacy when delivered by TMV in a panel of cancer cell lines. Drug delivery in vivo using a mouse model of triple negative breast cancer demonstrated the superior efficacy of TMV-delivered MTO vs. free MTO. This study demonstrates the potential of plant virus-based nanotechnology for cancer therapy and drug delivery.
Collapse
Affiliation(s)
- Richard D. Lin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland OH 44106
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland OH 44106
- Department of NanoEngineering, Moores Cancer Center, University of California-San Diego, CA 92039
| |
Collapse
|
42
|
Lomonossoff GP, Wege C. TMV Particles: The Journey From Fundamental Studies to Bionanotechnology Applications. Adv Virus Res 2018; 102:149-176. [PMID: 30266172 PMCID: PMC7112118 DOI: 10.1016/bs.aivir.2018.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ever since its initial characterization in the 19th century, tobacco mosaic virus (TMV) has played a prominent role in the development of modern virology and molecular biology. In particular, research on the three-dimensional structure of the virus particles and the mechanism by which these assemble from their constituent protein and RNA components has made TMV a paradigm for our current view of the morphogenesis of self-assembling structures, including viral particles. More recently, this knowledge has been applied to the development of novel reagents and structures for applications in biomedicine and bionanotechnology. In this article, we review how fundamental science has led to TMV being at the vanguard of these new technologies.
Collapse
Affiliation(s)
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
43
|
Vernekar AA, Berger G, Czapar AE, Veliz FA, Wang DI, Steinmetz NF, Lippard SJ. Speciation of Phenanthriplatin and Its Analogs in the Core of Tobacco Mosaic Virus. J Am Chem Soc 2018; 140:4279-4287. [PMID: 29553267 DOI: 10.1021/jacs.7b12697] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Efficient loading of drugs in novel delivery agents has the potential to substantially improve therapy by targeting the diseased tissue while avoiding unwanted side effects. Here we report the first systematic study of the loading mechanism of phenanthriplatin and its analogs into tobacco mosaic virus (TMV), previously used by our group as an efficient carrier for anticancer drug delivery. A detailed investigation of the preferential uptake of phenanthriplatin in its aquated form (∼2000 molecules per TMV particle versus ∼1000 for the chlorido form) is provided. Whereas the net charge of phenanthriplatin analogs and their ionic mobilities have no effect on loading, the reactivity of aqua phenanthriplatin with the glutamates, lining the interior walls of the channel of TMV, has a pronounced effect on its loading. MALDI-MS analysis along with NMR spectroscopic studies of a model reaction of hydroxy-phenanthriplatin with acetate establish the formation of stable covalent adducts. The increased number of heteroaromatic rings on the platinum ligand appears to enhance loading, possibly by stabilizing hydrophobic stacking interactions with TMV core components, specifically Pro102 and Thr103 residues neighboring Glu97 and Glu106 in the channel. Electron transfer dissociation MS/MS fragmentation, a technique that can prevent mass-condition-vulnerable modification of proteins, reveals that Glu97 preferentially participates over Glu106 in covalent bond formation to the platinum center.
Collapse
Affiliation(s)
- Amit A Vernekar
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Gilles Berger
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | | - David I Wang
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | - Stephen J Lippard
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
44
|
Hefferon KL. Repurposing Plant Virus Nanoparticles. Vaccines (Basel) 2018; 6:vaccines6010011. [PMID: 29443902 PMCID: PMC5874652 DOI: 10.3390/vaccines6010011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022] Open
Abstract
Plants have been explored for many years as inexpensive and versatile platforms for the generation of vaccines and other biopharmaceuticals. Plant viruses have also been engineered to either express subunit vaccines or act as epitope presentation systems. Both icosahedral and helical, filamentous-shaped plant viruses have been used for these purposes. More recently, plant viruses have been utilized as nanoparticles to transport drugs and active molecules into cancer cells. The following review describes the use of both icosahedral and helical plant viruses in a variety of new functions against cancer. The review illustrates the breadth of variation among different plant virus nanoparticles and how this impacts the immune response.
Collapse
|
45
|
Bruckman MA, Czapar AE, Steinmetz NF. Drug-Loaded Plant-Virus Based Nanoparticles for Cancer Drug Delivery. Methods Mol Biol 2018; 1776:425-436. [PMID: 29869258 DOI: 10.1007/978-1-4939-7808-3_28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nature has designed nanosized particles, specifically viruses, equipped to deliver cargo to cells. We report the chemical bioconjugation and shape shifting of a hollow, rod-shaped tobacco mosaic virus (TMV) to dense spherical nanoparticles (SNPs). We describe methods to transform TMV rods to spheres, load TMV rods and spheres with the chemotherapeutic drug, doxorubicin (DOX), to deliver modified particles to breast cancer cells, and to determine the IC50 values of the plant virus-based drug delivery system.
Collapse
Affiliation(s)
- Michael A Bruckman
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- NanoBio Systems, Elyria, OH, USA.
| | - Anna E Czapar
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
46
|
Schwan S, Ludtka C, Friedmann A, Cismak A, Berthold L, Goehre F, Kiesow A, Heilmann A. Morphological Characterization of the Self-Assembly of Virus Movement Proteins into Nanotubes in the Absence of Virus Particles. ACTA ACUST UNITED AC 2017; 1:e1700113. [PMID: 32646158 DOI: 10.1002/adbi.201700113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/02/2017] [Indexed: 11/11/2022]
Abstract
One infection mechanism of plant viruses is the generation of nanotubes by viral movement proteins, allowing cell-to-cell virus particle transport. Previously, it was assumed that viral nanotubes extend directly from the host-cell plasma membrane. In virus-infected plants, these nanotubes reach an extraordinary diameter:length ratio (≈100 nm:µm or mm range). Here, viral nanotubes are produced in a transient protoplast system; the coding sequence for alfalfa mosaic virus movement protein is translationally fused to green fluorescent protein. The maximum extension of viral nanotubes into the culture medium is achieved 24-48 h posttransfection, with lengths in the micro- and millimeter ranges. Scanning electron microscopy and transmission electron microscopy show that strong inhomogeneous viral nanotubes are formed compared to particle-filled systems. The nanotubes have similar length, but fluctuating wall thickness and diameter and are susceptible to entanglement and recombination. Indirect methods demonstrate that movement proteins assemble independently at the top of the nanotube. These viral nanotubes grow distinctly from previously known natural particle-filled systems and are a unique biological tubular nanomaterial that has the potential for micro- or nanoapplications as a mechanically stable structural component.
Collapse
Affiliation(s)
- Stefan Schwan
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany.,Karlsruhe Institute of Technology, Institute for Applied Materials Computational Materials Science IAM-CMS, 76131, Karlsruhe, Germany
| | - Christopher Ludtka
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany.,Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Andrea Friedmann
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany
| | - Andreas Cismak
- Center for Applied Microstructure Diagnostics, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany
| | - Lutz Berthold
- Center for Applied Microstructure Diagnostics, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany
| | - Felix Goehre
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, 00260, Finland
| | - Andreas Kiesow
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany
| | - Andreas Heilmann
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany
| |
Collapse
|
47
|
Masarapu H, Patel BK, Chariou PL, Hu H, Gulati NM, Carpenter BL, Ghiladi RA, Shukla S, Steinmetz NF. Physalis Mottle Virus-Like Particles as Nanocarriers for Imaging Reagents and Drugs. Biomacromolecules 2017; 18:4141-4153. [PMID: 29144726 DOI: 10.1021/acs.biomac.7b01196] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Platform technologies based on plant virus nanoparticles (VNPs) and virus-like particles (VLPs) are attracting the attention of researchers and clinicians because the particles are biocompatible, biodegradable, noninfectious in mammals, and can readily be chemically and genetically engineered to carry imaging agents and drugs. When the Physalis mottle virus (PhMV) coat protein is expressed in Escherichia coli, the resulting VLPs are nearly identical to the viruses formed in vivo. Here, we isolated PhMV-derived VLPs from ClearColi cells and carried out external and internal surface modification with fluorophores using reactive lysine-N-hydroxysuccinimide ester and cysteine-maleimide chemistries, respectively. The uptake of dye-labeled particles was tested in a range of cancer cells and monitored by confocal microscopy and flow cytometry. VLPs labeled internally on cysteine residues were taken up with high efficiency by several cancer cell lines and were colocalized with the endolysosomal marker LAMP-1 within 6 h, whereas VLPs labeled externally on lysine residues were taken up with lower efficiency, probably reflecting differences in surface charge and the propensity to bind to the cell surface. The infusion of dye and drug molecules into the cavity of the VLPs revealed that the photosensitizer (PS), Zn-EpPor, and the drugs crystal violet, mitoxantrone (MTX), and doxorubicin (DOX) associated stably with the carrier via noncovalent interactions. We confirmed the cytotoxicity of the PS-PhMV and DOX-PhMV particles against prostate cancer, ovarian and breast cancer cell lines, respectively. Our results show that PhMV-derived VLPs provide a new platform technology for the delivery of imaging agents and drugs, with preferential uptake into cancer cells. These particles could therefore be developed as multifunctional tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Hema Masarapu
- Department of Virology, Sri Venkateswara University , Tirupati, 517 502 Andhra Pradesh, India
| | | | | | | | | | - Bradley L Carpenter
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
48
|
Franke CE, Czapar AE, Patel RB, Steinmetz NF. Tobacco Mosaic Virus-Delivered Cisplatin Restores Efficacy in Platinum-Resistant Ovarian Cancer Cells. Mol Pharm 2017; 15:2922-2931. [PMID: 28926265 DOI: 10.1021/acs.molpharmaceut.7b00466] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Platinum resistance in ovarian cancer is the major determinant of disease prognosis. Resistance can first appear at the onset of disease or develop in response to platinum-based chemotherapy. Due to poor response to alternate chemotherapies and lack of targeted therapies, there is an urgent clinical need for a new avenue toward treatment of platinum-resistant (PR) ovarian cancer. Nanoscale delivery systems hold potential to overcome resistance mechanisms. In this work, we present tobacco mosaic virus (TMV) as a nanocarrier for cisplatin for treatment of PR ovarian cancer cells. The TMV-cisplatin conjugate (TMV-cisPt) was synthesized using a charge-driven reaction that, like a classic click reaction, is simple and reliable for large-scale production. Up to ∼1900 cisPt were loaded per TMV-cisPt with biphasic release profiles characterized by a fast half-life ( t1) of ∼1 h and slow half-life ( t2) of ∼12 h independent of pH. Efficient cell uptake of TMV was observed when incubated with ovarian cancer cells, and TMV-cisPt demonstrated superior cytotoxicity and DNA double strand breakage (DSB) in platinum-sensitive (PS) and PR cancer cells when compared to free cisplatin. The cytotoxicity in PR ovarian cancer cells and overall lower effective dosage requirement makes TMV-cisPt a powerful candidate for improved ovarian cancer treatment strategies.
Collapse
|
49
|
Kernan DL, Wen AM, Pitek AS, Steinmetz NF. Featured Article: Delivery of chemotherapeutic vcMMAE using tobacco mosaic virus nanoparticles. Exp Biol Med (Maywood) 2017; 242:1405-1411. [PMID: 28675044 PMCID: PMC5544173 DOI: 10.1177/1535370217719222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/14/2017] [Indexed: 01/25/2023] Open
Abstract
The first-line treatment for non-Hodgkin's lymphoma is chemotherapy. While generally well tolerated, off-target effects and chemotherapy-associated complications are still of concern. To overcome the challenges associated with systemic chemotherapy, we developed a biology-inspired, nanoparticle drug delivery system (nanoDDS) making use of the nucleoprotein components of the tobacco mosaic virus (TMV). Virus-based nanoparticles, including the high-aspect ratio soft nanorods formed by TMV, are growing in popularity as nanoDDS due to their simple genetic and chemical engineerability, size and shape tunability, and biocompatibility. In this study, we used bioconjugation to modify TMV as a multivalent carrier for delivery of the antimitotic drug valine-citrulline monomethyl auristatin E (vcMMAE) targeting non-Hodgkin's lymphoma. We demonstrate successful synthesis of the TMV-vcMMAE; data indicate that the TMV-vcMMAE particles remained structurally sound with all of the 2130 identical TMV coat proteins modified to carry the therapeutic payload vcMMAE. Cell uptake using Karpas 299 cells was confirmed with TMV particles trafficking to the endolysosomal compartment, likely allowing for protease-mediated cleavage of the valine-citrulline linker for the release of the active monomethyl auristatin E component. Indeed, effective cell killing of non-Hodgkin's lymphoma in vitro was demonstrated; TMV-vcMMAE was shown to exhibit an IC50 of ∼250 nM. This study contributes to the development of viral nanoDDS. Impact statement Due to side effects associated with systemic chemotherapy, there is an urgent need for the development of novel drug delivery systems. We focus on the high-aspect ratio nanotubes formed by tobacco mosaic virus (TMV) to deliver antimitotic drugs targeted to non-Hodgkin's lymphoma. Many synthetic and biologic nanocarriers are in the development pipeline; the majority of systems are spherical in shape. This may not be optimal, because high-aspect ratio filaments exhibit enhanced tumor homing, increased target cell interactions and decreased immune cell uptake, and therefore have favorable properties for drug delivery compared to their spherical counterparts. Nevertheless, the synthesis of high-aspect ratio materials at the nanoscale remains challenging; therefore, we turned toward the nucleoprotein components of TMV as a biologic nanodrug delivery system. This work presents groundwork for the development of plant virus-based vehicles for use in cancer treatment.
Collapse
Affiliation(s)
- Daniel L Kernan
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, USA
| | - Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, USA
| | - Andrzej S Pitek
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, USA
- Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Materials Science and Engineering, Case Western Reserve University School of Engineering, Cleveland, OH 44106, USA
- Department of Macromolecular Science and Engineering, Case Western Reserve University School of Engineering, Cleveland, OH 44106, USA
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
50
|
Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines 2017; 5:biomedicines5030044. [PMID: 28758953 PMCID: PMC5618302 DOI: 10.3390/biomedicines5030044] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Plant-made biopharmaceuticals have long been considered a promising technology for providing inexpensive and efficacious medicines for developing countries, as well as for combating pandemic infectious diseases and for use in personalized medicine. Plant virus expression vectors produce high levels of pharmaceutical proteins within a very short time period. Recently, plant viruses have been employed as nanoparticles for novel forms of cancer treatment. This review provides a glimpse into the development of plant virus expression systems both for pharmaceutical production as well as for immunotherapy.
Collapse
|