1
|
Sadat Razavi Z, Sina Alizadeh S, Sadat Razavi F, Souri M, Soltani M. Advancing neurological disorders therapies: Organic nanoparticles as a key to blood-brain barrier penetration. Int J Pharm 2025; 670:125186. [PMID: 39788400 DOI: 10.1016/j.ijpharm.2025.125186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) plays a vital role in protecting the central nervous system (CNS) by preventing the entry of harmful pathogens from the bloodstream. However, this barrier also presents a significant obstacle when it comes to delivering drugs for the treatment of neurodegenerative diseases and brain cancer. Recent breakthroughs in nanotechnology have paved the way for the creation of a wide range of nanoparticles (NPs) that can serve as carriers for diagnosis and therapy. Regarding their promising properties, organic NPs have the potential to be used as effective carriers for drug delivery across the BBB based on recent advancements. These remarkable NPs have the ability to penetrate the BBB using various mechanisms. This review offers a comprehensive examination of the intricate structure and distinct properties of the BBB, emphasizing its crucial function in preserving brain balance and regulating the transport of ions and molecules. The disruption of the BBB in conditions such as stroke, Alzheimer's disease, and Parkinson's disease highlights the importance of developing creative approaches for delivering drugs. Through the encapsulation of therapeutic molecules and the precise targeting of transport processes in the brain vasculature, organic NP formulations present a hopeful strategy to improve drug transport across the BBB. We explore the changes in properties of the BBB in various pathological conditions and investigate the factors that affect the successful delivery of organic NPs into the brain. In addition, we explore the most promising delivery systems associated with NPs that have shown positive results in treating neurodegenerative and ischemic disorders. This review opens up new possibilities for nanotechnology-based therapies in cerebral diseases.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| |
Collapse
|
2
|
Sano KI, Nomata Y. The coiled-coil protein carrier structure affects the activation of certain endocytosis pathways. RSC Adv 2025; 15:875-882. [PMID: 39802462 PMCID: PMC11719396 DOI: 10.1039/d4ra07763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Coiled-coil protein carrier (CCPC) 140 is a rigid and anisotropically structured cationic coiled-coil artificial protein that has displayed up to a 1000 times higher level of cellular internalization activity than that of unstructured cell-penetrating peptides. Previous studies have demonstrated that CCPC 140's rigid and anisotropic structural properties and cationic surface properties are important for its superior cellular internalization activity. In this study, we investigated whether each physicochemical characteristic of CCPC 140 effectively contributed to activating the cellular internalization pathway. By evaluating CCPC 140's ability to penetrate glycosaminoglycan (GAG)-lacking cells, the activation of GAG-dependent endocytosis by electrostatic interactions between cationic CCPC 140 and anionic GAGs has been found to play a major role in CCPC 140's superior cellular internalization activity. Using endocytosis inhibitors, it was revealed that the GAG-binding-dependent activation of caveola-mediated endocytosis plays a role in cellular internalization, which requires rigid and anisotropic structural properties, not the cationic properties of CCPC 140. Macropinocytosis is a common route of cellular internalization. However, CCPC 140's rigid and anisotropic structural properties activate macropinocytosis, but this does not involve the Rho-family GTPase-dependent macropinocytosis pathway.
Collapse
Affiliation(s)
- Ken-Ichi Sano
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology 4-1 Gakuendai, Miyashiro Saitama 345-8501 Japan
- Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology 4-1 Gakuendai, Miyashiro Saitama 345-8501 Japan
| | - Yuta Nomata
- Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology 4-1 Gakuendai, Miyashiro Saitama 345-8501 Japan
| |
Collapse
|
3
|
Fan CH, Yeh CK. Theranostic nanomaterials for intervention of the blood–brain barrier. THERANOSTICS NANOMATERIALS IN DRUG DELIVERY 2025:395-410. [DOI: 10.1016/b978-0-443-22044-9.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Cai J, Li B, Zhang J, Feng G, Liu Y, Fan H, Zheng B. Advances in Alzheimer's disease control approaches via carbon nanotubes. Nanomedicine (Lond) 2025; 20:63-77. [PMID: 39607021 DOI: 10.1080/17435889.2024.2432855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Global concern about Alzheimer's disease (AD) is justified by its increasingly younger onset and significant economic burden. AD leads to neurodegeneration and cognitive decline, ultimately resulting in loss of autonomy. Against this background, the field of biomedical research has seen a surge of interest in the potential of carbon-based nanomaterials, mainly due to their ease of degradation and high biocompatibility. Carbon nanotubes (CNTs) have been extensively studied in AD, including developing biosensors, drug delivery systems, and molecular imaging. Here, we introduced the biosafety and biodegradability of CNTs, with a particular focus on their uptake and degradation in brain tissue. The utilization of CNT in the context of AD therapy can facilitate the advancement of control approaches regimens and ensure the clinical safety of patients. This is achieved through the employment of these nanotubes as carriers for the delivery of drugs to the central nervous system (CNS), the detection of neurotransmitters such as acetylcholine (Ach) and monoamines, the development of biosensors and molecular imaging materials, the inhibition of Aβ formation and the detection of phosphorylated tau proteins, the promotion of CNS regeneration, and the modulation of ion-associated AD.
Collapse
Affiliation(s)
- Jinxia Cai
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jie Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Guoqing Feng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Ranjan R, Kumar D, Singh MR, Singh D. Novel drug delivery systems in cerebral vascular disorders, transient ischaemic attack, and stroke interventions. NOVEL DRUG DELIVERY SYSTEMS IN THE MANAGEMENT OF CNS DISORDERS 2025:295-311. [DOI: 10.1016/b978-0-443-13474-6.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Belgamwar A, Sharma R, Mali Y, Agrawal YO, Nakhate KT. Nano revolutions in ischemic stroke: A critical analysis of current options and the potential of nanomedicines in diagnosis and therapeutics. Neuroscience 2024; 562:90-105. [PMID: 39433081 DOI: 10.1016/j.neuroscience.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
A stroke, also known as cerebrovascular accident, is a medical emergency that occurs when the blood supply to the brain is interrupted. This disruption can happen in two main ways: through a hemorrhagic stroke, where a blood vessel in the brain bursts, or through an ischemic stroke, where a blood clot blocks an artery. Both types of stroke cause damage to brain cells, leading to a range of health complications. Globally, stroke ranks as the second leading cause of death and disability.This review provides an overview of stroke, focusing on its early detection, current treatment options, and emerging therapies. We discuss the complex mechanisms that contribute to stroke development, including the roles of cells, biomolecules, and blood vessels. Additionally, the review explores recent advances in the use of nanoparticles to enhance the efficacy of the pharmacotherapy of stroke, particularly ischemic stroke. Ongoing clinical trials in stroke management are also highlighted. Timely diagnosis and prompt intervention are critical for improving patient outcomes.We aim to increase awareness and understanding of stroke among researchers and healthcare professionals, ultimately improving patient care.
Collapse
Affiliation(s)
- Aarti Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Rarchita Sharma
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Yogesh Mali
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Yogeeta O Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India.
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| |
Collapse
|
7
|
Li H, Guan M, Zhang NN, Wang Y, Liang T, Wu H, Wang C, Sun T, Liu S. Harnessing nanomedicine for modulating microglial states in the central nervous system disorders: Challenges and opportunities. Biomed Pharmacother 2024; 177:117011. [PMID: 38917758 DOI: 10.1016/j.biopha.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Microglia are essential for maintaining homeostasis and responding to pathological events in the central nervous system (CNS). Their dynamic and multidimensional states in different environments are pivotal factors in various CNS disorders. However, therapeutic modulation of microglial states is challenging due to the intricate balance these cells maintain in the CNS environment and the blood-brain barrier's restriction of drug delivery. Nanomedicine presents a promising avenue for addressing these challenges, offering a method for the targeted and efficient modulation of microglial states. This review covers the challenges faced in microglial therapeutic modulation and potential use of nanoparticle-based drug delivery systems. We provide an in-depth examination of nanoparticle applications for modulating microglial states in a range of CNS disorders, encompassing neurodegenerative and autoimmune diseases, infections, traumatic injuries, stroke, tumors, chronic pain, and psychiatric conditions. This review highlights the recent advancements and future prospects in nanomedicine for microglial modulation, paving the way for future research and clinical applications of therapeutic interventions in CNS disorders.
Collapse
Affiliation(s)
- Haisong Li
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Meng Guan
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tingting Liang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Haitao Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Shuhan Liu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| |
Collapse
|
8
|
Narayana S, Gowda BHJ, Hani U, Shimu SS, Paul K, Das A, Ashique S, Ahmed MG, Tarighat MA, Abdi G. Inorganic nanoparticle-based treatment approaches for colorectal cancer: recent advancements and challenges. J Nanobiotechnology 2024; 22:427. [PMID: 39030546 PMCID: PMC11264527 DOI: 10.1186/s12951-024-02701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
Colorectal cancer, the third most prevalent cancer globally, contributes significantly to mortality rates, with over 1.9 million reported cases and nearly 935,000 fatalities annually. Surgical resection is a primary approach for localized colorectal tumors, with adjunct therapies like chemotherapy, radiotherapy, and targeted/immunotherapy considered depending on the tumor stage. However, despite preferences for targeted and immunotherapy post-surgery, chemotherapy remains commonly chosen due to its lower cost and high cancer-killing efficiency. Yet, chemotherapy faces issues such as tumor resistance and severe side effects. Nanotechnology has emerged in cancer therapy by alleviating the drawbacks of current treatment approaches. In the past few decades, inorganic nanoparticles have shown promise in combating colorectal cancer, offering advantages over conventional chemotherapy. Compared to organic nanoparticles, inorganic nanoparticles exhibit properties like photosensitivity, conductivity, magnetic allure, and thermal proficiency, allowing them to function as both drug carriers and therapeutic agents. Derived primarily from carbon, silica, metals, and metal oxides, they offer superior drug-loading capacity, heightened quantum yield, and participation in advanced photothermal and photodynamic therapies. This review provides a brief overview of the pathophysiology of colorectal cancer and the pivotal role of inorganic nanoparticles in photothermal therapy photodynamic therapy, and drug delivery. Additionally, it discusses numerous inorganic nanoparticles in colorectal cancer therapy based on recent literature.
Collapse
Affiliation(s)
- Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India.
| | - Avinaba Das
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
- School of Pharmaceutical Sciences , Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Maryam Abbasi Tarighat
- Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
9
|
Srivastava A, Abedrabbo S, Hassan J, Homouz D. Dynamics of confined water inside carbon nanotubes based on studying tetrahedral order parameters. Sci Rep 2024; 14:15480. [PMID: 38969700 PMCID: PMC11226439 DOI: 10.1038/s41598-024-66317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Water dynamics inside hydrophobic confinement, such as carbon nanotubes (CNTs), has garnered significant attention, focusing on water diffusion. However, a crucial aspect remains unexplored - the influence of confinement size on water ordering and intrinsic hydrogen bond dynamics. To address this gap, we conducted extensive molecular dynamics simulations to investigate local ordering and intrinsic hydrogen bond dynamics of water molecules within CNTs of various sizes (length:20 nm, diameters: 1.0 nm to 5.0 nm) over a wide range of temperatures (260K, 280K, 300K, and 320K). A striking observation emerged: in smaller CNTs, water molecules adopt an icy structure near tube walls while maintaining liquid state towards the center. Notably, water behavior within a 2.0 nm CNT stands out as an anomaly, distinct from other CNT sizes considered in this study. This anomaly was explained through the formation of water layers inside CNTs. The hydrogen bond correlation function of water within CNTs decayed more slowly than bulk water, with an increasing rate as CNT diameter increased. In smaller CNTs, water molecules hold onto their hydrogen bond longer than larger ones. Interestingly, in larger CNTs, the innermost layer's hydrogen bond lasts a shorter time compared to the other layers, and this changes with temperature.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Sufian Abedrabbo
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jamal Hassan
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates.
- Department of Physics, University of Houston, Houston, 77030-5005, TX, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, 77030-1402, TX, USA.
| |
Collapse
|
10
|
Liu X, Astudillo Potes MD, Dashtdar B, Schreiber AC, Tilton M, Li L, Elder BD, Lu L. 3D Stem Cell Spheroids with 2D Hetero-Nanostructures for In Vivo Osteogenic and Immunologic Modulated Bone Repair. Adv Healthc Mater 2024; 13:e2303772. [PMID: 38271276 PMCID: PMC11404522 DOI: 10.1002/adhm.202303772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 01/27/2024]
Abstract
3D stem cell spheroids have immense potential for various tissue engineering applications. However, current spheroid fabrication techniques encounter cell viability issues due to limited oxygen access for cells trapped within the core, as well as nonspecific differentiation issues due to the complicated environment following transplantation. In this study, functional 3D spheroids are developed using mesenchymal stem cells with 2D hetero-nanostructures (HNSs) composed of single-stranded DNA (ssDNA) binding carbon nanotubes (sdCNTs) and gelatin-bind black phosphorus nanosheets (gBPNSs). An osteogenic molecule, dexamethasone (DEX), is further loaded to fabricate an sdCNTgBP-DEX HNS. This approach aims to establish a multifunctional cell-inductive 3D spheroid with improved oxygen transportation through hollow nanotubes, stimulated stem cell growth by phosphate ions supplied from BP oxidation, in situ immunoregulation, and osteogenesis induction by DEX molecules after implantation. Initial transplantation of the 3D spheroids in rat calvarial bone defect shows in vivo macrophage shifts to an M2 phenotype, leading to a pro-healing microenvironment for regeneration. Prolonged implantation demonstrates outstanding in vivo neovascularization, osteointegration, and new bone regeneration. Therefore, these engineered 3D spheroids hold great promise for bone repair as they allow for stem cell delivery and provide immunoregulative and osteogenic signals within an all-in-one construct.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Areonna C Schreiber
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Linli Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
11
|
He S, Yan C, Wu M, Peng H, Li R, Wan J, Ye X, Zhang H, Ding S. Dibutyl phthalate adsorbed on multi-walled carbon nanotubes can aggravate liver injury in mice via the Jak2/STAT3 pathway. Toxicol Ind Health 2024; 40:167-175. [PMID: 38285958 DOI: 10.1177/07482337241230701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Phthalic acid esters (PAEs) and carbon nanotubes (CNTs) are common environmental pollutants and may degrade differently with different resulting biotoxicity, when present together. This study investigated the toxicological effects of singular or combined exposure to dibutyl phthalate (DBP) and multi-walled carbon nanotubes (MWCNTs) in KM mice. Results indicated that combined exposure led to slower weight gain and an increased leukocyte count in the blood, as well as liver tissue lesions and downregulation of organ coefficients. Additionally, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were elevated in the liver, and glucose, pyruvate, triglyceride (TG), and total cholesterol (T-CHO) were significantly reduced, suggesting compromised liver function. Furthermore, mRNA levels of genes related to hepatic glucose and lipid metabolism were significantly altered. These findings suggest that combined exposure to DBP and MWCNTs can have severe impacts on liver function in mice, highlighting the importance of considering interactions between multiple contaminants in environmental risk assessments.
Collapse
Affiliation(s)
- Suli He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Chao Yan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Min Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haiyan Peng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ren Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xin Ye
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, China
| | - Hongmao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
12
|
Wilson DL, Ahlawat J, Narayan M. Carbon nanotubes as neuroprotective agents. EXPLORATION OF NEUROPROTECTIVE THERAPY 2024; 4:72-81. [PMID: 39697815 PMCID: PMC11654765 DOI: 10.37349/ent.2024.00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 12/20/2024]
Abstract
Carbon nanotubes, an emerging class of carbon nanomaterials, possess tremendous potential for application in biotechnology and biomedicine particularly in neurological disorders. Carbon nanotubes owing to their fascinating properties have the potential to revolutionize medicine and technology, particularly in the realm of drug delivery, biosensing, bioimaging, and as therapeutic agents to tackle complex neurological disorders such as Alzheimer's and Parkinson's disease. In this review, a summary of the use of carbon nanotubes for neuropathological outcomes such as alleviating oxidative stress and amyloid formation, which are well-studied molecular outcomes associated with Alzheimer's and Parkinson's disease. In the end, challenges associated with the clinical testing of carbon nanotubes and possible ways to overcome them are highlighted.
Collapse
Affiliation(s)
- Daisy L. Wilson
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Jyoti Ahlawat
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
13
|
Gupta B, Sharma PK, Malviya R. Carbon Nanotubes for Targeted Therapy: Safety, Efficacy, Feasibility and Regulatory Aspects. Curr Pharm Des 2024; 30:81-99. [PMID: 38185892 DOI: 10.2174/0113816128282085231226065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
It is crucial that novel and efficient drug delivery techniques be created in order to improve the pharmacological profiles of a wide variety of classes of medicinal compounds. Carbon nanotubes (CNTs) have recently come to the forefront as an innovative and very effective technique for transporting and translocating medicinal compounds. CNTs were suggested and aggressively researched as multifunctional novel transporters designed for targeted pharmaceutical distribution and used in diagnosis. CNTs can act as vectors for direct administration of pharmaceuticals, particularly chemotherapeutic medications. Multi-walled CNTs make up the great majority of CNT transporters, and these CNTs were used in techniques to target cancerous cells. It is possible to employ Carbon nanotubes (CNTs) to transport bioactive peptides, proteins, nucleic acids, and medicines by functionalizing them with these substances. Due to their low toxicity and absence of immunogenicity, carbon nanotubes are not immunogenic. Ammonium-functionalized carbon nanotubes are also attractive vectors for gene-encoding nucleic acids. CNTs that have been coupled with antigenic peptides have the potential to be developed into a novel and efficient approach for the use of synthetic vaccines. CNTs bring up an enormous number of new avenues for future medicine development depending on targets within cells, which have until now been difficult to access. This review focuses on the numerous applications of various CNT types used as medicine transport systems and on the utilization of CNTs for therapeutical purposes.
Collapse
Affiliation(s)
- Babita Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
14
|
Benko A, Medina-Cruz D, Wilk S, Ziąbka M, Zagrajczuk B, Menaszek E, Barczyk-Woźnicka O, Guisbiers G, Webster TJ. Anticancer and antibacterial properties of carbon nanotubes are governed by their functional groups. NANOSCALE 2023; 15:18265-18282. [PMID: 37795813 DOI: 10.1039/d3nr02923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Due to their high strength, low weight, and biologically-inspired dimensions, carbon nanotubes have found wide interest across all of medicine. In this study, four types of highly dispersible multi-walled carbon nanotubes (CNTs) of similar dimensions, but slightly different chemical compositions, were compared with an unmodified material to verify the impact their surface chemistry has on cytocompatibility, anticancer, inflammation, and antibacterial properties. Minute changes in the chemical composition were found to greatly affect the biological performance of the CNTs. Specifically, the CNTs with a large number of carbon atoms with a +2 coordination number induced cytotoxicity in macrophages and melanoma cells, and had a moderate antibacterial effect against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria strains, all while being cytocompatible towards human dermal fibroblasts. Moreover, substituting some of the OH groups with ammonia diminished their cytotoxicity towards macrophages while still maintaining the aforementioned positive qualities. At the same time, CNTs with a large number of carbon atoms with a +3 coordination number had a high innate cytocompatibility towards normal healthy cells but were toxic towards cancer cells and bacteria. The latter was further boosted by reacting the CNTs' carboxyl groups with ammonia. Although requiring further analyses, the results of this study, thus, introduce new CNTs that without drugs can treat cancer, inflammation, and/or infection while still remaining cytocompatible with mammalian cells.
Collapse
Affiliation(s)
- Aleksandra Benko
- AGH University of Krakow, Faculty of Materials Science and Ceramics, A. Mickiewicz 30 Ave., 30-059 Krakow, Poland.
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA, USA
| | - Sebastian Wilk
- AGH University of Krakow, Faculty of Materials Science and Ceramics, A. Mickiewicz 30 Ave., 30-059 Krakow, Poland.
| | - Magdalena Ziąbka
- AGH University of Krakow, Faculty of Materials Science and Ceramics, A. Mickiewicz 30 Ave., 30-059 Krakow, Poland.
| | - Barbara Zagrajczuk
- AGH University of Krakow, Faculty of Materials Science and Ceramics, A. Mickiewicz 30 Ave., 30-059 Krakow, Poland.
- Department of Cytobiology, Collegium Medicum, Jagiellonian University, 9 Medyczna St., 30-068 Krakow, Poland
| | - Elżbieta Menaszek
- Department of Cytobiology, Collegium Medicum, Jagiellonian University, 9 Medyczna St., 30-068 Krakow, Poland
| | - Olga Barczyk-Woźnicka
- Department of Cell Biology and Imaging, Jagiellonian University, 9 Gronostajowa St, 30-387, Kraków, Poland
| | - Grégory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Thomas J Webster
- Department of Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- UFPI - Universidade Federal do Piauí, Brazil
| |
Collapse
|
15
|
Chen Q, Wu D, Chen Z. Mechanical nanosurgery approach: assistance to overcome the chemotherapy resistance of glioblastoma. MedComm (Beijing) 2023; 4:e373. [PMID: 37724133 PMCID: PMC10505371 DOI: 10.1002/mco2.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023] Open
Affiliation(s)
- Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
16
|
Elsori D, Rashid G, Khan NA, Sachdeva P, Jindal R, Kayenat F, Sachdeva B, Kamal MA, Babker AM, Fahmy SA. Nanotube breakthroughs: unveiling the potential of carbon nanotubes as a dual therapeutic arsenal for Alzheimer's disease and brain tumors. Front Oncol 2023; 13:1265347. [PMID: 37799472 PMCID: PMC10548133 DOI: 10.3389/fonc.2023.1265347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023] Open
Abstract
Alzheimer's disease (AD) and brain tumors are debilitating neurological conditions that pose significant challenges in current medical practices. Existing treatment options for AD primarily focus on symptom management, and brain tumors often require aggressive therapeutic approaches. Novel disease-modifying strategies and therapeutic agents are urgently needed to address the underlying causes of AD pathogenesis and improve brain tumor management. In recent years, nanoparticles (NPs) have shown promise as valuable tools in diagnosing and managing various brain disorders, including AD. Among these, carbon nanotubes (CNTs) have garnered attention for their unique properties and biomedical potential. Their ability to cross the blood-brain barrier (BBB) with ease opens up new possibilities for targeted drug delivery and neuroprotection. This literature review aims to explore the versatile nature of CNTs, which can be functionalized with various biomolecules or substances due to their sp2 hybridization. This adaptability enables them to specifically target cells and deliver medications under specific environmental conditions. Moreover, CNTs possess an exceptional capacity to penetrate cell membranes, making them valuable tools in the treatment of AD and brain tumors. By delving into the role of CNTs in biomedicine, this review sheds light on their potential in managing AD, offering a glimpse of hope for effective disease-modifying options. Understanding the mechanisms of CNTs' action and their capabilities in targeting and delivering medication to affected cells will pave the way for innovative therapeutic strategies that can improve the lives of those afflicted with these devastating neurological conditions. The exploration of CNTs as a dual therapeutic arsenal for both brain tumors and Alzheimer's disease holds great promise and may usher in a new era of effective treatment strategies for these challenging conditions.
Collapse
Affiliation(s)
- Deena Elsori
- Faculty of Resillience, Deans Office Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Gowhar Rashid
- Amity Medical School, Amity University Gurgaon, Haryana, India
| | - Nihad Ashraf Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Punya Sachdeva
- Department of Neuropyschology and Neurosciences, Amity University, Noida, UP, India
| | - Riya Jindal
- Department of Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Falak Kayenat
- Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - Bhuvi Sachdeva
- Department of Physics and Astrophysics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
17
|
Gatto MS, Najahi-Missaoui W. Lyophilization of Nanoparticles, Does It Really Work? Overview of the Current Status and Challenges. Int J Mol Sci 2023; 24:14041. [PMID: 37762348 PMCID: PMC10530935 DOI: 10.3390/ijms241814041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nanoparticles are being increasingly used as drug delivery systems to enhance the delivery to and uptake by target cells and to reduce off-target toxicity of free drugs. However, although the advantages of nanoparticles as drug carriers are clear, there are still some limitations, especially in maintaining their long-term stability. Lyophilization, also known as freeze-drying, has been heavily investigated as a solution to this problem. This strategy has been shown to be effective in increasing both the long-term stability of nanoparticles and the shelf life of the drug product. However, the process is still in need of improvement in several aspects, such as the process parameters, formulation factors, and characterization techniques. This review summarizes the advantages and limitations of nanoparticles for the treatment of disease, advantages and limitations, and the status of the lyophilization of nanoparticles for therapeutic use and provides insight into both the advantages and the limitations.
Collapse
Affiliation(s)
| | - Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
18
|
Li R, Bao Z, Wang P, Deng Y, Fan J, Zhu X, Xia X, Song Y, Yao H, Li D. Gelatin-Functionalized Carbon Nanotubes Loaded with Cisplatin for Anti-Cancer Therapy. Polymers (Basel) 2023; 15:3333. [PMID: 37631391 PMCID: PMC10458187 DOI: 10.3390/polym15163333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Cisplatin (Cp), a chemotherapeutic agent, interacts with purines on tumor DNA, causing tumor cell apoptosis. However, cisplatin has the characteristics of non-specific distribution and lack of selectivity, resulting in systemic toxicity. Moreover, it cannot maintain the drug's high concentration in the tumor-weak acid environment. These flaws of cisplatin restrict its use in clinical applications. Therefore, a pH-responsive carbon nanotube-modified nano-drug delivery system (CNTs/Gel/Cp) was constructed in this study using gelatin (Gel)-modified carbon nanotubes (CNTs/Gel) loaded with cisplatin to release drugs precisely and slowly, preventing premature inactivation and maintaining an effective concentration. When MCp:MCNTs/Gel = 1:1, the drug reaches the highest loading rate and entrapment efficiency. To achieve the sustained-release effect, CNTs/Gel/Cp can release the medicine steadily for a long time in a pH environment of 6.0. Additionally, CNTs/Gel/Cp display antitumor properties comparable to cisplatin in a manner that varies with the dosage administered. These findings indicate that CNTs/Gel/Cp have an effective, sustained release of cisplatin and a good antitumor effect, providing a theoretical and experimental basis for the clinical application of modified carbon nanotubes (CNTs) as a new drug delivery system.
Collapse
Affiliation(s)
- Rong Li
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Zhenfei Bao
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Pei Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yunyun Deng
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Junping Fan
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Xin Zhu
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Xinyu Xia
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yiming Song
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Haiyan Yao
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Dongfang Li
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
19
|
Gul G, Faller R, Ileri-Ercan N. Coarse-grained modeling of polystyrene-modified CNTs and their interactions with lipid bilayers. Biophys J 2023; 122:1748-1761. [PMID: 37056052 PMCID: PMC10209035 DOI: 10.1016/j.bpj.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
In the present work, we describe Martini3 coarse-grained models of polystyrene and carboxyl-terminated polystyrene functionalized carbon nanotubes (CNTs) and investigate their interactions with lipid bilayers with and without cholesterol (CHOL) using molecular dynamics simulations. By changing the polystyrene chain length and grafting density at the end ring of the CNTs at two different nanotube concentrations, we observe the translocation of nanoparticles as well as changes in the lipid bilayer properties. Our results show that all developed models passively diffuse into the membranes without causing any damage to the membrane integrity, although high concentrations of CNTs induce structural and elastic changes in lipid bilayers. In the presence of CHOL, increasing CNT concentration results in decreased rates of CHOL transmembrane motions. On the other hand, CNTs are prone to lipid and polystyrene blockage, which affects their equilibrated configurations, and tilting behavior within the membranes. Hence, we demonstrate that polystyrene-functionalized CNTs are promising drug-carrier agents. However, polystyrene chain length and grafting density are important factors to consider to enhance the efficiency of drug delivery.
Collapse
Affiliation(s)
- Gulsah Gul
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey; Department of Chemical Engineering, University of California, Davis, Davis, California
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, Davis, California
| | - Nazar Ileri-Ercan
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
20
|
Galonska P, Mohr JM, Schrage CA, Schnitzler L, Kruss S. Guanine Quantum Defects in Carbon Nanotubes for Biosensing. J Phys Chem Lett 2023; 14:3483-3490. [PMID: 37011259 DOI: 10.1021/acs.jpclett.3c00358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SWCNT surface as guanine quantum defects (g-defects). Here, we create g-defects in (GT)10-coated SWCNTs (Gd-SWCNTs) and explore how this affects molecular sensing. We vary the defect densities, which shifts the E11 fluorescence emission by 55 nm to a λmax of 1049 nm. Furthermore, the Stokes shift between absorption and emission maximum linearly increases with defect density by up to 27 nm. Gd-SWCNTs represent sensitive sensors and increase their fluorescence by >70% in response to the important neurotransmitter dopamine and decrease it by 93% in response to riboflavin. Additionally, the extent of cellular uptake of Gd-SWCNTs decreases. These results show how physiochemical properties change with g-defects and that Gd-SWCNTs constitute a versatile optical biosensor platform.
Collapse
Affiliation(s)
- Phillip Galonska
- Department of Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jennifer M Mohr
- Department of Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Lena Schnitzler
- Department of Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| |
Collapse
|
21
|
Ma J, Wang G, Ding X, Wang F, Zhu C, Rong Y. Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS OMEGA 2023; 8:10656-10668. [PMID: 37008124 PMCID: PMC10061522 DOI: 10.1021/acsomega.2c06242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Colorectal cancer (CRC) is one of the universally established cancers with a higher incidence rate. Novel progression toward cancer prevention and cancer care among countries in transition should be considered seriously for controlling CRC. Hence, several cutting edge technologies are ongoing for high performance cancer therapeutics over the past few decades. Several drug-delivery systems of the nanoregime are relatively new in this arena compared to the previous treatment modes such as chemo- or radiotherapy to mitigate cancer. Based on this background, the epidemiology, pathophysiology, clinical presentation, treatment possibilities, and theragnostic markers for CRC were revealed. Since the use of carbon nanotubes (CNTs) for the management of CRC has been less studied, the present review analyzes the preclinical studies on the application of carbon nanotubes for drug delivery and CRC therapy owing to their inherent properties. It also investigates the toxicity of CNTs on normal cells for safety testing and the clinical use of carbon nanoparticles (CNPs) for tumor localization. To conclude, this review recommends the clinical application of carbon-based nanomaterials further for the management of CRC in diagnosis and as carriers or therapeutic adjuvants.
Collapse
Affiliation(s)
- Jiheng Ma
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Guofang Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Xiaoyu Ding
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Fulin Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Chunning Zhu
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Yunxia Rong
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| |
Collapse
|
22
|
Hivare P, Singh U, Mujmer K, Gupta S, Bhatia D. Red emitting fluorescent carbon nanoparticles to track spatio-temporal dynamics of endocytic pathways in model neuroblastoma neurons. NANOSCALE 2023; 15:1154-1171. [PMID: 36413203 DOI: 10.1039/d2nr03800e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
One of the biggest challenges limiting the biological applications of fluorescent carbon-based nanoparticles is their capacity to emit in the red region of the spectrum and simultaneously maintaining the smaller size. These two parameters always go in inverse proportion, thus lagging their applications in biological imaging. Endocytic pathways play important roles in regulating major cellular functions such as cellular differentiation. The Spatio-temporal dynamics of endocytic pathways adopted by various ligands (including nanoparticles) over longer durations in cellular differentiation remain unstudied. Here we have used red-emitting fluorescent carbon nanoparticles to study the endocytic pathways in neuronal cells at different stages of differentiation. These small-sized, bright, red-emitting carbon nanoparticles (CNPs) can be internalized by live cells and imaged for extended periods, thus capturing the Spatio-temporal dynamics of endocytic pathways in model SH-SY5Y derived neuroblastoma neurons. We find that these nanoparticles are preferably taken up via clathrin-mediated endocytosis and follow the classical recycling pathways at all the stages of neuronal differentiation. These nanoparticles hold immense potential for their size, composition, surface and fluorescence tunability, thus maximizing their applications in spatio-temporally tracking multiple cellular pathways in cells and tissues simultaneously.
Collapse
Affiliation(s)
- Pravin Hivare
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Udisha Singh
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Kratika Mujmer
- Center for Brain and Cognitive Sciences, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Sharad Gupta
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
23
|
Srivastava A, Hassan J, Homouz D. Hydrogen Bond Dynamics and Phase Transitions of Water inside Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:284. [PMID: 36678038 PMCID: PMC9866512 DOI: 10.3390/nano13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Water dynamics in nanochannels are altered by confinement, particularly in small carbon nanotubes (CNTs). However, the mechanisms behind these effects remain unclear. To address these issues, we carried out extensive molecular dynamics (MD) simulations to investigate the structure and dynamics of water inside CNTs of different sizes (length of 20 nm and diameters vary from 0.8 nm to 5.0 nm) at different temperatures (from 200 K to 420 K). The radial density profile of water inside CNTs shows a single peak near the CNT walls for small nanotubes. For CNTs with larger sizes, water molecules are arranged into coaxial tubular sheets, the number of which increases with the CNT size. Subdiffusive behavior is observed for ultranarrow CNTs with diameters of 0.8 nm and 1 nm. As the size of CNTs increases, Fickian diffusion becomes evident. The hydrogen bond correlation function of water inside CNT decays slower than in bulk water, and the decay rate decreases as we increase the diameter of the CNTs. In large CNTs, the hydrogen bond lifetime of the innermost layer is shorter than the other layers and depends on temperature. Additional analysis of our results reveals that water molecules along the CNT axis show a non-Arrhenius to Arrhenius diffusion crossover. In general, the diffusion transition temperature is higher than that of bulk water, but it depends on the size of the CNT.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Jamal Hassan
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Physics, University of Houston, Houston, TX 77030-5005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030-1402, USA
| |
Collapse
|
24
|
Rana A, Adhikary M, Singh PK, Das BC, Bhatnagar S. "Smart" drug delivery: A window to future of translational medicine. Front Chem 2023; 10:1095598. [PMID: 36688039 PMCID: PMC9846181 DOI: 10.3389/fchem.2022.1095598] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Chemotherapy is the mainstay of cancer treatment today. Chemotherapeutic drugs are non-selective and can harm both cancer and healthy cells, causing a variety of adverse effects such as lack of specificity, cytotoxicity, short half-life, poor solubility, multidrug resistance, and acquiring cancer stem-like characteristics. There is a paradigm shift in drug delivery systems (DDS) with the advent of smarter ways of targeted cancer treatment. Smart Drug Delivery Systems (SDDSs) are stimuli responsive and can be modified in chemical structure in response to light, pH, redox, magnetic fields, and enzyme degradation can be future of translational medicine. Therefore, SDDSs have the potential to be used as a viable cancer treatment alternative to traditional chemotherapy. This review focuses mostly on stimuli responsive drug delivery, inorganic nanocarriers (Carbon nanotubes, gold nanoparticles, Meso-porous silica nanoparticles, quantum dots etc.), organic nanocarriers (Dendrimers, liposomes, micelles), antibody-drug conjugates (ADC) and small molecule drug conjugates (SMDC) based SDDSs for targeted cancer therapy and strategies of targeted drug delivery systems in cancer cells.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Meheli Adhikary
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Praveen Kumar Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C. Das
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Seema Bhatnagar,
| |
Collapse
|
25
|
Sandoval-García K, Alvarado-Mendoza AG, Jiménez-Avalos JA, García-Carvajal ZY, Olea-Rodríguez MA, Cajero-Zul LR, Nuño-Donlucas SM. Synthesis, characterization and evaluation of the toxicity, drug release ability and antibacterial capacity of nanocomposites of polyethylene glycol and functionalized carbon nanotubes. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2145220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Karina Sandoval-García
- Doctorado en Ciencias en Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - Abraham G. Alvarado-Mendoza
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - Jorge A. Jiménez-Avalos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Zaira Y. García-Carvajal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - María A. Olea-Rodríguez
- Departamento de Farmocología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - Leonardo R. Cajero-Zul
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - Sergio M. Nuño-Donlucas
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
26
|
Du Y, Chen Z, Hussain MI, Yan P, Zhang C, Fan Y, Kang L, Wang R, Zhang J, Ren X, Ge C. Evaluation of cytotoxicity and biodistribution of mesoporous carbon nanotubes (pristine/-OH/-COOH) to HepG2 cells in vitro and healthy mice in vivo. Nanotoxicology 2022; 16:895-912. [PMID: 36704847 DOI: 10.1080/17435390.2023.2170836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mesoporous carbon nanotubes (mCNTs) hold great promise interests, owing to their superior nano-platform properties for biomedicine. To fully utilize this potential, the toxicity and biodistribution of pristine and surface-modified mCNTs (-OH/-COOH) should preferentially be addressed. The results of cell viability suggested that pristine mCNTs induced cell death in a concentration-dependent manner. As evidence of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD), pristine mCNTs induced noticeable redox imbalance. 99mTc tracing data suggested that the cellular uptake of pristine mCNTs posed a concentrate-dependent and energy-dependent manner via macropinocytotic and clathrin-dependent pathways, and the main accumulated organs were lung, liver and spleen. With OH modification, the ROS generation, MDA deposition and SOD consumption were evidently reduced compared with the pristine mCNTs at 24/48 h high-dose exposure. With COOH modification, the modified mCNTs only showed a significant difference in SOD consumption at 24/48 h exposure, but there was no significant difference in the measurement of ROS and MDA. The internalization mechanism and organ distribution of modified mCNTs were basically invariant. Together, our study provides evidence that mCNTs and the modified mCNTs all could induce oxidative damage and thereby impair cells. 99mTc-mCNTs can effectively trace the distribution of nanotubes in vivo.
Collapse
Affiliation(s)
- Yujing Du
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Zhipei Chen
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - M Irfan Hussain
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yan Fan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China.,Department of Nuclear Medicine, Peking University International Hospital, Beijing, China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xiaona Ren
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Changchun Ge
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
27
|
Antonucci A, Reggente M, Roullier C, Gillen AJ, Schuergers N, Zubkovs V, Lambert BP, Mouhib M, Carata E, Dini L, Boghossian AA. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics. NATURE NANOTECHNOLOGY 2022; 17:1111-1119. [PMID: 36097045 DOI: 10.1038/s41565-022-01198-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The distinctive properties of single-walled carbon nanotubes (SWCNTs) have inspired the development of many novel applications in the field of cell nanobiotechnology. However, studies thus far have not explored the effect of SWCNT functionalization on transport across the cell walls of prokaryotes. We explore the uptake of SWCNTs in Gram-negative cyanobacteria and demonstrate a passive length-dependent and selective internalization of SWCNTs decorated with positively charged biomolecules. We show that lysozyme-coated SWCNTs spontaneously penetrate the cell walls of a unicellular strain and a multicellular strain. A custom-built spinning-disc confocal microscope was used to image the distinct near-infrared SWCNT fluorescence within the autofluorescent cells, revealing a highly inhomogeneous distribution of SWCNTs. Real-time near-infrared monitoring of cell growth and division reveal that the SWCNTs are inherited by daughter cells. Moreover, these nanobionic living cells retained photosynthetic activity and showed an improved photo-exoelectrogenicity when incorporated into bioelectrochemical devices.
Collapse
Affiliation(s)
- Alessandra Antonucci
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melania Reggente
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Roullier
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alice J Gillen
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nils Schuergers
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Vitalijs Zubkovs
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Center for Electronics and Microtechnology (CSEM), Landquart, Switzerland
| | - Benjamin P Lambert
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mohammed Mouhib
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, CNR Nanotec, Lecce, Italy
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
28
|
Multi-functionalized single-walled carbon nanotubes as delivery carriers: promote the targeting uptake and antitumor efficacy of doxorubicin. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Wong CW, Tsai KC, Shrestha LK, Ariga K, Hsu SH. Effects of hydrophilic fullerene nanoarchitectured structures on the behaviour of neural stem cells. NANOSCALE 2022; 14:11152-11161. [PMID: 35876189 DOI: 10.1039/d2nr01817a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interaction between nanoarchitectonic fullerenes and cells is essential for their applications in the biological field. Herein we reported the preparation and investigation of the function of different types of water-dispersible self-assembled fullerenes. The hydrophobic self-assembled fullerenes were either surface-modified or chemically etched to become water dispersible. Different types of fullerenes were then examined for their effects on the behavior of neural stem cells (NSCs). Our results indicated that only the hydrophilic fullerene nanotubes (FNTs, diameter ∼480 nm) created by chemically etching were endocytosed by NSCs, which showed a spindle-like morphology after the uptake. Meanwhile, the FNTs did not increase the reactive oxygen species (ROS) production of the cells. The expression levels of neural-related genes (CNPase and β-tubulin) were upregulated 1.5-fold in the presence of FNTs. The differentiation of NSCs depended on the size, shape, and surface functional group of various fullerenes. Besides, the addition of FNTs in a chitosan self-healing hydrogel did not influence the integrity, injectability, and self-healing properties of the composite hydrogel. These results revealed that FNTs induced the neural differentiation of NSCs in the composite hydrogel. The addition of FNTs at a low concentration (50 μg mL-1) was enough to create such effects in the composite hydrogel. The expression levels of the oligodendrocytic marker gene CNPase and the neuronal marker gene β-tubulin were increased remarkably by ∼14.5- and ∼8.4-fold, respectively, by the composite self-healing hydrogel containing 50 μg mL-1 FNTs. The fullerene nanoarchitectured structures may have potential for use as nanovehicles and in neural tissue engineering in the future.
Collapse
Affiliation(s)
- Chui-Wei Wong
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Kun-Che Tsai
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Lok Kumar Shrestha
- Supermolecules Group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Ibaraki, Japan
| | - Katsuhiko Ariga
- Supermolecules Group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
30
|
Nanocarriers: A Reliable Tool for the Delivery of Anticancer Drugs. Pharmaceutics 2022; 14:pharmaceutics14081566. [PMID: 36015192 PMCID: PMC9415391 DOI: 10.3390/pharmaceutics14081566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/26/2022] Open
Abstract
Nanomedicines have gained popularity due to their potential therapeutic applications, especially cancer treatment. Targeted nanoparticles can deliver drugs directly to cancer cells and enable prolonged drug release, reducing off-target toxicity and increasing therapeutic efficacy. However, translating nanomedicines from preclinical to clinical settings has been difficult. Rapid advancements in nanotechnology promise to enhance cancer therapies. Nanomedicine offers advanced targeting and multifunctionality. Nanoparticles (NPs) have several uses nowadays. They have been studied as drug transporters, tumor gene delivery agents, and imaging contrast agents. Nanomaterials based on organic, inorganic, lipid, or glycan substances and synthetic polymers have been used to enhance cancer therapies. This review focuses on polymeric nanoparticle delivery strategies for anticancer nanomedicines.
Collapse
|
31
|
Singh R, Kumar S. Cancer Targeting and Diagnosis: Recent Trends with Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2283. [PMID: 35808119 PMCID: PMC9268713 DOI: 10.3390/nano12132283] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Cancer belongs to a category of disorders characterized by uncontrolled cell development with the potential to invade other bodily organs, resulting in an estimated 10 million deaths globally in 2020. With advancements in nanotechnology-based systems, biomedical applications of nanomaterials are attracting increasing interest as prospective vehicles for targeted cancer therapy and enhancing treatment results. In this context, carbon nanotubes (CNTs) have recently garnered a great deal of interest in the field of cancer diagnosis and treatment due to various factors such as biocompatibility, thermodynamic properties, and varied functionalization. In the present review, we will discuss recent advancements regarding CNT contributions to cancer diagnosis and therapy. Various sensing strategies like electrochemical, colorimetric, plasmonic, and immunosensing are discussed in detail. In the next section, therapy techniques like photothermal therapy, photodynamic therapy, drug targeting, gene therapy, and immunotherapy are also explained in-depth. The toxicological aspect of CNTs for biomedical application will also be discussed in order to ensure the safe real-life and clinical use of CNTs.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
32
|
Quercetin alleviated multi-walled carbon nanotubes-induced neurotoxicity in mice through inhibition of oxidation, inflammation, and pyroptosis. Biomed Pharmacother 2022; 151:113160. [PMID: 35605300 DOI: 10.1016/j.biopha.2022.113160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Recently, we reported that quercetin (Que) could alleviate immunotoxicity induced by pristine multi-walled carbon nanotubes (MWCNTs) in mice. In the present study, we explored whether Que could also relieve MWCNTs-induced neurotoxicity. MWCNTs injection induced a dose-dependent neurotoxic effect in mice as evidenced by increased oxidative stress, inflammation, and pyroptosis in the brain. However, treatment with Que ameliorated MWCNTs-induced neurotoxicity as revealed by 1) elevated acetylcholinesterase (AChE) activity, 2) reduced lipid peroxidation biomarker malondialdehyde (MDA), 3) improved antioxidant status as indicated by increased levels of reduced glutathione (GSH) and activities of superoxide dismutase (SOD), catalase (CAT), as well as upregulated expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) genes, 4) decreased levels and expression of inflammatory biomarkers [nitric oxide (NO), interleukin 1 beta (IL1ß), tumor necrosis factor-alpha (TNFα), and nuclear factor kappa B (NF-κB)], 5) downregulated expression of pyroptosis-related genes [nod-like receptor protein inflammasome 3 (Nlrp3) and caspase 1 (Casp1)] but with no effect on the apoptotic Casp3 gene, 6) minimized axonal degeneration and number of microglia in the cerebral medulla, and 7) diminished the number of degenerated neurons in hippocampus and cerebellum. Taken together, Que could ameliorate MWCNT-induced neurotoxicity through antioxidant, anti-inflammatory, and anti-pyroptotic mechanisms.
Collapse
|
33
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Obeid MA, Alsaadi M, Aljabali AA. Recent updates in curcumin delivery. J Liposome Res 2022; 33:53-64. [PMID: 35699160 DOI: 10.1080/08982104.2022.2086567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Curcumin is a natural component extracted from the rhizomes of turmeric (Curcuma longa), a natural plat with known medicinal uses for more than 4000 years. Most turmeric therapeutic effects are attributed to curcumin, a yellow-coloured extract. Curcumin has received considerable attention due to its biological activities, such as its use in arthritis, liver and neurodegenerative diseases, obesity, and several types of cancers. Most of these curcumin therapeutic activities are related to its antioxidant and anti-inflammatory effects. However, the clinical application of curcumin is hampered by some limitations that prevent its extensive clinical application. Curcumin high hydrophobicity of curcumin and limited water solubility are among the most important limitations. This poor solubility will result in low bioavailability due to its poor absorption into plasma and the target tissues. Curcumin also has rapid metabolism, which will significantly lower its bioavailability and shorten its half-life. Moreover, curcumin is photosensitive with limited chemical stability during manufacturing and storage. These limitations have been overcome by applying nanotechnology using several types of nanoparticles (NPs). This includes using NPs such as liposomes, niosomes, gold nanoparticles, and many others to improve the curcumin solubility and bioavailability. This review focuses on the different types of NPs investigated and the outcomes generated by their use in the most recent studies in this field. To follow the latest advances in the field of site-specific drug delivery using nanomaterials, an electronic databases search was conducted using PubMed, Google scholar and Scopus using the following keywords: lipid-based nanoparticles, curcumin delivery, niosomes, and liposomes.
Collapse
Affiliation(s)
- Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Manal Alsaadi
- Department of Industrial Pharmacy, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| |
Collapse
|
35
|
Lv W, Liu Y, Li S, Lv L, Lu H, Xin H. Advances of nano drug delivery system for the theranostics of ischemic stroke. J Nanobiotechnology 2022; 20:248. [PMID: 35641956 PMCID: PMC9153106 DOI: 10.1186/s12951-022-01450-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
From the global perspective, stroke refers to a highly common cause of disability and death. Ischemic stroke (IS), attributed to blood vessel blockage, preventing the flow of blood to brain, acts as the most common form of stroke. Thus far, thrombolytic therapy is the only clinical treatment for IS with the approval from the FDA. Moreover, the physiology barrier complicates therapeutically and diagnostically related intervention development of IS. Accordingly, developing efficient and powerful curative approaches for IS diagnosis and treatment is urgently required. The advent of nanotechnology has brought dawn and hope to better curative and imaging forms for the management of IS. This work reviews the recent advances and challenges correlated with the nano drug delivery system for IS therapy and diagnosis. The overview of the current knowledge of the important molecular pathological mechanisms in cerebral ischemia and how the drugs cross the blood brain barrier will also be briefly summarized.
Collapse
Affiliation(s)
- Wei Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Yijiao Liu
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Shengnan Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Lingyan Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Hongdan Lu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China.
| | - Hongliang Xin
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
36
|
de Carvalho Lima EN, Octaviano ALM, Piqueira JRC, Diaz RS, Justo JF. Coronavirus and Carbon Nanotubes: Seeking Immunological Relationships to Discover Immunotherapeutic Possibilities. Int J Nanomedicine 2022; 17:751-781. [PMID: 35241912 PMCID: PMC8887185 DOI: 10.2147/ijn.s341890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Since December 2019, the world has faced an unprecedented pandemic crisis due to a new coronavirus disease, coronavirus disease-2019 (COVID-19), which has instigated intensive studies on prevention and treatment possibilities. Here, we investigate the relationships between the immune activation induced by three coronaviruses associated with recent outbreaks, with special attention to SARS-CoV-2, the causative agent of COVID-19, and the immune activation induced by carbon nanotubes (CNTs) to understand the points of convergence in immune induction and modulation. Evidence suggests that CNTs are among the most promising materials for use as immunotherapeutic agents. Therefore, this investigation explores new possibilities of effective immunotherapies for COVID-19. This study aimed to raise interest and knowledge about the use of CNTs as immunotherapeutic agents in coronavirus treatment. Thus, we summarize the most important immunological aspects of various coronavirus infections and describe key advances and challenges in using CNTs as immunotherapeutic agents against viral infections and the activation of the immune response induced by CNTs, which can shed light on the immunotherapeutic possibilities of CNTs.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, SP, CEP 05508-010, Brazil
| | - Ana Luiza Moraes Octaviano
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, SP, CEP 05508-010, Brazil
| |
Collapse
|
37
|
Chatzichristos A, Hassan J. Current Understanding of Water Properties inside Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:174. [PMID: 35010123 PMCID: PMC8746445 DOI: 10.3390/nano12010174] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022]
Abstract
Confined water inside carbon nanotubes (CNTs) has attracted a lot of attention in recent years, amassing as a result a very large number of dedicated studies, both theoretical and experimental. This exceptional scientific interest can be understood in terms of the exotic properties of nanoconfined water, as well as the vast array of possible applications of CNTs in a wide range of fields stretching from geology to medicine and biology. This review presents an overreaching narrative of the properties of water in CNTs, based mostly on results from systematic nuclear magnetic resonance (NMR) and molecular dynamics (MD) studies, which together allow the untangling and explanation of many seemingly contradictory results present in the literature. Further, we identify still-debatable issues and open problems, as well as avenues for future studies, both theoretical and experimental.
Collapse
Affiliation(s)
- Aris Chatzichristos
- Department of Physics, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jamal Hassan
- Department of Physics, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
38
|
A Nanobody-Mediated Virus-Targeting Drug Delivery Platform for the Central Nervous System Viral Disease Therapy. Microbiol Spectr 2021; 9:e0148721. [PMID: 34817277 PMCID: PMC8612154 DOI: 10.1128/spectrum.01487-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Viral diseases of the central nervous system (CNS) represent a major global health concern. Difficulties in treating these diseases are caused mainly by the biological tissues and barriers, which hinder the transport of drugs into the CNS. To counter this, a nanobody-mediated virus-targeting drug delivery platform (SWCNTs-P-A-Nb) is constructed for CNS viral disease therapy. Viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), is employed as a disease model. SWCNTs-P-A-Nb is successfully constructed by employing single-walled carbon nanotubes, amantadine, and NNV-specific nanobody (NNV-Nb) as the nanocarrier, anti-NNV drug, and targeting ligand, respectively. Results showed that SWCNTs-P-A-Nb has a good NNV-targeting ability in vitro and in vivo, improving the specific distribution of amantadine in NNV-infected sites under the guidance of NNV-Nb. SWCNTs-P-F-A-Nb can pass through the muscle and gill and be excreted by the kidney. SWCNTs-P-A-Nb can transport amantadine in a fast manner and prolong the action time, improving the anti-NNV activity of amantadine. Results so far have indicated that the nanobody-mediated NNV-targeting drug delivery platform is an effective method for VER therapy, providing new ideas and technologies for control of the CNS viral diseases. IMPORTANCE CNS viral diseases have resulted in many deadly epidemics throughout history and continue to pose one of the greatest threats to public health. Drug therapy remains challenging due to the complex structure and relative impermeability of the biological tissues and barriers. Therefore, development in the intelligent drug delivery platform is highly desired for CNS viral disease therapy. In the study, a nanobody-mediated virus-targeting drug delivery platform is constructed to explore the potential application of targeted therapy in CNS viral diseases. Our findings hold great promise for the application of targeted drug delivery in CNS viral disease therapy.
Collapse
|
39
|
Gajewska A, Wang JTW, Klippstein R, Martincic M, Pach E, Feldman R, Saccavini JC, Tobias G, Ballesteros B, Al-Jamal KT, Da Ros T. Functionalization of filled radioactive multi-walled carbon nanocapsules by arylation reaction for in vivo delivery of radio-therapy. J Mater Chem B 2021; 10:47-56. [PMID: 34843615 DOI: 10.1039/d1tb02195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalized multi-walled carbon nanotubes (MWCNTs) containing radioactive salts are proposed as a potential system for radioactivity delivery. MWCNTs are loaded with isotopically enriched 152-samarium chloride (152SmCl3), the ends of the MWCNTs are sealed by high temperature treatment, and the encapsulated 152Sm is neutron activated to radioactive 153Sm. The external walls of the radioactive nanocapsules are functionalized through arylation reaction, to introduce hydrophilic chains and increase the water dispersibility of CNTs. The organ biodistribution profiles of the nanocapsules up to 24 h are assessed in naïve mice and different tumor models in vivo. By quantitative γ-counting, 153SmCl3@MWCNTs-NH2 exhibite high accumulation in organs without leakage of the internal radioactive material to the bloodstream. In the treated mice, highest uptake is detected in the lung followed by the liver and spleen. Presence of tumors in brain or lung does not increase percentage accumulation of 153SmCl3@MWCNTs-NH2 in the respective organs, suggesting the absence of the enhanced permeation and retention effect. This study presents a chemical functionalization protocol that is rapid (∼one hour) and can be applied to filled radioactive multi-walled carbon nanocapsules to improve their water dispersibility for systemic administration for their use in targeted radiotherapy.
Collapse
Affiliation(s)
- Agnieszka Gajewska
- INSTM, Trieste Unit & Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Julie T-W Wang
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
| | - Rebecca Klippstein
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
| | - Markus Martincic
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Elzbieta Pach
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Robert Feldman
- Cis Bio International Ion Beam Applications SA (IBA), 91400 Saclay, France
| | | | - Gerard Tobias
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Belén Ballesteros
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Khuloud T Al-Jamal
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
| | - Tatiana Da Ros
- INSTM, Trieste Unit & Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
40
|
Tang L, Xiao Q, Mei Y, He S, Zhang Z, Wang R, Wang W. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnology 2021; 19:423. [PMID: 34915901 PMCID: PMC8679967 DOI: 10.1186/s12951-021-01174-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the exciting breakthroughs in medical technology, cancer still accounts for one of the principle triggers of death and conventional therapeutic modalities often fail to attain an effective cure. Recently, nanobiotechnology has made huge advancement in cancer therapy with gigantic application potential because of their ability in achieving precise and controlled drug release, elevating drug solubility and reducing adverse effects. Carbon nanotubes (CNTs), one of the most promising carbon-related nanomaterials, have already achieved much success in biomedical field. Due to their excellent optical property, thermal and electronic conductivity, easy functionalization ability and high drug loading capacity, CNTs can be applied in a multifunctional way for cancer treatment and diagnosis. In this review, we will give an overview of the recent progress of CNT-based drug delivery systems in cancer theranostics, which emphasizes their targetability to intracellular components of tumor cells and extracellular elements in tumor microenvironment. Moreover, a detailed introduction on how CNTs penetrate inside the tumor cells to reach their sites of action and achieve the therapeutic effects, as well as their diagnostic applications will be highlighted. ![]()
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ruotong Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
41
|
Tang L, Zhang A, Mei Y, Xiao Q, Xu X, Wang W. NIR Light-Triggered Chemo-Phototherapy by ICG Functionalized MWNTs for Synergistic Tumor-Targeted Delivery. Pharmaceutics 2021; 13:pharmaceutics13122145. [PMID: 34959425 PMCID: PMC8709090 DOI: 10.3390/pharmaceutics13122145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 01/10/2023] Open
Abstract
The combinational application of photothermal therapy (PTT), chemotherapy, and nanotechnology is a booming therapeutic strategy for cancer treatment. Multi-walled carbon nanotube (MWNT) is often utilized as drug carrier in biomedical fields with excellent photothermal properties, and indocyanine green (ICG) is a near-infrared (NIR) dye approved by FDA. In addition, ICG is also a photothermal agent that can strongly absorb light energy for tumor ablation. Herein, we explored a synergistic strategy by connecting MWNT and a kind of ICG derivate ICG-NH2 through hyaluronic acid (HA) that possesses CD44 receptor targeting ability, which largely enhanced the PTT effect of both MWNT and ICG-NH2. To realize the synergistic therapeutic effect of chemotherapy and phototherapy, doxorubicin (DOX) was attached on the wall of MWNT via π-π interaction to obtain the final MWNT-HA-ICG/DOX nanocomplexes. Both in vitro and in vivo experiments verified the great therapeutic efficacy of MWNT-HA-ICG/DOX nanocomplexes, which was characterized by improved photothermal performance, strengthened cytotoxicity, and elevated tumor growth inhibition based on MCF-7 tumor models. Therefore, this synergistic strategy we report here might offer a new idea with promising application prospect for cancer treatment.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (A.Z.); (Y.M.); (Q.X.); (X.X.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (A.Z.); (Y.M.); (Q.X.); (X.X.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (A.Z.); (Y.M.); (Q.X.); (X.X.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (A.Z.); (Y.M.); (Q.X.); (X.X.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangting Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (A.Z.); (Y.M.); (Q.X.); (X.X.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (A.Z.); (Y.M.); (Q.X.); (X.X.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Correspondence:
| |
Collapse
|
42
|
Mezzasalma SA, Grassi L, Grassi M. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112480. [PMID: 34857266 DOI: 10.1016/j.msec.2021.112480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023]
Abstract
The open border between non-living and living matter, suggested by increasingly emerging fields of nanoscience interfaced to biological systems, requires a detailed knowledge of nanomaterials properties. An account of the wide spectrum of phenomena, belonging to physical chemistry of interfaces, materials science, solid state physics at the nanoscale and bioelectrochemistry, thus is acquainted for a comprehensive application of carbon nanotubes interphased with neuron cells. This review points out a number of conceptual tools to further address the ongoing advances in coupling neuronal networks with (carbon) nanotube meshworks, and to deepen the basic issues that govern a biological cell or tissue interacting with a nanomaterial. Emphasis is given here to the properties and roles of carbon nanotube systems at relevant spatiotemporal scales of individual molecules, junctions and molecular layers, as well as to the point of view of a condensed matter or materials scientist. Carbon nanotube interactions with blood-brain barrier, drug delivery, biocompatibility and functionalization issues are also regarded.
Collapse
Affiliation(s)
- Stefano A Mezzasalma
- Ruder Bošković Institute, Materials Physics Division, Bijeniška cesta 54, 10000 Zagreb, Croatia; Lund Institute for advanced Neutron and X-ray Science (LINXS), Lund University, IDEON Building, Delta 5, Scheelevägen 19, 223 70 Lund, Sweden.
| | - Lucia Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| |
Collapse
|
43
|
Rahamathulla M, Bhosale RR, Osmani RAM, Mahima KC, Johnson AP, Hani U, Ghazwani M, Begum MY, Alshehri S, Ghoneim MM, Shakeel F, Gangadharappa HV. Carbon Nanotubes: Current Perspectives on Diverse Applications in Targeted Drug Delivery and Therapies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6707. [PMID: 34772234 PMCID: PMC8588285 DOI: 10.3390/ma14216707] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022]
Abstract
Current discoveries as well as research findings on various types of carbon nanostructures have inspired research into their utilization in a number of fields. These carbon nanostructures offer uses in pharmacy, medicine and different therapies. One such unique carbon nanostructure includes carbon nanotubes (CNTs), which are one-dimensional allotropes of carbon nanostructure that can have a length-to-diameter ratio greater than 1,000,000. After their discovery, CNTs have drawn extensive research attention due to their excellent material properties. Their physical, chemical and electronic properties are excellent and their composites provide great possibilities for enormous nanometer applications. The current study provides a systematic review based on prior literature review and data gathered from various sources. The various research studies from many research labs and organizations were systematically retrieved, collected, compiled and written. The entire collection and compilation of this review concluded the use of CNT approaches and their efficacy and safety for the treatment of various diseases such as brain tumors or cancer via nanotechnology-based drug delivery, phototherapy, gene therapy, antiviral therapy, antifungal therapy, antibacterial therapy and other biomedical applications. The current review covers diverse applications of CNTs in designing a range of targeted drug delivery systems and application for various therapies. It concludes with a discussion on how CNTs based medicines can expand in the future.
Collapse
Affiliation(s)
- Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Rohit R. Bhosale
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Institute of Medical Sciences “Deemed To Be University”, Karad 415539, Maharashtra, India;
| | - Riyaz A. M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Kasturi C. Mahima
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Asha P. Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Mohammed Y. Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| | - Hosahalli V. Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| |
Collapse
|
44
|
Effect of Size and Temperature on Water Dynamics inside Carbon Nano-Tubes Studied by Molecular Dynamics Simulation. Molecules 2021; 26:molecules26206175. [PMID: 34684756 PMCID: PMC8540028 DOI: 10.3390/molecules26206175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Water transport inside carbon nano-tubes (CNTs) has attracted considerable attention due to its nano-fluidic properties, its importance in nonporous systems, and the wide range of applications in membrane desalination and biological medicine. Recent studies show an enhancement of water diffusion inside nano-channels depending on the size of the nano-confinement. However, the underlying mechanism of this enhancement is not well understood yet. In this study, we performed Molecular Dynamics (MD) simulations to study water flow inside CNT systems. The length of CNTs considered in this study is 20 nm, but their diameters vary from 1 to 10 nm. The simulations are conducted at temperatures ranging from 260 K to 320 K. We observe that water molecules are arranged into coaxial water tubular sheets. The number of these tubular sheets depends on the CNT size. Further analysis reveals that the diffusion of water molecules along the CNT axis deviates from the Arrhenius temperature dependence. The non-Arrhenius relationship results from a fragile liquid-like water component persisting at low temperatures with fragility higher than that of the bulk water.
Collapse
|
45
|
Pan Q, Xu J, Wen CJ, Xiong YY, Gong ZT, Yang YJ. Nanoparticles: Promising Tools for the Treatment and Prevention of Myocardial Infarction. Int J Nanomedicine 2021; 16:6719-6747. [PMID: 34621124 PMCID: PMC8491866 DOI: 10.2147/ijn.s328723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite several recent advances, current therapy and prevention strategies for myocardial infarction are far from satisfactory, owing to limitations in their applicability and treatment effects. Nanoparticles (NPs) enable the targeted and stable delivery of therapeutic compounds, enhance tissue engineering processes, and regulate the behaviour of transplants such as stem cells. Thus, NPs may be more effective than other mechanisms, and may minimize potential adverse effects. This review provides evidence for the view that function-oriented systems are more practical than traditional material-based systems; it also summarizes the latest advances in NP-based strategies for the treatment and prevention of myocardial infarction.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Cen-Jin Wen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
46
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
47
|
Ramezani F, Ghasemi-Kasman M, Nosratiyan N, Ghasemi S, Feizi F. Acute administration of sulfur-doped g-C3N4 induces cognitive deficits and exacerbates the levels of glial activation in mouse hippocampus. Brain Res Bull 2021; 176:54-66. [PMID: 34419511 DOI: 10.1016/j.brainresbull.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
During the last decades, graphitic carbon nitride (g-C3N4) has attracted increasing attention in several biomedical fields. In this study, the effects of sulfur-doped g-C3N4 (TCN) on cognitive function and histopathology of hippocampus were investigated in mice. The characteristics of synthetized sample were evaluated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray (EDX). Twenty-four male NMRI mice received vehicle, TCN at doses of 50, 150, or 500 mg/kg via gavage for one week. Morris water maze test was done to assess the cognitive function at day 14 post TCN administration. Nissl staining was used to determine the number of dark cells in the hippocampus. Immunostaining against NeuN, GFAP, and Iba1 was done to evaluate the neuronal density and levels of glial activation, respectively. Behavioral tests indicated that TCN reduces the spatial learning and memory in a dose-dependent manner. Histological evaluations showed an increased level of neuronal loss and glial activation in the hippocampus of TCN treated mice at doses of 150 and 500 mg/kg. Overall, our data indicate that TCN induces the cognitive impairment that is partly mediated via its exacerbating impacts on neuronal loss and glial activation.
Collapse
Affiliation(s)
- Farangis Ramezani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Nasrin Nosratiyan
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
48
|
de Carvalho Lima EN, Diaz RS, Justo JF, Castilho Piqueira JR. Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. Int J Nanomedicine 2021; 16:5411-5435. [PMID: 34408416 PMCID: PMC8367085 DOI: 10.2147/ijn.s314308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Advances in nanobiotechnology have allowed the utilization of nanotechnology through nanovaccines. Nanovaccines are powerful tools for enhancing the immunogenicity of a specific antigen and exhibit advantages over other adjuvant approaches, with features such as expanded stability, prolonged release, decreased immunotoxicity, and immunogenic selectivity. We introduce recent advances in carbon nanotubes (CNTs) to induce either a carrier effect as a nanoplatform or an immunostimulatory effect. Several studies of CNT-based nanovaccines revealed that due to the ability of CNTs to carry immunogenic molecules, they can act as nonclassical vaccines, a quality not possessed by vaccines with traditional formulations. Therefore, adapting and modifying the physicochemical properties of CNTs for use in vaccines may additionally enhance their efficacy in inducing a T cell-based immune response. Accordingly, the purpose of this study is to renew and awaken interest in and knowledge of the safe use of CNTs as adjuvants and carriers in vaccines.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
MacRitchie N, Di Francesco V, Ferreira MFMM, Guzik TJ, Decuzzi P, Maffia P. Nanoparticle theranostics in cardiovascular inflammation. Semin Immunol 2021; 56:101536. [PMID: 34862118 PMCID: PMC8811479 DOI: 10.1016/j.smim.2021.101536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022]
Abstract
Theranostics, literally derived from the combination of the words diagnostics and therapy, is an emerging field of clinical and preclinical research, where contrast agents, drugs and diagnostic techniques are combined to simultaneously diagnose and treat pathologies. Nanoparticles are extensively employed in theranostics due to their potential to target specific organs and their multifunctional capacity. In this review, we will discuss the current state of theranostic nanomedicine, providing key examples of its application in the imaging and treatment of cardiovascular inflammation.
Collapse
Affiliation(s)
- Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | - Valentina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
50
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|