1
|
Xiong H, Du C, Ye J, Zhang H, Qin Y, Zeng F, Song R, Shi C, Guo H, Chen J, Shen H, Cui Y, Zhou Z. Therapeutic co-assemblies for synergistic NSCLC treatment through dual topoisomerase I and tubulin inhibitors. J Control Release 2025; 377:485-494. [PMID: 39592024 DOI: 10.1016/j.jconrel.2024.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Camptothecin (CPT) and podophyllotoxin (PPT) function as topoisomerase (TOP) I and tubulin inhibitors, respectively, with potent anticancer effects in a variety of cancers. Despite its promise, the clinical applicability of the combination of CPT and PPT faces challenges, including potential side effect and limited therapeutic efficacy. In this study, we designed co-assembly nanomedicines with the different weight (w/w) ratios of amphiphilic Evans blue conjugated CPT prodrug (EB-ss-CPT) and PPT molecules, denoted as ECT Nano. The co-assembly of EB-ss-CPT and PPT without other excipients has nearly 100% drug loading efficiency and high drug loading content of PPT of up to 74.29 ± 0.90 wt%. Notably, the ECT Nano (1:2) equipped with the ability to inhibit TOP I activity and tubulin polymerization, which provided a highly efficient strategy to improve synergistic efficacy and decrease side toxicity in non-small cell lung cancer mouse model. This work represents a step forward to the development of practical applications for dual TOP I and tubulin inhibitors and especially hopeful to the rational design of combination nanomedicine for therapeutic purposes.
Collapse
Affiliation(s)
- Hehe Xiong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Chao Du
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Jinmin Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Heng Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Yatong Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Fantian Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Ruirui Song
- Department of Radiology, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Changrong Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Huifeng Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Jiang Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Huaxiang Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Yanfen Cui
- Department of Radiology, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China.
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Sis MJ, Liu D, Allen I, Webber MJ. Iterative Design Reveals Molecular Domain Relationships in Supramolecular Peptide-Drug Conjugates. Biomacromolecules 2024; 25:4482-4491. [PMID: 38870408 DOI: 10.1021/acs.biomac.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Supramolecular peptide-drug conjugates (sPDCs) are prepared by covalent attachment of a drug moiety to a peptide motif programmed for one-dimensional self-assembly, with subsequent physical entanglement of these fibrillar structures enabling formation of nanofibrous hydrogels. This class of prodrug materials presents an attractive platform for mass-efficient and site-specific delivery of therapeutic agents using a discrete, single-component molecular design. However, a continued challenge in sPDC development is elucidating relationships between supramolecular interactions in their drug and peptide domains and the resultant impacts of these domains on assembly outcomes and material properties. Inclusion of a saturated alkyl segment alongside the prodrug in the hydrophobic domain of sPDCs could relieve some of the necessity for ordered, prodrug-produg interactions. Accordingly, nine sPDCs are prepared here to iterate the design variables of amino acid sequence and hydrophobic prodrug-alkyl block design. All molecules spontaneously formed hydrogels under physiological conditions, indicating a less hindered thermodynamic path to self-assembly relative to previous prodrug-only designs. However, material studies on the supramolecular arrangement, formation, and mechanical properties of the resultant sPDC hydrogels as well as their drug release profiles showed complex relationships between the hydrophobic and peptide domains in the formation and function of the resulting assemblies. Together, these results indicate that sPDC material properties are intrinsically linked to holistic molecular design with coupled contributions from their prodrug and peptide domains in directing properties of the emergent materials.
Collapse
Affiliation(s)
- Matthew J Sis
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Dongping Liu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Isabella Allen
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
3
|
Xiong H, Zhang H, Qin Y, Ye J, Zeng F, Xie P, Shi C, Luo C, Xu W, Yu C, Zhou Z, Chen X. Coassembly Nanomedicine Mediated by Intermolecular Interactions Between Methotrexate and Baricitinib for Improved Rheumatoid Arthritis Treatment. ACS NANO 2024; 18:8337-8349. [PMID: 38437640 DOI: 10.1021/acsnano.3c12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The combination of anti-rheumatoid arthritis (RA) drugs methotrexate (MTX) and baricitinib (BTN) has been reported to improve RA treatment efficacy. However, study on the strategy of combination is elusive when considering the benefit of the synergy between MTX and BTN. In this study, we found that the N-heterocyclic rings in the MTX and BTN offer hydrogen bonds and π-π stacking interactions, driving the formation of exquisite vesicular morphology of nanovesicles, denoted as MB NVs. The MB NVs with the MTX/BTN weight ratio of 2:1, MB NVs (2:1), showed an improved anti-RA effect through the synergy between the anti-inflammatory and antiproliferative responses. This work presents that the intermolecular interactions between drug molecules could mediate the coassembly behavior into nanomedicine as well as the therapy synergy both in vitro and in vivo, which may provide further understanding on the rational design of combination nanomedicine for therapeutic purposes.
Collapse
Affiliation(s)
- Hehe Xiong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Heng Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yatong Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jinmin Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Fantian Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Peng Xie
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Changrong Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Changyuan Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Weizhuo Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining 810008, China
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
4
|
Zhang R, Yu J, Guo Z, Jiang H, Wang C. Camptothecin-based prodrug nanomedicines for cancer therapy. NANOSCALE 2023; 15:17658-17697. [PMID: 37909755 DOI: 10.1039/d3nr04147f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Camptothecin (CPT) is a cytotoxic alkaloid that attenuates the replication of cancer cells via blocking DNA topoisomerase 1. Despite its encouraging and wide-spectrum antitumour activity, its application is significantly restricted owing to its instability, low solubility, significant toxicity, and acquired tumour cell resistance. This has resulted in the development of many CPT-based therapeutic agents, especially CPT-based nanomedicines, with improved pharmacokinetic and pharmacodynamic profiles. Specifically, smart CPT-based prodrug nanomedicines with stimuli-responsive release capacity have been extensively explored owing to the advantages such as high drug loading, improved stability, and decreased potential toxicity caused by the carrier materials in comparison with normal nanodrugs and traditional delivery systems. In this review, the potential strategies and applications of CPT-based nanoprodrugs for enhanced CPT delivery toward cancer cells are summarized. We appraise in detail the chemical structures and release mechanisms of these nanoprodrugs and guide materials chemists to develop more powerful nanomedicines that have real clinical therapeutic capacities.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Jing Yu
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Zhu Guo
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
- The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Chao Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| |
Collapse
|
5
|
Karballaei Mirzahosseini H, Sheikhi M, Najmeddin F, Shirangi M, Mojtahedzadeh M. 3D self-assembled nanocarriers for drug delivery. Drug Metab Rev 2023; 55:140-162. [PMID: 36772815 DOI: 10.1080/03602532.2023.2172182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
There are many benefits to drug delivery from drug-carrier nanostructure systems. It might be developed to carefully control drug release rates or to deliver a precise amount of a therapeutic substance to particular body areas. Self-assembling is the process by which molecules and nanoparticles spontaneously organize into organized clusters. For instance, proteins and peptides can interact with one another to create highly organized supramolecular structures with various properties, such as helical ribbons and fibrous scaffolds. Another advantage of self-assembly is that it may be effective with a variety of materials, including metals, oxides, inorganic salts, polymers, semiconductors, and even organic semiconductors. Fullerene, graphene, and carbon nanotubes (CNTs), three of the most fundamental classes of three-dimensionally self-assembling nanostructured carbon-based materials, are essential for the development of modern nanotechnologies. Self-assembled nanomaterials are used in a variety of fields, including nanotechnology, imaging, and biosensors. This review study begins with a summary of various major 3D nanomaterials, including graphene oxide, CNTs, and nanodiamond, as well as 3D self-assembled polyfunctionalized nanostructures and adaptable nanocarriers for drug delivery.
Collapse
Affiliation(s)
| | - Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Najmeddin
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mojtahedzadeh
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Huang L, Hu S, Fu YN, Wan Y, Li G, Wang X. Multicomponent carrier-free nanodrugs for cancer treatment. J Mater Chem B 2022; 10:9735-9754. [PMID: 36444567 DOI: 10.1039/d2tb02025d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanocarriers can be used to deliver insoluble anticancer drugs to optimize therapeutic efficacy. However, the potential toxicity of nanocarriers cannot be ignored. Carrier-free nanodrugs are emerging safe drug delivery systems, which are composed of multiple components, such as drugs, bioactive molecules and functional ingredients, avoiding the usage of inert carrier materials and offering advantages that include high drug loading, low toxicity, synergistic therapy, versatile design, and easy surface functionalization. Therefore, how to design multicomponent carrier-free nanodrugs is becoming a priority. In this review, the common strategies for rapid construction of multicomponent carrier-free nanodrugs are briefly explored from the perspective of methodology. The properties of organic-organic, organic-inorganic and inorganic-inorganic multiple carrier-free nanosystems are analyzed according to wettability and in-depth understanding is provided. Further advances in the applications of multiple carrier-free nanodrugs are outlined in anticipation of grasping the intrinsic nature for the design and development of carrier-free nanodrugs.
Collapse
Affiliation(s)
- Lifei Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shuyang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ya-Nan Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yan Wan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Yang Y, Hu D, Lu Y, Chu B, He X, Chen Y, Xiao Y, Yang C, Zhou K, Yuan L, Qian Z. Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy. Acta Pharm Sin B 2022; 12:2710-2730. [PMID: 35755283 PMCID: PMC9214336 DOI: 10.1016/j.apsb.2021.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer has become the most commonly diagnosed cancer type in the world. A combination of chemotherapy and photothermal therapy (PTT) has emerged as a promising strategy for breast cancer therapy. However, the intricacy of precise delivery and the ability to initiate drug release in specific tumor sites remains a challenging puzzle. Therefore, to ensure that the therapeutic agents are synchronously delivered to the tumor site for their synergistic effect, a multifunctional nanoparticle system (PCRHNs) is developed, which is grafted onto the prussian blue nanoparticles (PB NPs) by reduction-responsive camptothecin (CPT) prodrug copolymer, and then modified with tumor-targeting peptide cyclo(Asp-d-Phe-Lys-Arg-Gly) (cRGD) and hyaluronic acid (HA). PCRHNs exhibited nano-sized structure with good monodispersity, high load efficiency of CPT, triggered CPT release in response to reduction environment, and excellent photothermal conversion under laser irradiation. Furthermore, PCRHNs can act as a photoacoustic imaging contrast agent-guided PTT. In vivo studies indicate that PCRHNs exhibited excellent biocompatibility, prolonged blood circulation, enhanced tumor accumulation, allow tumor-specific chemo-photothermal therapy to achieve synergistic antitumor effects with reduced systemic toxicity. Moreover, hyperthermia-induced upregulation of heat shock protein 70 in the tumor cells could be inhibited by CPT. Collectively, PCRHNs may be a promising therapeutic way for breast cancer therapy.
Collapse
|
8
|
Qiao L, Yang H, Shao XX, Yin Q, Fu XJ, Wei Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol Pharm 2022; 19:1927-1951. [DOI: 10.1021/acs.molpharmaceut.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Huishu Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin-xin Shao
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Qiuyan Yin
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
- Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingcong Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Pham T, Plata PL, Zhang P, Vellara A, Bu W, Lin B, Cheng G, Liu Y. Knowledge-Based Design of 5-Fluororacil Prodrug Liposomal Formulation: Molecular Packing and Interaction Revealed by Interfacial Isotherms and X-ray Scattering Techniques. Mol Pharm 2021; 18:4331-4340. [PMID: 34739257 DOI: 10.1021/acs.molpharmaceut.1c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prodrugs and nanoformulations are two effective strategies for sustained drug release and targeting drug delivery. In this study, we combined the two strategies to judiciously design the liposome formulation incorporating an amphiphilic prodrug of 5-fouroracil (5-FU), named 5-FCPal, for sustained drug release and enhanced bioavailability. 5-FCPal is an analogue of capecitabine (N4-pentyloxycarbonyl-5'-deoxy-5-fluorocytidine, Xeloda) by substituting the pentyl group at the N4 position with the palmityl. The amphiphilic molecule of 5-FCPal can self-assemble with the phospholipids to form stable vesicle structures with high drug loading. Although lipid vesicles have been widely studied and commercially used for clinical applications, because of the enormous options of the lipids and the equitable balance of hydrophobicity and bioavailability, it is essential to fundamentally understand the molecular interactions when designing and optimizing the liposomal prodrug formulations. We report the study of using X-ray liquid surface scattering techniques integrated with a Langmuir trough to explicitly reveal the interfacial behavior of the monolayer membrane of 5-FCPal with various saturated and unsaturated lipids with positively charged, neutral, and negatively charged head groups. More specifically, interfacial packing of the molecules was quantified using interfacial isotherms, X-ray reflectivity (XR), and grazing-incidence diffraction (GIXD). The results indicate that the interactions between the prodrug and the cationic lipids are most favorable. The highest drug loading is quantified by increasing the molar ratio of the prodrug until stable monolayer structures were disrupted by the multiple-layer domain of prodrug aggregates. Stable liposomes of 100 nm with 50% drug loading of 5-FCPal were generated based on the findings from the X-ray studies.
Collapse
Affiliation(s)
- Tiep Pham
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60608 United States
| | - Paola Leon Plata
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60608 United States
| | - Pin Zhang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60608 United States
| | - Anand Vellara
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60608 United States
| | - Wei Bu
- NSF's ChemMatCARS and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Binhua Lin
- NSF's ChemMatCARS and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60608 United States
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60608 United States.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States.,Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
10
|
Wang F, Su H, Xu D, Monroe MK, Anderson CF, Zhang W, Oh R, Wang Z, Sun X, Wang H, Wan F, Cui H. Therapeutic supramolecular tubustecan hydrogel combined with checkpoint inhibitor elicits immunity to combat cancer. Biomaterials 2021; 279:121182. [PMID: 34688987 DOI: 10.1016/j.biomaterials.2021.121182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/03/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022]
Abstract
The clinical benefit of PD-1/PD-L1 blockade immunotherapy is substantially restricted by insufficient infiltration of T lymphocytes into tumors and compromised therapeutic effects due to immune-related adverse events following systemic administration. Some chemotherapeutic agents have been reported to trigger tumor-associated T cell responses, providing a promising strategy to achieve potent immune activation in a synergistic manner with PD-1 blockade immunotherapy. In light of this, a localized chemoimmunotherapy system was developed using an anti-cancer drug-based supramolecular polymer (SP) hydrogel to "re-edit" the host's immune system to combat cancer. This in situ forming injectable aPD1/TT6 SP hydrogel serves as a drug-delivery depot for sustained release of bioactive camptothecin (CPT) and aPD1 into the tumor microenvironment, priming the tumor for robust infiltration of tumor-associated T cells and subsequently prompting a response to the immune checkpoint blockade. Our in vivo results demonstrate that this chemoimmunotherapy hydrogel provokes a long-term and systemic anticancer T cell immune response, which elicits tumor regression while also inhibiting tumor recurrence and potential metastasis.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States.
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Dongqing Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, 21205, United States
| | - Maya K Monroe
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Weijie Zhang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Richard Oh
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Zongyuan Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Xuanrong Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Center for Nanomedicine, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, United States
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, 21205, United States; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, 21205, United States; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States; Institute for NanoBiotechnology (INBT), The Johns Hopkins University, Baltimore, MD, 21218, United States; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
11
|
Yao J, Li T, Shi X, Wang Y, Fang S, Wang H. A general prodrug nanohydrogel platform for reduction-triggered drug activation and treatment of taxane-resistant malignancies. Acta Biomater 2021; 130:409-422. [PMID: 34087447 DOI: 10.1016/j.actbio.2021.05.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Chemotherapy has been widely used for treating the vast majority of cancer patients. Unfortunately, only a fraction of patients can respond to chemotherapies, but these patients still experience severe side effects. In this context, a wide range of nanotherapeutic platforms have been developed with the aim of improving treatment outcomes while reducing drug toxicities. Nanohydrogels are highly appealing "smart" biocompatible and biodegradable vehicles for either local or systemic delivery of bioactive compounds. Here, we developed prodrug hydrogelators that can undergo one-step distillation-precipitation polymerization to form systemically injectable nanohydrogels. The optimized nanohydrogels were capable of rapidly releasing active agents (e.g., the cytotoxic agent cabazitaxel or the PI3K molecular inhibitor PI103) in response to the reducing tumor microenvironment, while drug release was very slow in the absence of the reductive reagent glutathione. Cabazitaxel-loaded nanogels showed preferential tumor accumulation, and administration of nanogels produced durable tumor regression in a docetaxel-resistant cervical tumor xenograft-bearing mouse model. More significantly, nanogel-based therapy was proven to demonstrate a higher safety profile than solution-based free cabazitaxel. Collectively, this study provides an alternative formulation that meets the essential requirements of high stability in the blood, spontaneous drug release at diseased sites, favorable safety in vivo, and translational capacity for further investigations. STATEMENT OF SIGNIFICANCE: Chemotherapy remains a considerable challenge and only a fraction of patients can respond to chemotherapies. Here we report an intratumoral reducing agent-activatable, tumor-targeting prodrug nanogel platform for therapeutic delivery. To this end, two anticancer agents (e.g., cytotoxic cabazitaxel or PI3K molecular inhibitor PI103) are tested. Prodrug nanogels are stable in the blood but performed reduction-triggered release of chemically unmodified drug molecules in cancerous tissues. Cabazitaxel-loaded nanogels exhibit satisfactory anticancer performance in a preclinical docetaxel-resistant tumor model. This is a practical and expedient approach that combines the prodrug strategy and nanogel scaffold to re-engineer a hydrophobic and toxic anticancer drug. The approach also is broadly applicable for the formulation of other agents to improve the therapeutic index.
Collapse
|
12
|
Wu J, Ding W, Han G, You W, Gao W, Shen H, Tang J, Tang Q, Wang X. Nuclear delivery of dual anti-cancer drugs by molecular self-assembly. Biomater Sci 2021; 9:116-123. [PMID: 33325919 DOI: 10.1039/d0bm00971g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomedicines generally suffer from poor accumulation in tumor cells, low anti-tumor efficacy, and drug resistance. In order to address these problems, we introduced a novel nanomedicine based on dual anti-cancer drugs, which showed good cell nuclear accumulation properties. The novel nanomedicine consisted of three components: (1) dual anti-cancer drugs, 10-hydroxycamptothecin (HCPT) and chlorambucil (CRB), whose targets are located in the cell nucleus, (2) a nuclear localizing dodecapeptide, PMI peptide (TSFAEYWNLLSP), which could activate p53 by binding with MDM2 and MDMX located in the cell nucleus, and (3) an efficient self-assembling tripeptide FFY. Our nanomedicine exhibited enhanced cellular uptake and nuclear accumulation properties, thus achieving an excellent anti-cancer capacity both in vitro and in vivo. Our study will provide an inspiration for the development of novel multifunctional nanomaterials for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jindao Wu
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, Department of Breast Surgery, Department of Oncology, Department of Geriatric Digestion, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Inclusion of capecitabine into cucurbiturils: DFT study for supramolecular encapsulation of anticancer drug. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Gong Y, Chen M, Tan Y, Shen J, Jin Q, Deng W, Sun J, Wang C, Liu Z, Chen Q. Injectable Reactive Oxygen Species-Responsive SN38 Prodrug Scaffold with Checkpoint Inhibitors for Combined Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50248-50259. [PMID: 33135879 DOI: 10.1021/acsami.0c13943] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chemotherapeutic agents have been widely used for cancer treatment in clinics. Aside from their direct cytotoxicity to cancer cells, some of them could activate the immune system of the host, contributing to the enhanced antitumor activity. Here, the reactive oxygen species (ROS)-responsive hydrogel, covalently cross-linked by phenylboronic acid-modified 7-ethyl-10-hydroxycamptothecin (SN38-SA-BA) with poly(vinyl alcohol) (PVA), is fabricated for topical delivery of anti-programmed cell death protein ligand 1 antibodies (aPDL1). In the presence of endogenous ROS, SN38-SA-BA will be oxidized and hydrolyzed, leading to the degradation of hydrogel and the release of initial free SN38 and encapsulated aPDL1. It is demonstrated that SN38 could elicit specific immune responses by triggering immunogenic cell death (ICD) of cancer cells, a distinct cell death pathway featured with the release of immunostimulatory damage-associated molecular patterns (DAMPs). Meanwhile, the released aPDL1 could bind to programmed cell death protein ligand 1 (PDL1) expressed on cancer cells to augment antitumor T cell responses. Thus, the ROS-responsive prodrug hydrogel loaded with aPDL1 could induce effective innate and adaptive antitumor immune responses after local injection, significantly inhibiting or even eliminating those tumors.
Collapse
Affiliation(s)
- Yimou Gong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Yanjun Tan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Qiutong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Wutong Deng
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
| | - Jian Sun
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
15
|
Deng Z, Liu S. Controlled drug delivery with nanoassemblies of redox-responsive prodrug and polyprodrug amphiphiles. J Control Release 2020; 326:276-296. [DOI: 10.1016/j.jconrel.2020.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023]
|
16
|
Dement’eva OV. Mesoporous Silica Container Particles: New Approaches and New Opportunities. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20050038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Yang T, Yu S, Liu L, Sun Y, Lan Y, Ma X, Zhu R, Li L, Hou Y, Liu Y. Dual polymeric prodrug co-assembled nanoparticles with precise ratiometric co-delivery of cisplatin and metformin for lung cancer chemoimmunotherapy. Biomater Sci 2020; 8:5698-5714. [PMID: 32930254 DOI: 10.1039/d0bm01191f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The combination therapy of cisplatin (CDDP) and metformin (MET) is a clinical strategy to enhance therapeutic outcomes in lung cancer. However, the efficacy of this combination is limited due to the asynchronous pharmacokinetic behavior of CDDP and MET, used as free drugs. Therefore, in this work, hyaluronic acid-cisplatin/polystyrene-polymetformin (HA-CDDP/PMet) dual-prodrug co-assembled nanoparticles were developed, with precise ratiometric co-delivery of CDDP and MET for chemo-immunotherapy against lung cancer. The HA-CDDP/PMet NPs showed a spherical morphology with an average particle size of 166.5 nm and a zeta potential of -17.4 mV at an HA-CDDP and PMet mass ratio of 1/1. The content of CDDP and MET in HA-CDDP/PMet NPs was 3.7% and 15.2%, respectively. In vitro antitumor effects of CDDP and MET resulted in an improved synergistic action on proliferation inhibition and apoptosis induction on Lewis lung cancer cells. Moreover, in vivo by co-delivered HA-CDDP/PMet NPs into tumor cells, with an excellent intracellular CDDP and MET cleavage. These nanoparticles exhibited significantly increased tumor accumulation and tumor growth inhibition and prolonged animal overall survival in Lewis lung cancer bearing mice without nephrotoxicity, excess of free drugs and homo-prodrugs. The synergistic effect of MET and CDDP in HA-CDDP/PMet NPs resulted in up-regulation of the cleaved poly(ADP)-ribose polymerase (PARP) protein to induce tumor cell apoptosis, and down-regulation of the excision repair cross-complementation group 1 (ERCC1) protein level to decrease the resistance to CDDP. The synergistic effect of MET and CDDP in HA-CDDP/PMet NPs also resulted in induction of the adenosine monophosphate (AMP)-activated protein kinase-α (AMPK-α) pathway and inhibition of the mammalian target of rapamycin (mTOR), finally exerting a chemotherapeutic effect and modulating a potent immunotherapeutic function with an increase in CD4+ and CD8+ T cells, a concomitant decrease in regulatory T (Treg) cells, and an increased expression of the cytokines IFN-γ and TNF-α. Therefore, the immunochemotherapy using CDDP and MET mediated by this dual prodrug co-assembled nano-platform might provide a promising treatment strategy against lung cancer.
Collapse
Affiliation(s)
- Tong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang J, Qian Y, Xu L, Shao Y, Zhang H, Shi F, Chen J, Cui S, Chen X, Zhu D, Hu R, Chen Z. Hyaluronic acid-shelled, peptide drug conjugate-cored nanomedicine for the treatment of hepatocellular carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111261. [PMID: 32919628 DOI: 10.1016/j.msec.2020.111261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/14/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Peptide-drug conjugate (PDC) is a promising prodrug in drug delivery systems. To fabricate nanostructures with proper molecular design which can self-assemble to spherical morphologies is very important for PDC chemotherapy. In this study, a novel PDC (PDC-DOX2), in which two doxorubicin (DOX) molecules are conjugated onto a short peptide (KIGLFRWR) with self-assembly function, was designed and synthesized. PDC-DOX2 with self-assembly properties forms a spherical structure under hydrophobic interaction in water. Hyaluronic acid (HA) was then coated on PDC-DOX2 micelles to form a HA-shelled, peptide-doxorubicin conjugate-cored nanomedicine (HA@PDC-DOX2). The amount of HA can regulate the particle size and stabilization of HA@PDC-DOX2. In addition, HA can actively enhance the targeting effects of PDC-DOX2 micelles since it can interact with overexpressed receptors in cancer cells. The core-shell structured HA@PDC-DOX2 nanomedicine showed significantly enhanced potency against hepatocellular carcinoma compared to PDC-DOX2 micelles as well as free DOX. In this work, a novel PDC which can self-assemble to spherical morphologies and a core-shell structure HA@PDC-DOX2 nanomedicine are designed and prepared. It provides a convenient strategy for the size control of PDC assemblies and constructs effective PDC-based drug delivery systems for cancer treatment.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ying Qian
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Liu Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yurou Shao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hu Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Fanli Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jiaxin Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Siqi Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xiaoyan Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Dongwei Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Rongfeng Hu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Zhipeng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
19
|
Ma Y, Mou Q, Yan D, Zhu X. Engineering small molecule nanodrugs to overcome barriers for cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Yuan Ma
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
| | - Quanbing Mou
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
20
|
Zhu J, Sun H, Callmann CE, Thompson MP, Battistella C, Proetto MT, Carlini AS, Gianneschi NC. Paclitaxel-terminated peptide brush polymers. Chem Commun (Camb) 2020; 56:6778-6781. [PMID: 32441281 DOI: 10.1039/c9cc10023g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we report the preparation of paclitaxel-terminated peptide brush polymers wherein cell uptake and toxicity are tunable based on peptide sequence. Synthesis was enabled using a new paclitaxel-containing chain termination agent for ring-opening metathesis polymerization (ROMP). Critically, reverse phase HPLC could be used to efficiently separate peptide brush polymers consisting of one fluorophore and one terminal paclitaxel from crude polymer mixtures. These purified terminally-modified polymers showed greater potency than the original mixtures. Drug-terminated peptide brush polymers carrying positive charges exhibited enhanced cell uptake and cytotoxicity as compared to their neutral and negatively charged analogues.
Collapse
Affiliation(s)
- Jialei Zhu
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hao Sun
- Departments of Chemistry, Materials Science & Engineering, Pharmacology, and Biomedical Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Cassandra E Callmann
- Departments of Chemistry, Materials Science & Engineering, Pharmacology, and Biomedical Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. and Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-343, USA
| | - Matthew P Thompson
- Departments of Chemistry, Materials Science & Engineering, Pharmacology, and Biomedical Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. and Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-343, USA
| | - Claudia Battistella
- Departments of Chemistry, Materials Science & Engineering, Pharmacology, and Biomedical Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Maria T Proetto
- Departments of Chemistry, Materials Science & Engineering, Pharmacology, and Biomedical Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. and Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-343, USA
| | - Andrea S Carlini
- Departments of Chemistry, Materials Science & Engineering, Pharmacology, and Biomedical Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. and Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-343, USA
| | - Nathan C Gianneschi
- Departments of Chemistry, Materials Science & Engineering, Pharmacology, and Biomedical Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. and Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-343, USA
| |
Collapse
|
21
|
Landgraf M, Lahr CA, Kaur I, Shafiee A, Sanchez-Herrero A, Janowicz PW, Ravichandran A, Howard CB, Cifuentes-Rius A, McGovern JA, Voelcker NH, Hutmacher DW. Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials 2020; 240:119791. [DOI: 10.1016/j.biomaterials.2020.119791] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
|
22
|
Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. J Control Release 2020; 319:311-321. [DOI: 10.1016/j.jconrel.2020.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
|
23
|
Gao H, Bai Y, Chen L, Fakhri GE, Wang M. Self-Assembly Nanoparticles for Overcoming Multidrug Resistance and Imaging-Guided Chemo-Photothermal Synergistic Cancer Therapy. Int J Nanomedicine 2020; 15:809-819. [PMID: 32103938 PMCID: PMC7008176 DOI: 10.2147/ijn.s232449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/02/2020] [Indexed: 12/29/2022] Open
Abstract
Background and Purpose The development of multiple drug resistance (MDR) to chemotherapy and single modal therapy remains unsatisfied for the eradication of tumor, which are major obstacles in cancer therapy. This novel system with excellent characteristics for inhibition of P-glycoprotein (P-gp), and for near-infrared fluorescence (NIRF) imaging-guided chemo-photothermal therapy (PTT), has been identified as a promising way to MDR and achieve synergistic cancer therapy. Methods In this study, we successfully synthesized a multifunctional theranostic system, which was developed through FDA-approved self-assembling drugs, which contain anticancer drug doxorubicin (Dox), imaging and high photothermal conversion drug indocyanine green (ICG) and P-gp regulator TPGS (the system named T/Dox-ICG). We studied the characterization of T/Dox-ICG NPs, including the TEM, SEM, DLS, UV-vis-NIR, zeta potential, CLSM, in vitro FL imaging, in vitro photothermal effect, in vitro Dox and ICG release. We used CLSM to verify the location of intracellular distribution of Dox in SCG 7901/VCR cells, Western blot was performed to demonstrate the TPGS-mediated inhibition of P-gp. And, the cytotoxicity of materials against SCG 7901/VCR cells was studied by the MTT assay. Results The TEM showed the T/Dox-ICG NPs had good monodispersity with diameters of 19.03 nm, Dox and ICG could be released constantly from T/Dox-ICG NPs in vitro. In vitro cell experiments demonstrated higher Dox accumulation and retention in the nucleus. Western blot showed TPGS could obviously inhibit the expression of P-gp. In vitro cytotoxicity assay showed more significant cytotoxicity on MDR cells (SCG 7901/VCR) with only 8.75% of cells surviving. Conclusion MDR cancer therapy indicates that it may be important to develop a safer system that can simultaneously inhibit the drug transporters and monitor the delivery of chemotherapeutic agents, and combination therapy have raised widespread concern on tumor treatment.
Collapse
Affiliation(s)
- Haiyan Gao
- Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou 450003, People's Republic of China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Yan Bai
- Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou 450003, People's Republic of China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Lijuan Chen
- Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou 450003, People's Republic of China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Georges Ei Fakhri
- Gordon Center for Medical Imaging, Radiology, Massachusettes General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Meiyun Wang
- Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou 450003, People's Republic of China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou University, Zhengzhou 450003, People's Republic of China
| |
Collapse
|
24
|
Self-assembling mertansine prodrug improves tolerability and efficacy of chemotherapy against metastatic triple-negative breast cancer. J Control Release 2020; 318:234-245. [DOI: 10.1016/j.jconrel.2019.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/04/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022]
|
25
|
Xue X, Lindstrom A, Qu H, Li Y. Recent advances on small-molecule nanomedicines for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1607. [PMID: 31840421 DOI: 10.1002/wnan.1607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/15/2023]
Abstract
Nanomedicines have made important contributions in the development of cancer therapies due to their tumor selectivity, multifunctionality, and synergistic effect between the payloads. In addition to the required pharmaceutical ingredients, nanomedicines are generally composed of nonpharmaceutical excipients. These excipients generally form a large proportion of the nanomedicine, and they may have potential toxicity and greatly increase the cost for drug development. Small molecule nanomedicines (SMNs) minimize or abandon the excipients and are directly assembled from pharmaceutical ingredients, which can largely improve the drug delivery efficiency and biosafety while also relieving the financial burden of drug development. In this review, we summarize recently developed SMNs that are composed of a single drug, physical mixtures of multiple drugs, drug-drug covalent conjugates, dyes with drugs, photosensitizers with drugs, photosensitizers with peptides, and drugs with peptides. This review focuses on the SMN's applications in cancer treatments, their limitations, and the future development outlook of SMNs. We hope that our insights on SMNs may be helpful to the future of drug development and make nanomedicine more powerful in the battle with cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Xiangdong Xue
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Aaron Lindstrom
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Haijing Qu
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| |
Collapse
|
26
|
Sis MJ, Webber MJ. Drug Delivery with Designed Peptide Assemblies. Trends Pharmacol Sci 2019; 40:747-762. [DOI: 10.1016/j.tips.2019.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
|
27
|
Yang MY, Zhao RR, Fang YF, Jiang JL, Yuan XT, Shao JW. Carrier-free nanodrug: A novel strategy of cancer diagnosis and synergistic therapy. Int J Pharm 2019; 570:118663. [DOI: 10.1016/j.ijpharm.2019.118663] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023]
|
28
|
Dorababu A. Recent Advances in Nanoformulated Chemotherapeutic Drug Delivery (2015‐2019). ChemistrySelect 2019. [DOI: 10.1002/slct.201901064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Atukuri Dorababu
- Department of ChemistrySRMPP Govt. First Grade College, Huvinahadagali, Ballari (Dt), Karnataka India – 583219
| |
Collapse
|
29
|
Tran TTD, Tran PHL. Nanoconjugation and Encapsulation Strategies for Improving Drug Delivery and Therapeutic Efficacy of Poorly Water-Soluble Drugs. Pharmaceutics 2019; 11:E325. [PMID: 31295947 PMCID: PMC6680391 DOI: 10.3390/pharmaceutics11070325] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 01/14/2023] Open
Abstract
Nanoconjugations have been demonstrated to be a dominant strategy for drug delivery and biomedical applications. In this review, we intend to describe several strategies for drug formulation, especially to improve the bioavailability of poorly water-soluble molecules for future application in the therapy of numerous diseases. The context of current studies will give readers an overview of the conjugation strategies for fabricating nanoparticles, which have expanded from conjugated materials to the surface conjugation of nanovehicles. Moreover, nanoconjugates for theranostics are also discussed and highlighted. Overall, these state-of-the-art conjugation methods and these techniques and applications for nanoparticulate systems of poorly water-soluble drugs will inspire scientists to explore and discover more productive techniques and methodologies for drug development.
Collapse
Affiliation(s)
- Thao T. D. Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam;
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
30
|
|
31
|
Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, Ma Y, Zhang F, Chen Z, Chen X. Tumor-Specific Drug Release and Reactive Oxygen Species Generation for Cancer Chemo/Chemodynamic Combination Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801986. [PMID: 30886808 PMCID: PMC6402284 DOI: 10.1002/advs.201801986] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/21/2018] [Indexed: 05/13/2023]
Abstract
The combination of chemotherapeutic drugs and reactive oxygen species (ROS) is a promising strategy to achieve improved anticancer effect. Herein, a nanomedicine (LaCIONPs) that can achieve tumor-specific chemotherapeutic drug release and ROS generation is developed for cancer chemo/chemodynamic combination therapy. The LaCIONPs are constructed by encapsulation of iron oxide nanoparticles (IONPs) and β-lapachone (La) in nanostructure assembled by hydrogen peroxide (H2O2)-responsive polyprodrug and pH-responsive polymer. Through the enhanced permeability and retention effect, the nanosized LaCIONPs can accumulate in tumor tissue. After the LaCIONPs are internalized by tumor cells, the structure of LaCIONPs is disintegrated in acidic intracellular environment, leading to rapid release of La and iron ions. Then the released La generates massive H2O2 through tumor specific catalysis. On the one hand, H2O2 further reacts with iron ions to produce highly toxic hydroxyl radicals for chemodynamic therapy. On the other hand, H2O2 also activates the release of camptothecin from the polyprodrug for chemotherapy. The potent antitumor effect of the LaCIONPs is demonstrated by both in vitro and in vivo results. Therefore, the LaCIONP is a promising nanomedicine for tumor-specific chemo/chemodynamic combination therapy.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Ultrasound MedicineLaboratory of Ultrasound Molecular ImagingThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Zijian Zhou
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Ying Ma
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Zhi‐Yi Chen
- Department of Ultrasound MedicineLaboratory of Ultrasound Molecular ImagingThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| |
Collapse
|
32
|
Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for "on-demand" drug delivery. J Control Release 2019; 296:93-106. [PMID: 30664976 DOI: 10.1016/j.jconrel.2019.01.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 02/05/2023]
Abstract
At present, chemotherapy remains to be one of the most important therapeutic approaches for malignant tumors. The tumor microenvironment(TME)-responsive intelligent drug delivery systems are still the hot research topics in delivering chemotherapeutic drugs. Camptothecin (CPT) possesses very strong antitumor activities, but its clinical application is hindered by its poor water-solubility and serious toxic side effects. Herein, a new intelligent and TME-responsive P(CPT-MAA) prodrug nanogel was developed for delivering CPT and reducing its side effects. P(CPT-MAA) prodrug nanogels were prepared with methacrylic acid (MAA), CPT monomer (CPTM) and N,N'-methylenebisacrylamide (Bis) via distillation-precipitation polymerization, in which CPT was covalently conjugated into the nanogels via redox-responsive disulfide linker. The as-prepared nanogels were spherical shapes with uniform size and narrow size distribution. With the help of redox-responsive property of disulfide linker and pH-responsive property of PMAA, the release of CPT from prodrug nanogels was redox/pH-dual dependent and could be accelerated by the increased concentration of GSH and the decreased pH value, which were favorable to realize the "on-demand" drug release in tumor cell and tumor tissue microenvironment. Furthermore, P(CPT-MAA) prodrug nanogels exhibited superior antitumor activity both in vitro and in vivo without observed side effects. Hence, the prepared P(CPT-MAA) prodrug nanogels may be a promise delivery system for chemotherapeutic agents.
Collapse
|
33
|
Abstract
Smart GSH-responsive camptothecin delivery systems for treatment of tumors and real-time monitoring in vivo and in vitro were described.
Collapse
Affiliation(s)
- Dan Zhang
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation
- School of Mechanical Engineering
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Xiaohui Ji
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Yanhong Gao
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| |
Collapse
|
34
|
Mo CE, Chai MH, Zhang LP, Ran RX, Huang YP, Liu ZS. Floating molecularly imprinted polymers based on liquid crystalline and polyhedral oligomeric silsesquioxanes for capecitabine sustained release. Int J Pharm 2018; 557:293-303. [PMID: 30599225 DOI: 10.1016/j.ijpharm.2018.12.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 01/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) have drawn extensive attention as carriers on drug delivery. However, most of MIPs suffer from insufficient drug loading capacity, burst release of drugs and/or low bioavailability. To solve the issues, this study designed an imprinted material with superior floating nature for oral drug delivery system of capecitabine (CAP) rationally. The MIPs was synthesized in the presence of 4-methylphenyl dicyclohexyl ethylene (liquid crystalline, LC) and polyhedral oligomeric silsesquioxanes (POSS) via polymerization reaction. The LC-POSS MIPs had extended release of the template molecules over 13.4 h with entrapment efficiency of 20.53%, diffusion coefficient of 2.83 × 10-11 cm2 s-1, and diffusion exponent of 0.84. Pharmacokinetic studies further revealed the prolong release and high relative bioavailability of CAP in vivo of rats, showing the effective floating effect of the LC-POSS MIPs. The in vivo images revealed visually that the gastroretentive time of the LC-POSS MIPs was longer than non-LC-POSS imprinted polymers. The physical characteristics of the polymers were also characterized by nitrogen adsorption experiment, scanning electron microscopy, thermogravimetric analysis and differential scanning calorimetry analysis. As a conclusion, the LC-POSS MIPs can be used as an eligible CAP carrier and might hold great potential in clinical applications for sustained release drug.
Collapse
Affiliation(s)
- Chun-E Mo
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Mei-Hong Chai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Li-Ping Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Rui-Xue Ran
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yan-Ping Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Zhao-Sheng Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
35
|
Camptothecin@HMSNs/thermosensitive hydrogel composite for applications in preventing local breast cancer recurrence. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Gao C, Bhattarai P, Chen M, Zhang N, Hameed S, Yue X, Dai Z. Amphiphilic Drug Conjugates as Nanomedicines for Combined Cancer Therapy. Bioconjug Chem 2018; 29:3967-3981. [DOI: 10.1021/acs.bioconjchem.8b00692] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chuang Gao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Min Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Nisi Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin 150080, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
37
|
Wang S, Yu G, Wang Z, Jacobson O, Tian R, Lin LS, Zhang F, Wang J, Chen X. Hierarchical Tumor Microenvironment-Responsive Nanomedicine for Programmed Delivery of Chemotherapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803926. [PMID: 30168612 PMCID: PMC6462425 DOI: 10.1002/adma.201803926] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/01/2018] [Indexed: 05/08/2023]
Abstract
Nanomedicines have been demonstrated to have passive or active tumor targeting behaviors, which are promising for cancer chemotherapy. However, most nanomedicines still suffer from a suboptimal targeting effect and drug leakage, resulting in unsatisfactory treatment outcome. Herein, a hierarchical responsive nanomedicine (HRNM) is developed for programmed delivery of chemotherapeutics. The HRNMs are prepared via the self-assembly of cyclic Arg-Gly-Asp (RGD) peptide conjugated triblock copolymer, poly(2-(hexamethyleneimino)ethyl methacrylate)-poly(oligo-(ethylene glycol) monomethyl ether methacrylate)-poly[reduction-responsive camptothecin] (PC7A-POEG-PssCPT). In blood circulation, the RGD peptides are shielded by the POEG coating; therefore, the nanosized HRNMs can achieve effective tumor accumulation through passive targeting. Once the HRNMs reach a tumor site, due to the hydrophobic-tohydrophilic conversion of PC7A chains induced by the acidic tumor microenvironment, the RGD peptides will be exposed for enhanced tumor retention and cellular internalization. Moreover, in response to the glutathione inside cells, active CPT drugs will be released rapidly for chemotherapy. The in vitro and in vivo results confirm effective tumor targeting, potent antitumor effect, and reduced systemic toxicity of the HRNMs. This HRNM is promising for enhanced chemotherapeutic delivery.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li-Sen Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
38
|
Monroe M, Flexner C, Cui H. Harnessing nanostructured systems for improved treatment and prevention of HIV disease. Bioeng Transl Med 2018; 3:102-123. [PMID: 30065966 PMCID: PMC6063869 DOI: 10.1002/btm2.10096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy effectively controls human immunodeficiency virus (HIV) viral replication, delaying the progression to acquired immune deficiency syndrome and improving and extending quality of life of patients. However, the inability of antiretroviral therapeutics to target latent virus and their poor penetration of viral reserve tissues result in the need for continued treatment for the life of the patient. Side effects from long-term antiretroviral use and the development of drug resistance due to patient noncompliance are also continuing problems. Nanostructured systems of antiretroviral therapeutics have the potential to improve targeted delivery to viral reservoirs, reduce drug toxicity, and increase dosing intervals, thereby improving treatment outcomes and enhancing patient adherence. Despite these advantages, very few nanostructured antiretroviral delivery systems have made it to clinical trials due to challenges in preclinical and clinical development. In this context, we review the current challenges in HIV disease management, and the recent progress in leveraging the unique performance of nanostructured systems in therapeutic delivery for improved treatment and prevention of this incurable human disease.
Collapse
Affiliation(s)
- Maya Monroe
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218
| | - Charles Flexner
- Div. of Clinical Pharmacology and Infectious Diseases Johns Hopkins University School of Medicine and Bloomberg School of Public Health Baltimore MD 21205
| | - Honggang Cui
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Dept. of Oncology, Sidney Kimmel Comprehensive Cancer Center The Johns Hopkins University School of Medicine Baltimore MD 21205.,Center for Nanomedicine The Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore MD 21231
| |
Collapse
|
39
|
Qin SY, Cheng YJ, Lei Q, Zhang AQ, Zhang XZ. Combinational strategy for high-performance cancer chemotherapy. Biomaterials 2018; 171:178-197. [DOI: 10.1016/j.biomaterials.2018.04.027] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 12/21/2022]
|
40
|
Lan C, Zhao S. Self-assembled nanomaterials for synergistic antitumour therapy. J Mater Chem B 2018; 6:6685-6704. [DOI: 10.1039/c8tb01978a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent progress on self-assembled nanodrugs for anticancer treatment was discussed.
Collapse
Affiliation(s)
- Chuanqing Lan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
41
|
Li ZP, Jiang MC, Chen B, Gao P, Yang S, Liu YF, Ye PJ, He DX, Huang HL, Yu CY. Fabrication and characterization of a novel self-assembling micelle based on chitosan cross-linked pectin–doxorubicin conjugates macromolecular pro-drug for targeted cancer therapy. RSC Adv 2018; 8:12004-12016. [PMID: 35539373 PMCID: PMC9079223 DOI: 10.1039/c8ra01403e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/17/2018] [Indexed: 11/21/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Zhi-Ping Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- University of South China
- Hengyang
- China
| | - Ming-Chao Jiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- University of South China
- Hengyang
- China
| | - Bo Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- University of South China
- Hengyang
- China
- Hengyang Hospital of Traditional Chinese Medicine
| | - Pei Gao
- Chemistry Department
- Eastern Kentucky University
- Richmond
- USA
| | - Sa Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- University of South China
- Hengyang
- China
| | - Yu-Feng Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- University of South China
- Hengyang
- China
| | - Peng-Ju Ye
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- University of South China
- Hengyang
- China
| | - Dong-Xiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- University of South China
- Hengyang
- China
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province
| | - Hong-Lin Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- University of South China
- Hengyang
- China
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- University of South China
- Hengyang
- China
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province
| |
Collapse
|
42
|
Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 2017; 267:100-118. [PMID: 28958854 PMCID: PMC5723209 DOI: 10.1016/j.jconrel.2017.09.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Paclitaxel (PTX) is one of the most successful drugs ever used in cancer chemotherapy, acting against a variety of cancer types. Formulating PTX with Cremophor EL and ethanol (Taxol®) realized its clinical potential, but the formulation falls short of expectations due to side effects such as peripheral neuropathy, hypotension, and hypersensitivity. Abraxane®, the albumin bound PTX, represents a superior replacement of Taxol® that mitigates the side effects associated with Cremophor EL. While Abraxane® is now considered a gold standard in chemotherapy, its 21% response rate leaves much room for further improvement. The quest for safer and more effective cancer treatments has led to the development of a plethora of innovative PTX formulations, many of which are currently undergoing clinical trials. In this context, we review recent development of PTX drug delivery systems and analyze the design principles underpinning each delivery strategy. We chose several representative examples to highlight the opportunities and challenges of polymeric systems, lipid-based formulations, as well as prodrug strategies.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michael Porter
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Alexandros Konstantopoulos
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States; Institute for NanoBiotechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
43
|
He W, Hu X, Jiang W, Liu R, Zhang D, Zhang J, Li Z, Luan Y. Rational Design of a New Self-Codelivery System from Redox-Sensitive Camptothecin-Cytarabine Conjugate Assembly for Effectively Synergistic Anticancer Therapy. Adv Healthc Mater 2017; 6. [PMID: 29076266 DOI: 10.1002/adhm.201700829] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Herein, two careful selected anticancer drugs camptothecin (CPT) and cytarabine (Ara-C) with different biological action mechanisms and different water solubility are conjugated together through a glutathione (GSH) cleavable disulfide bond to construct a redox-sensitive drug-drug conjugate, which can self-assemble into nanoparticles, thus notably improving the water solubility of CPT and the cell membrane permeability of Ara-C. Compared with free drugs, the self-assembled CPT-ss-Ara nanoparticles can concentrate in tumor tissues through the enhanced permeability and retention (EPR) effect, then they can be rapidly internalized by tumor cells and degrade into free drugs for killing the tumor cells when exposed to the reductive environment (GSH) of tumor cells, thereby reducing the injury to normal cells. Meanwhile, the CPT-ss-Ara nanoparticles can effectively protect CPT and Ara-C molecules from biological inactivation before their arrival in tumor microenvironment since free CPT and Ara-C are easy to partly lose their therapy efficacy due to their structure degradation in blood circulation. The in vitro and in vivo anticancer experimental results indicate that simultaneous release of free CPT and Ara-C can realize synergistic chemotherapy effects, thus markedly improve their anticancer activity. Therefore, our designed carrier-free, redox-sensitive CPT-ss-Ara nanoparticles might have promising clinical application to combat cancers.
Collapse
Affiliation(s)
- Wenxiu He
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Xu Hu
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Wei Jiang
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Ruiling Liu
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Di Zhang
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Jing Zhang
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Zhonghao Li
- Key Lab of Colloid & Interface Chemistry (Ministry of Education); Shandong University; 250100 Jinan P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| |
Collapse
|
44
|
Abstract
Covalent modification of therapeutic compounds is a clinically proven strategy to devise prodrugs with enhanced treatment efficacies. This prodrug strategy relies on the modified drugs that possess advantageous pharmacokinetic properties and administration routes over their parent drug. Self-assembling prodrugs represent an emerging class of therapeutic agents capable of spontaneously associating into well-defined supramolecular nanostructures in aqueous solutions. The self-assembly of prodrugs expands the functional space of conventional prodrug design, affording a possible pathway to more effective therapies as the assembled nanostructure possesses distinct physicochemical properties and interaction potentials that can be tailored to specific administration routes and disease treatment. In this review, we will discuss the various types of self-assembling prodrugs in development, providing an overview of the methods used to control their structure and function and, ultimately, our perspective on their current and future potential.
Collapse
Affiliation(s)
- Andrew G Cheetham
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
| | | | | | | |
Collapse
|
45
|
Li Y, Lin J, Ma J, Song L, Lin H, Tang B, Chen D, Su G, Ye S, Zhu X, Luo F, Hou Z. Methotrexate-Camptothecin Prodrug Nanoassemblies as a Versatile Nanoplatform for Biomodal Imaging-Guided Self-Active Targeted and Synergistic Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34650-34665. [PMID: 28920426 DOI: 10.1021/acsami.7b10027] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
"All-in-one" carrier-free-based nano-multi-drug self-delivery system could combine triple advantages of small molecules, nanoscale characteristics, and synergistic combination therapy together. Researches have showed that dual-acting small-molecular methotrexate (MTX) could target and kill the folate-receptor-overexpressing cancer cells. Inspired by this mechanism, a novel collaborative early-phase tumor-selective targeting and late-phase synergistic anticancer approach was developed for the self-assembly of chemotherapeutic drug-drug conjugate, which showed various advantages of more simplicity, efficiency, and flexibility over the conventional approach based only on single or combination cancer chemotherapy. MTX and 10-hydroxyl camptothecin (CPT) were chosen to conjugate through ester linkage. Because of the amphiphilicity and ionicity, MTX-CPT conjugates as molecular building blocks could self-assemble into MTX-CPT nanoparticles (MTX-CPT NPs) in aqueous solution, thus notably improving the aqueous solubility of CPT and the membrane permeability of MTX. The MTX-CPT NPs with a precise drug-to-drug ratio showed pH-/esterase-responsive drug release, sequential function "Targeting-Anticancer" switch, and real-time monitoring fluorescence "Off-On" switch. By doping with a lipophilic near-infrared (NIR) cyanine dye (e.g., 1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide, DiR), the prepared DiR-loaded MTX-CPT NPs acted as an effective probe for in vivo NIR fluorescence (NIRF) and photoacoustic (PA) dual-modal imaging. Both in vitro and in vivo studies demonstrated that MTX-CPT NPs could specifically codeliver multidrug to different sites of action with distinct anticancer mechanisms to kill folate-receptor-overexpressing tumor cells in a synergistic way. This novel, simple, and highly convergent self-targeting nanomulti-drug codelivery system exhibited great potential in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bowen Tang
- College of Pharmacy, Western University of Health Science , Pomona, California 91766, United States
| | | | - Guanghao Su
- Children's Hospital of Soochow University , Suzhou 215025, PR China
| | | | | | | | | |
Collapse
|
46
|
NanoDDS 2016: The 14th International Nanomedicine and Drug Delivery Symposium. J Control Release 2017; 263:1-3. [PMID: 28734902 DOI: 10.1016/j.jconrel.2017.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Li Y, Liu G, Ma J, Lin J, Lin H, Su G, Chen D, Ye S, Chen X, Zhu X, Hou Z. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. J Control Release 2017; 258:95-107. [DOI: 10.1016/j.jconrel.2017.05.011] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 11/29/2022]
|
48
|
Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544801 DOI: 10.1002/wnan.1479] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
Malignant brain tumor, including the most common type glioblastoma, are histologically heterogeneous and invasive tumors known as the most devastating neoplasms with high morbidity and mortality. Despite multimodal treatment including surgery, radiotherapy, chemotherapy, and immunotherapy, the disease inevitably recurs and is fatal. This lack of curative options has motivated researchers to explore new treatment strategies and to develop new drug delivery systems (DDSs); however, the unique anatomical, physiological, and pathological features of brain tumors greatly limit the effectiveness of conventional chemotherapy. In this context, we review the recent progress in the development of nanoparticle-based DDSs aiming to address the key challenges in transporting sufficient amount of therapeutic agents into the brain tumor areas while minimizing the potential side effects. We first provide an overview of the standard treatments currently used in the clinic for the management of brain cancers, discussing the effectiveness and limitations of each therapy. We then provide an in-depth review of nanotherapeutic systems that are intended to bypass the blood-brain barrier, overcome multidrug resistance, infiltrate larger tumorous tissue areas, and/or release therapeutic agents in a controlled manner. WIREs Nanomed Nanobiotechnol 2018, 10:e1479. doi: 10.1002/wnan.1479 This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Rami Walid Chakroun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
49
|
Chen Z, Xing L, Fan Q, Cheetham AG, Lin R, Holt B, Chen L, Xiao Y, Cui H. Drug-Bearing Supramolecular Filament Hydrogels as Anti-Inflammatory Agents. Theranostics 2017; 7:2003-2014. [PMID: 28656057 PMCID: PMC5485419 DOI: 10.7150/thno.19404] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
We report here on the covalent conversion of the anti-inflammatory agent ketoprofen into self-assembling prodrugs that enable the effective purification of ketoprofen enantiomers, the improved selectivity and potency of ketoprofen, as well as the formation of one-component drug-bearing supramolecular hydrogels. We found that the ketoprofen hydrogelator could exhibit much-enhanced selectivity for cyclooxygenase 2 (COX-2) over COX-1, reduce the concentration of inflammatory cytokines (IL-1 and TNFα), and induce apoptosis in fibroblast-like synoviocytes while maintaining biocompatibility with healthy chondrocytes. In addition, these anti-inflammatory agent-containing hydrogels demonstrated the ability to retain the therapeutic within a joint cavity after intra-articular injection, exhibiting a slow, steady release into the plasma. We believe that upon further optimization these drug-based injectable supramolecular hydrogels could provide the basis for a local treatment strategy for rheumatoid arthritis and similar conditions.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Andrew G. Cheetham
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Barbara Holt
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Liwen Chen
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| |
Collapse
|