1
|
Wang Y, He X, Huang K, Cheng N. Nanozyme as a rising star for metabolic disease management. J Nanobiotechnology 2024; 22:226. [PMID: 38711066 PMCID: PMC11071342 DOI: 10.1186/s12951-024-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Nanozyme, characterized by outstanding and inherent enzyme-mimicking properties, have emerged as highly promising alternatives to natural enzymes owning to their exceptional attributes such as regulation of oxidative stress, convenient storage, adjustable catalytic activities, remarkable stability, and effortless scalability for large-scale production. Given the potent regulatory function of nanozymes on oxidative stress and coupled with the fact that reactive oxygen species (ROS) play a vital role in the occurrence and exacerbation of metabolic diseases, nanozyme offer a unique perspective for therapy through multifunctional activities, achieving essential results in the treatment of metabolic diseases by directly scavenging excess ROS or regulating pathologically related molecules. The rational design strategies, nanozyme-enabled therapeutic mechanisms at the cellular level, and the therapies of nanozyme for several typical metabolic diseases and underlying mechanisms are discussed, mainly including obesity, diabetes, cardiovascular disease, diabetic wound healing, and others. Finally, the pharmacokinetics, safety analysis, challenges, and outlooks for the application of nanozyme are also presented. This review will provide some instructive perspectives on nanozyme and promote the development of enzyme-mimicking strategies in metabolic disease therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
| | - Xiaoyun He
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China.
| |
Collapse
|
2
|
Wu ZM, Huang K, Dai Y, Chen S, Wang XQ, Yang CD, Li LY, Liu JM, Lu L, Zhang RY, Shen WF, Shen Y, Ding FH. Circulating secretoneurin level reflects angiographic coronary collateralization in stable angina patients with chronic total occlusion. BMC Cardiovasc Disord 2024; 24:33. [PMID: 38184555 PMCID: PMC10771680 DOI: 10.1186/s12872-023-03645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/29/2023] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE To investigate the association between circulating secretoneurin (SN) and angiographic coronary collateralization in stable angina patients with chronic coronary total occlusion (CTO). METHODS SN concentrations in serum were measured in 641 stable angina patients with CTO by radioimmunoassay. The status of coronary collaterals from the contra-lateral vessel was visually estimated using the Rentrop grading system, and was categorized into poor (grade 0 or 1) or good (grade 2 or 3) collateralization. RESULTS Serum SN levels were significantly higher in patients with good coronary collaterals compared to those with poor collaterals (175.23 ± 52.09 pmol/L vs. 143.29 ± 42.01 pmol/L, P < 0.001). Serum SN increased stepwise across Rentrop score 0 to 3 (P < 0.001), and increasing SN tertiles were associated with higher proportion of good coronary collateralization (OR, 1.907; 95% CI, 1.558 ~ 2.335, P < 0.001). After adjustment for confounding variables, serum SN (per tertile) remained an independent factor for predicting good coronary collaterals (OR, 1.870; 95% CI, 1.515 ~ 2.309; P < 0.001). Moreover, the diagnostic value of serum SN (per tertile) was consistent after stratifying patients based on gender, age, body mass index, hypertension, diabetes, history of smoking, severity of coronary artery disease and kidney function (OR: 1.511 ~ 2.680, P interaction ≥ 0.327). CONCLUSION Elevated circulating SN reflects good angiographic coronary collaterals in stable angina patients with CTO. The findings may provide insight into decision-making for these patients.
Collapse
Affiliation(s)
- Zhi Ming Wu
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China
| | - Ke Huang
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China
| | - Yang Dai
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China
| | - Shuai Chen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China
| | - Xiao Qun Wang
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China
| | - Chen Die Yang
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China
| | - Le Ying Li
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China
| | - Jing Meng Liu
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China
| | - Lin Lu
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China
| | - Rui Yan Zhang
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, P.R. China
| | - Wei Feng Shen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China
| | - Ying Shen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China.
| | - Feng Hua Ding
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, P.R. China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, P.R. China.
| |
Collapse
|
3
|
Güngör İ, Yadigaroğlu M, Akpınar ÇK, Güzel M, Akyüz MF, Yanık HT, Görgün S, Yücel M. Evaluation of Serum Secretoneurin Levels in Patients With Ischemic Stroke Who Underwent Mechanical Thrombectomy. Cureus 2023; 15:e36705. [PMID: 37113363 PMCID: PMC10129046 DOI: 10.7759/cureus.36705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 03/28/2023] Open
Abstract
Background Ischemic stroke is a focal or global cerebral dysfunction of vascular origin; its treatment aims to provide reperfusion. Secretoneurin is a hypoxia-sensitive biomarker found in high concentrations in brain tissue. We aim to determine secretoneurin levels in patients with ischemic stroke, examine how secretoneurin levels change in the mechanical thrombectomy group, and evaluate the correlation with disease severity and prognosis. Methods Twenty-two patients diagnosed with ischemic stroke in the emergency department underwent mechanical thrombectomy, and twenty healthy volunteers were included in the study. Serum secretoneurin levels were measured by the enzyme-linked immunosorbent assay (ELISA) method. Secretoneurin levels were measured at the 0th hour, 12th hour, and 5th day in patients who underwent mechanical thrombectomy. Results Serum secretoneurin levels were found to be statistically significantly higher in the patient group (7.43 ng/mL) compared to the control group (5.90 ng/mL) (p=0.023). The secretoneurin levels of the patients who underwent mechanical thrombectomy were 7.43 ng/mL, 7.04 ng/mL, and 8.65 ng/mL, measured at the 0th hour, 12th hour, and 5th day, respectively, and no significant difference was detected in all three time periods (p=0.142). Conclusion Secretoneurin appears to be a useful biomarker in the diagnosis of stroke. However, it was found that there was no prognostic value in the mechanical thrombectomy group, and it was not correlated with the severity of the disease.
Collapse
|
4
|
Novel insights into the angiogenic function of JMJD2B in diabetic hind limb ischemia: involvement of activating Wnt/β-catenin pathway. Hum Cell 2023; 36:1011-1023. [PMID: 36773117 DOI: 10.1007/s13577-023-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Critical limb ischemia (CLI) is a major health problem, in which diabetes is a risk factor. Lysine Demethylase 4B (JMJD2B) is a histone demethylase. Diabetic CLI model was established in mice by streptozotocin injection and femoral artery ligation. Reduced expression of JMJD2B in lower limb muscles was observed in CLI mice with or without diabetes, accompanied by impaired blood perfusion and mobility. Adenovirus-mediated JMJD2B overexpression improved blood perfusion and angiogenesis as indicated by the alternation in CD31, α-SMA, and VEGFA expression in the lower limb of diabetic mice with CLI. In vitro, JMJD2B expression and the proliferation and tube formation ability were inhibited by high glucose and ischemic conditions in HMEC-1 cells. Overexpressed-JMJD2B contributed to angiogenesis by promoting cell proliferation, migration, and tube formation of HMEC-1 cells, as well as increasing VEGFA and SDF-1 expression. Mechanism study indicated that JMJD2B overexpression activated the Wnt/β-catenin pathway by promoting β-catenin nuclear translocation and the expression. This might lead to stimulated angiogenesis, as demonstrated by the Wnt/β-catenin inhibitor XAV-939. Overall, our study revealed that JMJD2B was down-regulated in CLI mice with diabetes and JMJD2B overexpression promoted angiogenesis probably via the activation of Wnt/β-catenin pathway.
Collapse
|
5
|
Ma J, Chen J, Wang H, Lu D, Liang K. AhR regulates VEGF expression by promoting STAT1 transcriptional activity, thereby affecting endothelial angiogenesis in acute limb ischemia. Chem Biol Interact 2023; 369:110253. [PMID: 36347318 DOI: 10.1016/j.cbi.2022.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Angiogenesis has great potential in the treatment of acute limb ischemia (ALI). Here, we aimed to investigate the effect and mechanism of Aryl hydrocarbon receptor (AhR) on angiogenesis in ALI. METHODS The ALI mouse model was constructed by femoral artery ligation, and the cell ischemia injury was induced by Hypoxia/serum deprivation. The laser doppler perfusion imaging was executed to detect the limb blood flow velocity. The tube formation assay was performed to evaluate angiogenesis. The cell viability was measured by 3-(45)-dimethylthiahiazo(-z-y1)-35-di-phenytetrazoliumromide. The cell migration was detected by wound healing assay. Hematoxylin-eosin, immunohistochemistry, immunofluorescence, dual-luciferase reporter gene assay, and Chromatin immunoprecipitation assay were conducted. RESULTS In ALI models, AhR expression was increased and translocated from cytoplasm to nucleus. Besides, necrosis and inflammatory infiltration were also increased in gastrocnemius tissues of model mice. In addition, AhR loss (LV-sh-AhR) promoted cell viability, angiogenesis, and migration, and also elevated the levels of vascular endothelial growth factor (VEGF), Tie2, and Ang2 in HUVEC models with Hypoxia/serum deprivation injury. Meanwhile, the interaction between AhR and signal transducer and activator of transcription 1 (STAT1), as well as STAT1 and VEGF, has also been confirmed. Co-transfection of LV-sh-AhR and LV-STAT1 suppressed cell viability, angiogenesis, and migration of injured HUVECs. Furthermore, injection of AAV2/9-shAhR in vivo also promoted angiogenesis, which was consistent with the in vitro experimental results. CONCLUSIONS In ALI models, activated AhR was translocated to the nucleus and down-regulated VEGF expression by promoting the transcriptional activity of STAT1, thereby inhibiting endothelial angiogenesis.
Collapse
Affiliation(s)
- Jinhui Ma
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, China.
| | - Jiangbo Chen
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Heng Wang
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Danghui Lu
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Kai Liang
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, China
| |
Collapse
|
6
|
Pan Y, Luo Y, Hong J, He H, Dai L, Zhu H, Wu J. Advances for the treatment of lower extremity arterial disease associated with diabetes mellitus. Front Mol Biosci 2022; 9:929718. [PMID: 36060247 PMCID: PMC9429832 DOI: 10.3389/fmolb.2022.929718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lower extremity arterial disease (LEAD) is a major vascular complication of diabetes. Vascular endothelial cells dysfunction can exacerbate local ischemia, leading to a significant increase in amputation, disability, and even mortality in patients with diabetes combined with LEAD. Therefore, it is of great clinical importance to explore proper and effective treatments. Conventional treatments of diabetic LEAD include lifestyle management, medication, open surgery, endovascular treatment, and amputation. As interdisciplinary research emerges, regenerative medicine strategies have provided new insights to treat chronic limb threatening ischemia (CLTI). Therapeutic angiogenesis strategies, such as delivering growth factors, stem cells, drugs to ischemic tissues, have also been proposed to treat LEAD by fundamentally stimulating multidimensional vascular regeneration. Recent years have seen the rapid growth of tissue engineering technology; tissue-engineered biomaterials have been used to study the treatment of LEAD, such as encapsulation of growth factors and drugs in hydrogel to facilitate the restoration of blood perfusion in ischemic tissues of animals. The primary purpose of this review is to introduce treatments and novel biomaterials development in LEAD. Firstly, the pathogenesis of LEAD is briefly described. Secondly, conventional therapies and therapeutic angiogenesis strategies of LEAD are discussed. Finally, recent research advances and future perspectives on biomaterials in LEAD are proposed.
Collapse
Affiliation(s)
- Yang Pan
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Luo
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Hong
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Hong Zhu,
| | - Lu Dai
- The Fourth Outpatient Department, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Hong Zhu,
| | - Jiang Wu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop‐Schnürch A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102451. [PMID: 34773391 PMCID: PMC8728822 DOI: 10.1002/advs.202102451] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Advances in nanotechnology have generated a broad range of nanoparticles (NPs) for numerous biomedical applications. Among the various properties of NPs are functionalities being related to thiol substructures. Numerous biological processes that are mediated by cysteine or cystine subunits of proteins representing the workhorses of the bodies can be transferred to NPs. This review focuses on the interface between thiol chemistry and NPs. Pros and cons of different techniques for thiolation of NPs are discussed. Furthermore, the various functionalities gained by thiolation are highlighted. These include overall bio- and mucoadhesive, cellular uptake enhancing, and permeation enhancing properties. Drugs being either covalently attached to thiolated NPs via disulfide bonds or being entrapped in thiolated polymeric NPs that are stabilized via inter- and intrachain crosslinking can be released at the diseased tissue or in target cells under reducing conditions. Moreover, drugs, targeting ligands, biological analytes, and enzymes bearing thiol substructures can be immobilized on noble metal NPs and quantum dots for therapeutic, theranostic, diagnostic, biosensing, and analytical reasons. Within this review a concise summary and analysis of the current knowledge, future directions, and potential clinical use of thiolated NPs are provided.
Collapse
Affiliation(s)
- Nathalie Hock
- Thiomatrix Forschungs und Beratungs GmbHTrientlgasse 65Innsbruck6020Austria
| | | | - Sam Aspinall
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Nunzio Denora
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari “Aldo Moro”Bari70125Italy
| | - Vitaliy V. Khutoryanskiy
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology, Institute of PharmacyUniversity of InnsbruckInnrain 80/82Innsbruck6020Austria
| |
Collapse
|
8
|
Fodor M, Fodor L, Bota O. The role of nanomaterials and nanostructured surfaces for improvement of biomaterial peculiarities in vascular surgery: a review. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1871692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Marius Fodor
- Department of Vascular Surgery, First Surgical Clinic, Emergency District Hospital, Cluj-Napoca, Romania, Cluj-Napoca, Romania
| | - Lucian Fodor
- Department of Plastic Surgery, First Surgical Clinic, Emergency District Hospital, Cluj-Napoca, Romania, Cluj-Napoca, Romania
| | - Olimpiu Bota
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
9
|
Zhang L, Chen L, Li C, Shi H, Wang Q, Yang W, Fang L, Leng Y, Sun W, Li M, Xue Y, Gao X, Wang H. Oroxylin a Attenuates Limb Ischemia by Promoting Angiogenesis via Modulation of Endothelial Cell Migration. Front Pharmacol 2021; 12:705617. [PMID: 34413777 PMCID: PMC8370028 DOI: 10.3389/fphar.2021.705617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
Oroxylin A (OA) has been shown to simultaneously increase coronary flow and provide a strong anti-inflammatory effect. In this study, we described the angiogenic properties of OA. OA treatment accelerated perfusion recovery, reduced tissue injury, and promoted angiogenesis after hindlimb ischemia (HLI). In addition, OA regulated the secretion of multiple cytokines, including vascular endothelial growth factor A (VEGFA), angiopoietin-2 (ANG-2), fibroblast growth factor-basic (FGF-2), and platelet derived growth factor BB (PDGF-BB). Specifically, those multiple cytokines were involved in cell migration, cell population proliferation, and angiogenesis. These effects were observed at 3, 7, and 14 days after HLI. In skeletal muscle cells, OA promoted the release of VEGFA and ANG-2. After OA treatment, the conditioned medium derived from skeletal muscle cells was found to significantly induce endothelial cell (EC) proliferation. OA also induced EC migration by activating the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil kinase 2 (ROCK-II) signaling pathway and the T-box20 (TBX20)/prokineticin 2 (PROK2) signaling pathway. In addition, OA was able to downregulate the number of macrophages and neutrophils, along with the secretion of interleukin-1β, at 3 days after HLI. These results expanded current knowledge about the beneficial effects of OA in angiogenesis and blood flow recovery. This research could open new directions for the development of novel therapeutic intervention for patients with peripheral artery disease (PAD).
Collapse
Affiliation(s)
- Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Hong Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjie Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leyu Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuejin Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
The Emerging Roles of Chromogranins and Derived Polypeptides in Atherosclerosis, Diabetes, and Coronary Heart Disease. Int J Mol Sci 2021; 22:ijms22116118. [PMID: 34204153 PMCID: PMC8201018 DOI: 10.3390/ijms22116118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Chromogranin A (CgA), B (CgB), and C (CgC), the family members of the granin glycoproteins, are associated with diabetes. These proteins are abundantly expressed in neurons, endocrine, and neuroendocrine cells. They are also present in other areas of the body. Patients with diabetic retinopathy have higher levels of CgA, CgB, and CgC in the vitreous humor. In addition, type 1 diabetic patients have high CgA and low CgB levels in the circulating blood. Plasma CgA levels are increased in patients with hypertension, coronary heart disease, and heart failure. CgA is the precursor to several functional peptides, including catestatin, vasostatin-1, vasostatin-2, pancreastatin, chromofungin, and many others. Catestatin, vasostain-1, and vasostatin-2 suppress the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in human vascular endothelial cells. Catestatin and vasostatin-1 suppress oxidized low-density lipoprotein-induced foam cell formation in human macrophages. Catestatin and vasostatin-2, but not vasostatin-1, suppress the proliferation and these three peptides suppress the migration in human vascular smooth muscles. Chronic infusion of catestatin, vasostatin-1, or vasostatin-2 suppresses the development of atherosclerosis of the aorta in apolipoprotein E-deficient mice. Catestatin, vasostatin-1, vasostatin-2, and chromofungin protect ischemia/reperfusion-induced myocardial dysfunction in rats. Since pancreastatin inhibits insulin secretion from pancreatic β-cells, and regulates glucose metabolism in liver and adipose tissues, pancreastatin inhibitor peptide-8 (PSTi8) improves insulin resistance and glucose homeostasis. Catestatin stimulates therapeutic angiogenesis in the mouse hind limb ischemia model. Gene therapy with secretoneurin, a CgC-derived peptide, stimulates postischemic neovascularization in apolipoprotein E-deficient mice and streptozotocin-induced diabetic mice, and improves diabetic neuropathy in db/db mice. Therefore, CgA is a biomarker for atherosclerosis, diabetes, hypertension, and coronary heart disease. CgA- and CgC--derived polypeptides provide the therapeutic target for atherosclerosis and ischemia-induced tissue damages. PSTi8 is useful in the treatment of diabetes.
Collapse
|
11
|
Borrelli MA, Turnquist HR, Little SR. Biologics and their delivery systems: Trends in myocardial infarction. Adv Drug Deliv Rev 2021; 173:181-215. [PMID: 33775706 PMCID: PMC8178247 DOI: 10.1016/j.addr.2021.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is the leading cause of death around the world, in which myocardial infarction (MI) is a precipitating event. However, current therapies do not adequately address the multiple dysregulated systems following MI. Consequently, recent studies have developed novel biologic delivery systems to more effectively address these maladies. This review utilizes a scientometric summary of the recent literature to identify trends among biologic delivery systems designed to treat MI. Emphasis is placed on sustained or targeted release of biologics (e.g. growth factors, nucleic acids, stem cells, chemokines) from common delivery systems (e.g. microparticles, nanocarriers, injectable hydrogels, implantable patches). We also evaluate biologic delivery system trends in the entire regenerative medicine field to identify emerging approaches that may translate to the treatment of MI. Future developments include immune system targeting through soluble factor or chemokine delivery, and the development of advanced delivery systems that facilitate the synergistic delivery of biologics.
Collapse
Affiliation(s)
- Matthew A Borrelli
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA.
| | - Heth R Turnquist
- Starzl Transplantation Institute, 200 Darragh St, Pittsburgh, PA 15213, USA; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
Li C, Kitzerow O, Nie F, Dai J, Liu X, Carlson MA, Casale GP, Pipinos II, Li X. Bioengineering strategies for the treatment of peripheral arterial disease. Bioact Mater 2021; 6:684-696. [PMID: 33005831 PMCID: PMC7511653 DOI: 10.1016/j.bioactmat.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/12/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral arterial disease (PAD) is a progressive atherosclerotic disorder characterized by narrowing and occlusion of arteries supplying the lower extremities. Approximately 200 million people worldwide are affected by PAD. The current standard of operative care is open or endovascular revascularization in which blood flow restoration is the goal. However, many patients are not appropriate candidates for these treatments and are subject to continuous ischemia of their lower limbs. Current research in the therapy of PAD involves developing modalities that induce angiogenesis, but the results of simple cell transplantation or growth factor delivery have been found to be relatively poor mainly due to difficulties in stem cell retention and survival and rapid diffusion and enzymolysis of growth factors following injection of these agents in the affected tissues. Biomaterials, including hydrogels, have the capability to protect stem cells during injection and to support cell survival. Hydrogels can also provide a sustained release of growth factors at the injection site. This review will focus on biomaterial systems currently being investigated as carriers for cell and growth factor delivery, and will also discuss biomaterials as a potential stand-alone method for the treatment of PAD. Finally, the challenges of development and use of biomaterials systems for PAD treatment will be reviewed.
Collapse
Affiliation(s)
- Cui Li
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Oliver Kitzerow
- Department of Genetics Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Fujiao Nie
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jingxuan Dai
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Xiaoyan Liu
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Mark A. Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
- Omaha VA Medical Center, Omaha, NE, 68105, United States
| | - George P. Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Iraklis I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Xiaowei Li
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| |
Collapse
|
13
|
Abstract
Nanotechnology could offer a new complementary strategy for the treatment of vascular diseases including coronary, carotid, or peripheral arterial disease due to narrowing or blockage of the artery caused by atherosclerosis. These arterial diseases manifest correspondingly as angina and myocardial infarction, stroke, and intermittent claudication of leg muscles during exercise. The pathogenesis of atherosclerosis involves biological events at the cellular and molecular level, thus targeting these using nanomaterials precisely and effectively could result in a better outcome. Nanotechnology can mitigate the pathological events by enhancing the therapeutic efficacy of the therapeutic agent by delivering it at the point of a lesion in a controlled and efficacious manner. Further, combining therapeutics with imaging will enhance the theranostic ability in atherosclerosis. Additionally, nanoparticles can provide a range of delivery systems for genes, proteins, cells, and drugs, which individually or in combination can address various problems within the arteries. Imaging studies combined with nanoparticles helps in evaluating the disease progression as well as the response to the treatment because imaging and diagnostic agents can be delivered precisely to the targeted destinations via nanocarriers. This review focuses on the use of nanotechnology in theranostics of coronary artery and peripheral arterial disease.
Collapse
|
14
|
Lv S, Cai H, Xu Y, Dai J, Rong X, Zheng L. Thymosin‑β 4 induces angiogenesis in critical limb ischemia mice via regulating Notch/NF‑κB pathway. Int J Mol Med 2020; 46:1347-1358. [PMID: 32945357 PMCID: PMC7447324 DOI: 10.3892/ijmm.2020.4701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/22/2020] [Indexed: 12/24/2022] Open
Abstract
Thymosin‑β 4 (Tβ4) has been reported to exert a pro‑angogenic effect on endothelial cells. However, little is known on the role and underlying mechanisms of Tβ4 on critical limb ischemia (CLI). The present study aimed therefore to investigate the mechanisms and pro‑angiogenic effects of Tβ4 in CLI mice. Tβ4 overexpression lentiviral vector was first transfected into HUVEC and CLI mice model, and inhibitors of Notch pathway (DAPT) and NF‑κB pathway (BMS) were also applied to HUVEC and CLI mice. Subsequently, MTT, tube formation and wound healing assays were used to determine the cell viability, angiogenesis and migratory ablity of HUVEC, respectively. Western blotting, reverse transcription, quantitative PCR, immunofluorescence and immunohistochemistry were used to detect the expression of the angiogenesis‑related factors angiopoietin‑2 (Ang2), TEK receptor tyrosine kinase 2 (tie2), vascular endothelial growth factor A (VEGFA), CD31 and α‑smooth muscle actin (α‑SMA) and the Notch/NF‑κB pathways‑related factors NOTCH1 intracellular domain (N1ICD), Notch receptor 3 (Notch3), NF‑κB and p65 in HUVEC or CLI mice muscle tissues. The results demonstrated that Tβ4 not only enhanced the cell viability, angiogenesis and migratory ability of HUVEC but also promoted the expression of Ang2, tie2, VEGFA, N1ICD, Notch3, NF‑κB, and phosphorylated (p)‑p65 in HUVEC. In addition, Tβ4 promoted the expression of CD31, α‑SMA Ang2, tie2, VEGFA, N1ICD and p‑p65 in CLI mice muscle tissues. Treatment with DAPT and BMS had opposite effects of Tβ4, whereas Tβ4 reversed the effect of DAPT and BMS. The findings from the present study suggested that Tβ4 may promote angiogenesis in CLI mice via regulation of Notch/NF‑κB pathways.
Collapse
Affiliation(s)
- Shumin Lv
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Hongwen Cai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yifei Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jin Dai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiqing Rong
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Lanzhi Zheng
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
15
|
ROS-responsive capsules engineered from EGCG-Zinc networks improve therapeutic angiogenesis in mouse limb ischemia. Bioact Mater 2020; 6:1-11. [PMID: 32817909 PMCID: PMC7415630 DOI: 10.1016/j.bioactmat.2020.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
The successful treatment of limb ischemia requires that promote angiogenesis along with microenvironment improvement. Zinc ions have been reported to stimulate angiogenesis, but application was limited to the toxicity concerns. We hypothesized that zinc based metal-EGCG capsule (EGCG/Zn Ps) can achieve sustained release Zn2+ resulting in reduced toxicity and improve angiogenesis as well as the improvement of microenvironment by ROS scavenging of EGCG. The surface morphology, zeta potential, infrared absorbance peaks and zinc ion release profile of the EGCG/Zn Ps were measured. In vitro, EGCG/Zn showed significantly antioxidant, anti-inflammatory and induced cell migration effect. In addition, EGCG/Zn Ps enabled the sustained release of zinc ions, which reduced cytotoxicity and enhanced the secretion of vascular endothelial growth factor (VEGF) in vitro and in vivo. In mouse models of limb ischemia, EGCG/Zn Ps promoted angiogenesis and cell proliferation in ischemic tissues. Moreover, EGCG/Zn Ps group exhibited the most significant recovery of limb ischemic score, limb temperature and blood flow than other groups. In conclusion, EGCG/Zn Ps is a safe and promising approach to combine the merit of Zn2+ and EGCG, thus enabling the direct application to limb ischemia. Metal-polyphenol networks have been firstly applied in the Limb ischemic disease. EGCG improve the microenvironment of ischemic whereas Zinc exerts angiogenic property. •The slowly release of zinc ions were achieved, resulting in better biocompatibility.
Collapse
|
16
|
Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev 2019; 151-152:191-221. [PMID: 31028759 DOI: 10.1016/j.addr.2019.04.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Thiolated polymers designated "thiomers" are obtained by covalent attachment of thiol functionalities on the polymeric backbone of polymers. In 1998 these polymers were first described as mucoadhesive and in situ gelling compounds forming disulfide bonds with cysteine-rich substructures of mucus glycoproteins and crosslinking through inter- and intrachain disulfide bond formation. In the following, it was shown that thiomers are able to form disulfides with keratins and membrane-associated proteins exhibiting also cysteine-rich substructures. Furthermore, permeation enhancing, enzyme inhibiting and efflux pump inhibiting properties were demonstrated. Because of these capabilities thiomers are promising tools for drug delivery guaranteeing a strongly prolonged residence time as well as sustained release on mucosal membranes. Apart from that, thiomers are used as drugs per se. In particular, for treatment of dry eye syndrome various thiolated polymers are in development and a first product has already reached the market. Within this review an overview about the thiomer-technology and its potential for different applications is provided discussing especially the outcome of studies in non-rodent animal models and that of numerous clinical trials. Moreover, an overview on product developments is given.
Collapse
|
17
|
You J, Feng L, Bao L, Xin M, Ma D, Feng J. Potential Applications of Remote Limb Ischemic Conditioning for Chronic Cerebral Circulation Insufficiency. Front Neurol 2019; 10:467. [PMID: 31130914 PMCID: PMC6509171 DOI: 10.3389/fneur.2019.00467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic cerebral circulation insufficiency (CCCI) refers to a chronic decrease in cerebral blood perfusion, which may lead to cognitive impairment, psychiatric disorders such as depression, and acute ischemic stroke. Remote limb ischemic conditioning (RLIC), in which the limbs are subjected to a series of transient ischemic attacks, can activate multiple endogenous protective mechanisms to attenuate fatal ischemic injury to distant organs due to acute ischemia, such as ischemic stroke. Recent studies have also reported that RLIC can alleviate dysfunction in distant organs caused by chronic, non-fatal reductions in blood supply (e.g., CCCI). Indeed, research has indicated that RLIC may exert neuroprotective effects against CCCI through a variety of potential mechanisms, including attenuated glutamate excitotoxicity, improved endothelial function, increased cerebral blood flow, regulation of autophagy and immune responses, suppression of apoptosis, the production of protective humoral factors, and attenuated accumulation of amyloid-β. Verification of these findings is necessary to improve prognosis and reduce the incidence of acute ischemic stroke/cognitive impairment in patients with CCCI.
Collapse
Affiliation(s)
- Jiulin You
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Liyang Bao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meiying Xin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Zhu Y, Gao M, Zhou T, Xie M, Mao A, Feng L, Yao X, Wong WT, Ma X. The TRPC5 channel regulates angiogenesis and promotes recovery from ischemic injury in mice. J Biol Chem 2018; 294:28-37. [PMID: 30413532 DOI: 10.1074/jbc.ra118.005392] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/06/2018] [Indexed: 11/06/2022] Open
Abstract
Ischemia-related diseases are a leading cause of death worldwide, and promoting therapeutic angiogenesis is key for effective recovery from hypoxia-ischemia. Given the limited success of angiogenic factors, such as vascular endothelial growth factor, in clinical trials, it is important to find more promising angiogenic targets. Here, using both cell- and tissue-based assays and a mouse model of injury-induced ischemia, we investigated the involvement of the transient receptor potential canonical 5 (TRPC5) ion channel in angiogenesis and the effects of a TRPC5 activator, the Food and Drug Administration-approved drug riluzole, on recovery from ischemic injury. We demonstrate that TRPC5 is involved in endothelial cell sprouting, angiogenesis, and blood perfusion in an oxygen-induced retinopathy model and a hind limb ischemia model. We found a potential regulatory link between nuclear factor of activated T cell isoform c3 and angiopoietin-1 that could provide the mechanistic basis for the angiogenic function of TRPC5. Importantly, treatment with riluzole, which can activate TRPC5 in endothelial cells, improved recovery from ischemia in mice. Our study reveals TRPC5 as a potential angiogenic target and suggests riluzole as a promising drug for managing ischemic diseases.
Collapse
Affiliation(s)
- Yifei Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Mengru Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Mingxu Xie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wing Tak Wong
- State Key Laboratory of Agrobiotechnology (CUHK), School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China.
| |
Collapse
|
19
|
Lee J, Song M, Kim J, Park Y. Comparison of Angiogenic Activities of Three Neuropeptides, Substance P, Secretoneurin, and Neuropeptide Y Using Myocardial Infarction. Tissue Eng Regen Med 2018; 15:493-502. [PMID: 30603572 PMCID: PMC6171647 DOI: 10.1007/s13770-018-0134-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND The interplay between neurogenesis and angiogenesis is crucial during the development mediated by neuro-angiogenic morphogens. In particular, the angiogenic activity of neuropeptides and their role in tissue regeneration have long been investigated for better understanding of their biological mechanisms and further applications. However, there have been few studies for direct comparison of angiogenic activities of neuropeptides for in vitro and in vivo models. In this study, we report that direct comparison of the angiogenic activities of neuropeptide Y, secretoneurin, and substance P (SP) immobilized on hydrogels in in vitro and in vivo experiments. METHODS A hyaluronic acid-based hydrogel is prepared by utilizing acrylated hyaluronic acid and thiolated peptides as a crosslinker and angiogenic factors, respectively. Angiogenic activities of three neuropeptides are evaluated not only by in vitro angiogenic and gene expression assays, but also by an in vivo chronic myocardial infarction model. RESULTS The comparison of in vitro angiogenic activities of three peptides demonstrates that the SP-immobilized hydrogel shows a higher degree of cell network formation and angiogenic-specific genes than those of the other peptides and the control case. In addition, a three-dimensional angiogenic assay illustrates that more sprouting is observable in the SP group. Evaluation of regenerative activity in the chronic myocardial infarction model reveals that all three peptide-immobilized hydrogels induce increased cardiac function as well as structural regeneration. Among all the cases, the SP group provided the highest regenerative activity both in vitro and in vivo. CONCLUSION In our comparison study, the SP-immobilized hydrogel shows the highest angiogenic activity and tissue regeneration among the test groups. This result suggests that nerve regeneration factors help angiogenesis in damaged tissues, which also highlights the importance of the neuro-angiogenic peptides as an element of tissue regeneration.
Collapse
Affiliation(s)
- Jaeyeon Lee
- Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Myeongjin Song
- Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Jongseong Kim
- Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
20
|
Noukeu LC, Wolf J, Yuan B, Banerjee S, Nguyen KT. Nanoparticles for Detection and Treatment of Peripheral Arterial Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800644. [PMID: 29952061 DOI: 10.1002/smll.201800644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Peripheral arterial disease (PAD) is defined as a slow, progressive disorder of the lower extremity arterial vessels characterized by chronic narrowing that often results in occlusion and is associated with loss of functional capacity. Although the PAD occurrence rate is increasing in the elderly population, outcomes with current treatment strategies are suboptimal. Hence, there is an urgent need to develop new technologies that overcome limitations of traditional modalities for PAD detection and therapy. In this Review, the application of nanotechnology as a tool that bridges the gap in PAD diagnosis and therapy is in focus. Several materials including synthetic, natural, biodegradable, and biocompatible materials are used to develop nanoparticles for PAD diagnostic and/or therapeutic applications. Moreover, various recent research approaches are being explored to diagnose PAD through multimodality imaging with different nanoplatforms. Further efforts include targeted delivery of various therapeutic agents using nanostructures as carriers to treat PAD. Last, but not least, despite being a fairly new field, researchers are exploring the use of nanotheranostics for PAD detection and therapy.
Collapse
Affiliation(s)
- Linda C Noukeu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern, Dallas, TX, 75235, USA
| | - Joseph Wolf
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern, Dallas, TX, 75235, USA
| | - Baohong Yuan
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern, Dallas, TX, 75235, USA
| | - Subhash Banerjee
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern, Dallas, TX, 75235, USA
| |
Collapse
|
21
|
Hannon PR, Duffy DM, Rosewell KL, Brännström M, Akin JW, Curry TE. Ovulatory Induction of SCG2 in Human, Nonhuman Primate, and Rodent Granulosa Cells Stimulates Ovarian Angiogenesis. Endocrinology 2018; 159:2447-2458. [PMID: 29648638 PMCID: PMC6287591 DOI: 10.1210/en.2018-00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
The luteinizing hormone (LH) surge is essential for ovulation, but the intrafollicular factors induced by LH that mediate ovulatory processes (e.g., angiogenesis) are poorly understood, especially in women. The role of secretogranin II (SCG2) and its cleaved bioactive peptide, secretoneurin (SN), were investigated as potential mediators of ovulation by testing the hypothesis that SCG2/SN is induced in granulosa cells by human chorionic gonadotropin (hCG), via a downstream LH receptor signaling mechanism, and stimulates ovarian angiogenesis. Humans, nonhuman primates, and rodents were treated with hCG in vivo resulting in a significant increase in the messenger RNA and protein levels of SCG2 in granulosa cells collected early during the periovulatory period and just prior to ovulation (humans: 12 to 34 hours; monkeys: 12 to 36 hours; rodents: 4 to 12 hours post-hCG). This induction by hCG was recapitulated in an in vitro culture system utilizing granulosa-lutein cells from in vitro fertilization patients. Using this system, inhibition of downstream LH receptor signaling pathways revealed that the initial induction of SCG2 is regulated, in part, by epidermal growth factor receptor signaling. Further, human ovarian microvascular endothelial cells were treated with SN (1 to 100 ng/mL) and subjected to angiogenesis assays. SN significantly increased endothelial cell migration and new sprout formation, suggesting induction of ovarian angiogenesis. These results establish that SCG2 is increased in granulosa cells across species during the periovulatory period and that SN may mediate ovulatory angiogenesis in the human ovary. These findings provide insight into the regulation of human ovulation and fertility.
Collapse
Affiliation(s)
- Patrick R Hannon
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington,
Kentucky
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk,
Virginia
| | - Katherine L Rosewell
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington,
Kentucky
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of
Gothenburg, Gothenburg, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington,
Kentucky
- Correspondence: Thomas E. Curry, Jr., PhD, Department of Obstetrics and Gynecology, University of
Kentucky, 800 Rose Street, Room C351, Lexington, Kentucky 40536. E-mail:
| |
Collapse
|