1
|
Lin Y, Dervisevic M, Yoh HZ, Guo K, Voelcker NH. Tailoring Design of Microneedles for Drug Delivery and Biosensing. Mol Pharm 2025; 22:678-707. [PMID: 39813711 DOI: 10.1021/acs.molpharmaceut.4c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microneedles (MNs) are emerging as versatile tools for both therapeutic drug delivery and diagnostic monitoring. Unlike hypodermic needles, MNs achieve these applications with minimal or no pain and customizable designs, making them suitable for personalized medicine. Understanding the key design parameters and the challenges during contact with biofluids is crucial to optimizing their use across applications. This review summarizes the current fabrication techniques and design considerations tailored to meet the distinct requirements for drug delivery and biosensing applications. We further underscore the current state of theranostic MNs that integrate drug delivery and biosensing and propose future directions for advancing MNs toward clinical use.
Collapse
Affiliation(s)
- Yuexi Lin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Muamer Dervisevic
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Hao Zhe Yoh
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Keying Guo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Faculty of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
2
|
Nguyen HX, Kipping T, Banga AK. Enhancement of Transdermal Drug Delivery: Integrating Microneedles with Biodegradable Microparticles. Mol Pharm 2025; 22:984-1009. [PMID: 39823349 DOI: 10.1021/acs.molpharmaceut.4c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This investigation aimed to enhance transdermal methotrexate delivery through human skin by employing Dr. Pen microneedles and poly(d,l-lactide-co-glycolide) acid microparticles formulated from eight polymer grades (Expansorb DLG 95-4A, DLG 75-5A, DLG 50-2A, DLG 50-5A, DLG 50-8A, DLG 50-6P, DLG 50-7P, and DLL 10-15A). A comprehensive characterization of the microparticles was performed, encompassing various parameters such as size, charge, morphology, microencapsulation efficiency, yield, release kinetics, and chemical composition. The efficacy of microneedles in disrupting skin integrity was demonstrated by scanning electron microscopy, dye binding, histological examination, confocal laser microscopy, and pore size analysis. Microneedle-mediated skin microporation led to a substantial reduction in skin electrical resistance and a concomitant increase in transepidermal water loss. In vitro permeation experiments using human skin delivered microparticles into microporated skin and demonstrated a considerable difference in methotrexate delivery among the polymer groups. Microneedle treatment significantly amplified cumulative drug delivery, steady-state flux, diffusion coefficient, permeability coefficient, and drug concentration within skin layers while concurrently diminishing lag time (p < 0.05). Furthermore, a robust correlation was established between microparticle properties (cumulative release, release rate, encapsulation efficiency) and drug deposition in the skin. In conclusion, the synergistic combination of Dr. Pen microneedles and PLGA microparticles facilitated enhanced and regulated transdermal methotrexate delivery.
Collapse
Affiliation(s)
- Hiep X Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| | - Thomas Kipping
- MilliporeSigma, a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ajay K Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States
| |
Collapse
|
3
|
Paris JL, Vora LK, Pérez-Moreno AM, Martín-Astorga MDC, Naser YA, Anjani QK, Cañas JA, Torres MJ, Mayorga C, Donnelly RF. Dissolving microneedle array patches containing mesoporous silica nanoparticles of different pore sizes as a tunable sustained release platform. Int J Pharm 2025; 669:125064. [PMID: 39662856 PMCID: PMC11757158 DOI: 10.1016/j.ijpharm.2024.125064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Dissolving microneedle array patches (DMAP) enable efficient and painless delivery of therapeutic molecules across the stratum corneum and into the upper layers of the skin. Furthermore, this delivery strategy can be combined with the sustained release of nanoparticles to enhance the therapeutic potential in a wide variety of pathological scenarios. Among the different types of nanoparticles that can be included in microneedle formulations, mesoporous silica nanoparticles (MSN) of tunable pore sizes constitute a promising tool as drug delivery systems for cargos of a wide range of molecular weights. In this work, a new preparation method was developed to produce DMAP containing ca. 2.3 mg of MSN of different pore sizes located mainly in the microneedle tips. The successful insertion of these DMAPs was confirmed in vitro (using Parafilm), ex vivo (using excised neonatal porcine skin) and in vivo (in the back of mice). The dissolution of the microneedles and deposition of the nanoparticles inside the skin were also confirmed both ex vivo and in vivo using fluorescent nanoparticles (with an intradermal deposition of 20.9 ± 7.26 % of the MSN in each DMAP in neonatal porcine skin). Finally, the in vivo release of the cargo from nanoparticles deposited inside mouse skin after microneedle insertion was confirmed through in vivo fluorescence measurements.
Collapse
Affiliation(s)
- Juan L Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Ana M Pérez-Moreno
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain; Universidad de Málaga, Málaga, Spain
| | - María Del Carmen Martín-Astorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain; Universidad de Málaga, Málaga, Spain
| | - Yara A Naser
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - José Antonio Cañas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - María José Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain; Universidad de Málaga, Málaga, Spain; Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain; Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK.
| |
Collapse
|
4
|
Chakraborty C, Bhattacharya M, Lee SS. Current Status of Microneedle Array Technology for Therapeutic Delivery: From Bench to Clinic. Mol Biotechnol 2024; 66:3415-3437. [PMID: 37987985 DOI: 10.1007/s12033-023-00961-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
In recent years, microneedle (MN) patches have emerged as an alternative technology for transdermal delivery of various drugs, therapeutics proteins, and vaccines. Therefore, there is an urgent need to understand the status of MN-based therapeutics. The article aims to illustrate the current status of microneedle array technology for therapeutic delivery through a comprehensive review. However, the PubMed search was performed to understand the MN's therapeutics delivery status. At the same time, the search shows the number no of publications on MN is increasing (63). The search was performed with the keywords "Coated microneedle," "Hollow microneedle," "Dissolvable microneedle," and "Hydrogel microneedle," which also shows increasing trend. Similarly, the article highlighted the application of different microneedle arrays for treating different diseases. The article also illustrated the current status of different phases of MN-based therapeutics clinical trials. It discusses the delivery of different therapeutic molecules, such as drug molecule delivery, using microneedle array technology. The approach mainly discusses the delivery of different therapeutic molecules. The leading pharmaceutical companies that produce the microneedle array for therapeutic purposes have also been discussed. Finally, we discussed the limitations and future prospects of this technology.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, 756020, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, Republic of Korea
| |
Collapse
|
5
|
Koenitz L, Crean A, Vucen S. Pharmacokinetic differences between subcutaneous injection and intradermal microneedle delivery of protein therapeutics. Eur J Pharm Biopharm 2024; 204:114517. [PMID: 39349073 DOI: 10.1016/j.ejpb.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Protein therapeutics are essential in the treatment of various diseases, but most of them require parenteral administration. Since intravenous and subcutaneous injections are associated with discomfort and pain, other routes have been investigated including intradermal microneedle delivery. Microneedles are shorter than hypodermic needles and therefore minimize contact with pain receptors in deeper skin layers. But the differences in anatomical and physiological characteristics of dermis and subcutis can potentially result in varying protein penetration through the skin, absorption, and metabolism. This review summarizes pharmacokinetic studies that compare the administration of protein therapeutics by subcutaneous injections and different types of microneedles intradermally including hollow, dissolvable, coated, and hydrogel-forming microneedles. Across animal and human studies, hollow microneedle delivery resulted in quicker and higher peak plasma levels of proteins and comparable bioavailability to subcutaneous injections potentially due to the extensive network of lymphatic and blood vessels in the dermis. In case of dissolvable and coated microneedles, drug release kinetics depend on component materials. The dissolution of polymer excipients can slow the release and permeation of protein therapeutics at the administration site and thereby delay absorption. The understanding of drug penetration through different skin layers, its absorption into blood capillaries or lymphatics, and dermal metabolism remains limited. Additionally, the effects of these processes on the differences in pharmacokinetic profiles of proteins following intradermal microneedle administration are not well understood. Greater insights are required for the development of the next generation of intradermal microneedle biotherapeutics.
Collapse
Affiliation(s)
- Laura Koenitz
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland.
| | - Abina Crean
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| | - Sonja Vucen
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
6
|
Wang G, Zhai Z, Wang W, Xia X, Guo H, Yue X, Wang X, Zhu B, Huang Z, Pan X, Huang Y, Wu C, Zhang X. Tailored Borneol-Modified Lipid Nanoparticles Nasal Spray for Enhanced Nose-to-Brain Delivery to Central Nervous System Diseases. ACS NANO 2024; 18:23684-23701. [PMID: 39158142 DOI: 10.1021/acsnano.4c08279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The nanodrug delivery system-based nasal spray (NDDS-NS) can bypass the blood-brain barrier and deliver drugs directly to the brain, offering unparalleled advantages in the treatment of central nervous system (CNS) diseases. However, the current design of NNDS-NS is excessively focused on mucosal absorption while neglecting the impact of nasal deposition on nose-to-brain drug delivery, resulting in an unsatisfactory nose-to-brain delivery efficiency. In this study, the effect of the dispersion medium viscosity on nasal drug deposition and nose-to-brain delivery in NDDS-NS was elucidated. The optimized formulation F5 (39.36 mPa·s) demonstrated significantly higher olfactory deposition fraction (ODF) of 23.58%, and a strong correlation between ODF and intracerebral drug delivery (R2 = 0.7755) was observed. Building upon this understanding, a borneol-modified lipid nanoparticle nasal spray (BLNP-NS) that combined both nasal deposition and mucosal absorption was designed for efficient nose-to-brain delivery. BLNP-NS exhibited an accelerated onset of action and enhanced brain targeting efficiency, which could be attributed to borneol modification facilitating the opening of tight junction channels. Furthermore, BLNP-NS showed superiority in a chronic migraine rat model. It not only provided rapid relief of migraine symptoms but also reversed neuroinflammation-induced hyperalgesia. The results revealed that borneol modification could induce the polarization of microglia, regulate the neuroinflammatory microenvironment, and repair the neuronal damage caused by neuroinflammation. This study highlights the impact of dispersion medium viscosity on the nose-to-brain delivery process of NDDS-NS and serves as a bridge between the formulation development and clinical transformation of NDDS-NS for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| | - Zizhao Zhai
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, P. R. China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| | - Xiao Xia
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, P. R. China
| | - Haihua Guo
- Guangdong Province Key Laboratory of Utilization and Protection for Resource of Food and Medicinal Plant in North Region, Shaoguan University, Shaoguan 512005, Guangdong, P. R. China
| | - Xiao Yue
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, P. R. China
| | - Xiaoyuan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| | - Bing Zhu
- Respirent Pharmaceuticals, Co., Ltd., Chongqing 400714, P. R. China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, P. R. China
- Institute of Advanced Drug Delivery Systems, Jinan University, Guangzhou 510006, Guangdong, P. R. China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, P. R. China
- Institute of Advanced Drug Delivery Systems, Jinan University, Guangzhou 510006, Guangdong, P. R. China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, P. R. China
- Institute of Advanced Drug Delivery Systems, Jinan University, Guangzhou 510006, Guangdong, P. R. China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, P. R. China
- Institute of Advanced Drug Delivery Systems, Jinan University, Guangzhou 510006, Guangdong, P. R. China
| |
Collapse
|
7
|
Tan S, Wang Y, Wei X, Xiao X, Gao L. Microneedle-mediated drug delivery for neurological diseases. Int J Pharm 2024; 661:124400. [PMID: 38950662 DOI: 10.1016/j.ijpharm.2024.124400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Neurological disorders, including brain injury, brain tumors, and neurodegenerative diseases, rank as the second leading cause of death worldwide. Exploring effective new treatments for neurological disorders has long been a hot research issue in clinical practice. Recently, microneedles (MNs) have attracted much attention due to their designation as a "painless and non-invasive" novel transdermal delivery method, characterized by their biocompatibility and sustainability. The advantages of MNs open an avenue for potential therapeutic interventions targeting neurological disorders. This review presents a concise overview of progress in the field of MNs, with highlights on the application in the treatment of neurological disorders. Notably, trends in the development of MNs and future challenges are also discussed.
Collapse
Affiliation(s)
- Shuna Tan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yitian Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xuan Wei
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xiao Xiao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
8
|
Kuang Y, Xue F, Dai Z, Zhu Y, Liu Q, Chen H. Anti-inflammatory PEGylated bilirubin microneedle patch for diabetes treatment. APPLIED MATERIALS TODAY 2024; 39:102295. [DOI: 10.1016/j.apmt.2024.102295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Sun B, Zhang T, Chen H, Gao W, Zhou J, Chen Y, Ding W, Yin X, Ren J, Hua C, Lin X. Microneedle delivery system with rapid dissolution and sustained release of bleomycin for the treatment of hemangiomas. J Nanobiotechnology 2024; 22:372. [PMID: 38918811 PMCID: PMC11201781 DOI: 10.1186/s12951-024-02557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Hemangioma of infancy is the most common vascular tumor during infancy and childhood. Despite the proven efficacy of propranolol treatment, certain patients still encounter resistance or face recurrence. The need for frequent daily medication also poses challenges to patient adherence. Bleomycin (BLM) has demonstrated effectiveness against vascular anomalies, yet its use is limited by dose-related complications. Addressing this, this study proposes a novel approach for treating hemangiomas using BLM-loaded hyaluronic acid (HA)-based microneedle (MN) patches. BLM is encapsulated during the synthesis of polylactic acid (PLA) microspheres (MPs). The successful preparation of PLA MPs and MN patches is confirmed through scanning electron microscopy (SEM) images. The HA microneedles dissolve rapidly upon skin insertion, releasing BLM@PLA MPs. These MPs gradually degrade within 28 days, providing a sustained release of BLM. Comprehensive safety assessments, including cell viability, hemolysis ratio, and intradermal reactions in rabbits, validate the safety of MN patches. The BLM@PLA-MNs exhibit an effective inhibitory efficiency against hemangioma formation in a murine hemangioma model. Of significant importance, RNA-seq analysis reveals that BLM@PLA-MNs exert their inhibitory effect on hemangiomas by regulating the P53 pathway. In summary, BLM@PLA-MNs emerge as a promising clinical candidate for the effective treatment of hemangiomas.
Collapse
Affiliation(s)
- Bin Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tikai Zhang
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Hongrui Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wei Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jingwei Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuxi Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wang Ding
- Department of Orthopaedic Surgery, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai, 201100, China
| | - Xiaofan Yin
- Department of Orthopaedic Surgery, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai, 201100, China
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
| | - Chen Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
10
|
Nguyen HX, Kipping T, Banga AK. Polymeric Microneedles Enhance Transdermal Delivery of Therapeutics. Pharmaceutics 2024; 16:845. [PMID: 39065542 PMCID: PMC11280287 DOI: 10.3390/pharmaceutics16070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
This research presents the efficacy of polymeric microneedles in improving the transdermal permeation of methotrexate across human skin. These microneedles were fabricated from PLGA Expansorb® 50-2A and 50-8A and subjected to comprehensive characterization via scanning electron microscopy, Fourier-transform infrared spectroscopy, and mechanical analysis. We developed and assessed a methotrexate hydrogel for physicochemical and rheological properties. Dye binding, histological examinations, and assessments of skin integrity demonstrated the effective microporation of the skin by PLGA microneedles. We measured the dimensions of microchannels in the skin using scanning electron microscopy, pore uniformity analysis, and confocal microscopy. The skin permeation and disposition of methotrexate were researched in vitro. PLGA 50-8A microneedles appeared significantly longer, sharper, and more mechanically uniform than PLGA 50-2A needles. PLGA 50-8A needles generated substantially more microchannels, as well as deeper, larger, and more uniform channels in the skin than PLGA 50-2A needles. Microneedle insertion substantially reduced skin electrical resistance, accompanied by an elevation in transepidermal water loss values. PLGA 50-8A microneedle treatment provided a significantly higher cumulative delivery, flux, diffusion coefficient, permeability coefficient, and predicted steady-state plasma concentration; however, there was a shorter lag time than for PLGA 50-2A needles, base-treated, and untreated groups (p < 0.05). Conclusively, skin microporation using polymeric microneedles significantly improved the transdermal delivery of methotrexate.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam;
| | - Thomas Kipping
- MilliporeSigma, a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ajay K. Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
11
|
Gao Z, Liu Y, Lin W, Lian H, Meng Z. A microneedle patch realizes weight loss through photothermal induction of fat browning. Biomater Sci 2024; 12:1726-1737. [PMID: 38357975 DOI: 10.1039/d3bm01767b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
As a globally prevalent disease, obesity leads to many chronic diseases, so it is important to develop safe and effective treatments with fewer side effects and lasting weight loss. In this study, we developed a biodegradable hyaluronic acid microneedle patch loaded with polydopamine nanoparticles and mirabegron, which directly acted on subcutaneous white adipose tissue, and then induced browning of white adipose tissue through mild photothermal therapy. The approach showed excellent browning-promoting ability and biocompatibility. It is noteworthy that the weight of untreated mice increased by 9%, while the weight of obese mice decreased by nearly 19% after photothermal treatment. In addition, when mirabegron was used in combination with photothermal therapy, the weight loss of obese mice was more significant, with a weight loss of about 22%. This microneedle patch exhibited attractive potential for body slimming.
Collapse
Affiliation(s)
- Zichun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yixuan Liu
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenjiao Lin
- Qingmao Technology (Shenzhen) Co., Ltd., China
| | - He Lian
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhaoxu Meng
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
12
|
Wei S, Lv H, Yang D, Zhang L, Li X, Ning Y, Tang Y, Wu X, Han J. Drug-related side effects and adverse reactions in the treatment of migraine: a bibliometric and visual analysis. Front Neurol 2024; 15:1342111. [PMID: 38379705 PMCID: PMC10878131 DOI: 10.3389/fneur.2024.1342111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Background Migraine imposes a substantial global burden, impacting patients and society. Pharmacotherapy, as a primary treatment, entails specific adverse reactions. Emphasizing these reactions is pivotal for improving treatment strategies and enhancing patients' well-being. Thus, we conducted a comprehensive bibliometric and visual analysis of relevant literature. Methodology We conducted a comprehensive search on the Science Citation Index Expanded within the Web of Science, restricting the literature for analysis based on criteria such as document type, publication date, and language. Subsequently, we utilized various analytical tools, including VOSviewer, Scimago Graphica, the R package 'bibliometrix', CiteSpace, and Excel programs, for a meticulous examination and systematic organization of data concerning journals, authors, countries/regions, institutions, keywords, and references. Results By August 31, 2023, the literature was distributed across 379 journals worldwide, authored by 4,235 individuals from 1726 institutions. It featured 2,363 keywords and 38,412 references. 'HEADACHE' led in publication count, with 'SILBERSTEIN S' as the most prolific author. The United States ranked highest in publication volume, with 'UNIV COPENHAGEN' leading among institutions. Conclusion Our research findings indicate that researchers in the field continue to maintain a focus on the calcitonin gene-related peptide (CGRP) system and explore diverse mechanisms for drug development through the application of novel biotechnological approaches. Furthermore, it is imperative to enhance the assessment of clinical trial outcomes, consistently monitor the efficacy and safety of prominent drugs such as Erenumab and Fremanezumab. There is a need for further evaluation of acute and preventive treatments tailored to different populations and varying types of migraine.
Collapse
Affiliation(s)
- Shijie Wei
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Lv
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dianhui Yang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuhao Li
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yike Ning
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Tang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Wu
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Han
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Wei S, Lv H, Yang D, Zhang L, Li X, Ning Y, Tang Y, Wu X, Han J. Drug-related side effects and adverse reactions in the treatment of migraine: a bibliometric and visual analysis. Front Neurol 2024; 15:1342111. [PMID: 38379705 DOI: 10.3389/fneur.2024.1342111if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/19/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Migraine imposes a substantial global burden, impacting patients and society. Pharmacotherapy, as a primary treatment, entails specific adverse reactions. Emphasizing these reactions is pivotal for improving treatment strategies and enhancing patients' well-being. Thus, we conducted a comprehensive bibliometric and visual analysis of relevant literature. METHODOLOGY We conducted a comprehensive search on the Science Citation Index Expanded within the Web of Science, restricting the literature for analysis based on criteria such as document type, publication date, and language. Subsequently, we utilized various analytical tools, including VOSviewer, Scimago Graphica, the R package 'bibliometrix', CiteSpace, and Excel programs, for a meticulous examination and systematic organization of data concerning journals, authors, countries/regions, institutions, keywords, and references. RESULTS By August 31, 2023, the literature was distributed across 379 journals worldwide, authored by 4,235 individuals from 1726 institutions. It featured 2,363 keywords and 38,412 references. 'HEADACHE' led in publication count, with 'SILBERSTEIN S' as the most prolific author. The United States ranked highest in publication volume, with 'UNIV COPENHAGEN' leading among institutions. CONCLUSION Our research findings indicate that researchers in the field continue to maintain a focus on the calcitonin gene-related peptide (CGRP) system and explore diverse mechanisms for drug development through the application of novel biotechnological approaches. Furthermore, it is imperative to enhance the assessment of clinical trial outcomes, consistently monitor the efficacy and safety of prominent drugs such as Erenumab and Fremanezumab. There is a need for further evaluation of acute and preventive treatments tailored to different populations and varying types of migraine.
Collapse
Affiliation(s)
- Shijie Wei
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Lv
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dianhui Yang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuhao Li
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yike Ning
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Tang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Wu
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Han
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Smith E, Lau WM, Abdelghany TM, Vukajlovic D, Novakovic K, Ng KW. Vac-and-fill: A micromoulding technique for fabricating microneedle arrays with vacuum-activated, hands-free mould-filling. Int J Pharm 2024; 650:123706. [PMID: 38103704 DOI: 10.1016/j.ijpharm.2023.123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
We report a simple and reproducible micromoulding technique that dynamically fills microneedle moulds with a liquid formulation, using a plastic syringe, triggered by the application of vacuum ('vac-and-fill'). As pressure around the syringe drops, air inside the syringe pushes the plunger to uncover an opening in the syringe and fill the microneedle mould without manual intervention, therefore removing inter-operator variability. The technique was validated by monitoring the plunger movement and pressure at which the mould would be filled over 10 vacuum cycles for various liquid formulation of varying viscosity (water, glycerol, 20 % polyvinylpyrrolidone (PVP) solution or 40 % PVP solution). Additionally, the impact of re-using the disposable syringes on plunger movement, and thus the fill pressure, was investigated using a 20 % PVP solution. The fill pressure was consistent at 300-450 mbar. It produced well-formed and mechanically robust PVP, poly(methylvinylether/maleic anhydride) and hydroxyethylcellulose microneedles from liquid formulations. This simple and inexpensive technique of micromoulding eliminated the air entrapment and bubble formation, which prevent reproducible microneedle formation, in the resultant microneedle arrays. It provides a cost-effective alternative to the conventional micromoulding techniques, where the application of vacuum ('fill-and-vac') or centrifugation following mould-filling may be unsuitable, ineffective or have poor reproducibility.
Collapse
Affiliation(s)
- Emma Smith
- School of Pharmacy, Newcastle University, King George VI Building, Newcastle upon Tyne NE1 7RU, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Wing Man Lau
- School of Pharmacy, Newcastle University, King George VI Building, Newcastle upon Tyne NE1 7RU, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Tarek M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt; Institute of Education in Healthcare and Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresthill, Aberdeen AB25 2ZD, United Kingdom; School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE24HH, United Kingdom
| | - Djurdja Vukajlovic
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Katarina Novakovic
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Keng Wooi Ng
- School of Pharmacy, Newcastle University, King George VI Building, Newcastle upon Tyne NE1 7RU, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
15
|
Ando D, Ozawa A, Sakaue M, Yamamoto E, Miyazaki T, Sato Y, Koide T, Izutsu KI. Fabrication and Characterization of Dissolving Microneedles for Transdermal Drug Delivery of Apomorphine Hydrochloride in Parkinson's Disease. Pharm Res 2024; 41:153-163. [PMID: 37923948 DOI: 10.1007/s11095-023-03621-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE We fabricated and characterized polyvinyl alcohol (PVA)-based dissolving microneedles (MNs) for transdermal drug delivery of apomorphine hydrochloride (APO), which is used in treating the wearing-off phenomenon observed in Parkinson's disease. METHODS We fabricated MN arrays with 11 × 11 needles of four different lengths (300, 600, 900, and 1200 μm) by micromolding. The APO-loaded dissolving MNs were characterized in terms of their physicochemical and functional properties. We also compared the pharmacokinetic parameters after drug administration using MNs with those after subcutaneous injection by analyzing the blood concentration of APO in rats. RESULTS PVA-based dissolving MNs longer than 600 μm could effectively puncture the stratum corneum of the rat skin with penetrability of approximately one-third of the needle length. Although APO is known to have chemical stability issues in aqueous solutions, the drug content in APO-loaded MNs was retained at 25°C for 12 weeks. The concentration of APO after the administration of APO-loaded 600-μm MNs that dissolved completely in skin within 60 min was 81%. The absorption of 200-μg APO delivered by MNs showed a Tmax of 20 min, Cmax of 76 ng/mL, and AUC0-120 min of 2,829 ng・min/mL, compared with a Tmax of 5 min, Cmax of 126 ng/mL, and AUC0-120 min of 3,224 ng・min/mL for subcutaneous injection. The bioavailability in terms of AUC0-120 min of APO delivered by MNs was 88%. CONCLUSION APO-loaded dissolving MNs can deliver APO via skin into the systemic circulation with rapid absorption and high bioavailability.
Collapse
Affiliation(s)
- Daisuke Ando
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Aisa Ozawa
- Laboratory of Anatomy II, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Motoharu Sakaue
- Laboratory of Anatomy II, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Eiichi Yamamoto
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
- Division of Medical Devices, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Tamaki Miyazaki
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
- Department of Pharmaceutical Sciences, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| |
Collapse
|
16
|
Garhwal A, Kendya P, Soni S, Kori S, Soni V, Kashaw SK. Drug Delivery System Approaches for Rheumatoid Arthritis Treatment: A Review. Mini Rev Med Chem 2024; 24:704-720. [PMID: 37711105 DOI: 10.2174/1389557523666230913105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 09/16/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that has traditionally been treated using a variety of pharmacological compounds. However, the effectiveness of these treatments is often limited due to challenges associated with their administration. Oral and parenteral routes of drug delivery are often restricted due to issues such as low bioavailability, rapid metabolism, poor absorption, first-pass effect, and severe side effects. In recent years, nanocarrier-based delivery methods have emerged as a promising alternative for overcoming these challenges. Nanocarriers, including nanoparticles, dendrimers, micelles, nanoemulsions, and stimuli-sensitive carriers, possess unique properties that enable efficient drug delivery and targeted therapy. Using nanocarriers makes it possible to circumvent traditional administration routes' limitations. One of the key advantages of nanocarrier- based delivery is the ability to overcome resistance or intolerance to traditional antirheumatic therapies. Moreover, nanocarriers offer improved drug stability, controlled release kinetics, and enhanced solubility, optimizing the therapeutic effect. They can also protect the encapsulated drug, prolonging its circulation time and facilitating sustained release at the target site. This targeted delivery approach ensures a higher concentration of the therapeutic agent at the site of inflammation, leading to improved therapeutic outcomes. This article explores potential developments in nanotherapeutic regimens for RA while providing a comprehensive summary of current approaches based on novel drug delivery systems. In conclusion, nanocarrier-based drug delivery systems have emerged as a promising solution for improving the treatment of rheumatoid arthritis. Further advancements in nanotechnology hold promise for enhancing the efficacy and safety of RA therapies, offering new hope for patients suffering from this debilitating disease.
Collapse
Affiliation(s)
- Anushka Garhwal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Priyadarshi Kendya
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sakshi Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
17
|
Kenchegowda M, Hani U, Al Fatease A, Haider N, Ramesh KVRNS, Talath S, Gangadharappa HV, Kiran Raj G, Padmanabha SH, Osmani RAM. Tiny titans- unravelling the potential of polysaccharides and proteins based dissolving microneedles in drug delivery and theranostics: A comprehensive review. Int J Biol Macromol 2023; 253:127172. [PMID: 37793514 DOI: 10.1016/j.ijbiomac.2023.127172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
In recent years, microneedles (MNs) have emerged as a promising alternative to traditional drug delivery systems in transdermal drug delivery. The use of MNs has demonstrated significant potential in improving patient acceptance and convenience while avoiding the invasiveness of traditional injections. Dissolving, solid, hollow, coated, and hydrogel microneedles are among the various types studied for drug delivery. Dissolving microneedles (DMNs), in particular, have gained attention for their safety, painlessness, patient convenience, and high delivery efficiency. This comprehensive review primarily focuses on different types of microneedles, fabrication methods, and materials used in fabrication of DMNs such as hyaluronic acid, chitosan, alginate, gelatin, collagen, silk fibroin, albumin, cellulose and starch, to list a few. The review also provides an exhaustive discussion on the applications of DMNs, including the delivery of vaccines, cosmetic agents, contraceptives, hormone and genes, and other therapeutic applications like for treating cancer, skin diseases, and diabetes, among others, are covered in this review. Additionally, this review highlights some of the DMN systems that are presently undergoing clinical trials. Finally, the review discusses current advances and trends in DMNs, as well as future prospective directions for this ground-breaking technology in drug delivery.
Collapse
Affiliation(s)
- Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Hosahalli V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - G Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Sharath Honganoor Padmanabha
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
18
|
Baker-Sediako RD, Richter B, Blaicher M, Thiel M, Hermatschweiler M. Industrial perspectives for personalized microneedles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:857-864. [PMID: 37615014 PMCID: PMC10442529 DOI: 10.3762/bjnano.14.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
Microneedles and, subsequently, microneedle arrays are emerging miniaturized medical devices for painless transdermal drug delivery. New and improved additive manufacturing methods enable novel microneedle designs to be realized for preclinical and clinical trial assessments. However, current literature reviews suggest that industrial manufacturers and researchers have focused their efforts on one-size-fits-all designs for transdermal drug delivery, regardless of patient demographic and injection site. In this perspective article, we briefly review current microneedle designs, microfabrication methods, and industrialization strategies. We also provide an outlook where microneedles may become personalized according to a patient's demographic in order to increase drug delivery efficiency and reduce healing times for patient-centric care.
Collapse
Affiliation(s)
| | - Benjamin Richter
- Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias Blaicher
- Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Thiel
- Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Hermatschweiler
- Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
19
|
Dali P, Shende P. Use of 3D applicator for intranasal microneedle arrays for combinational therapy in migraine. Int J Pharm 2023; 635:122714. [PMID: 36773727 DOI: 10.1016/j.ijpharm.2023.122714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
The objective of current research work was to fabricate dissolving microneedles combining ergotamine and caffeine for synergistic action using controlled release kinetics with better permeability. The method of preparation for microneedles utilized multiple emulsion (w/o/w) approach by solvent-diffusion-evaporation process wherein the nano-emulsion of ergotamine and caffeine prepared using PLGA polymer and PVA as a stabilizer. The PLGA nanospheres were further loaded in polymer matrix of PVA and PVP K-90 and the final mixture poured in sterile silicon molds of microneedles. The PLGA nanospheres exhibited particle size in narrow range of 280.34 ± 6.61 to 416.0 ± 9.67 nm and good colloidal stability with negative zeta potential ranging between -19.08 ± 8.77 to -22.49 ± 8.09 mV. Higher entrapment efficiency (86.21 ± 4.52 %) for ergotamine and controlled release pattern (49.79 ± 4.16 % at 48 h) displayed by PLGA nanospheres. Similarly, the dissolving microneedles loaded with PLGA nanospheres showed controlled release pattern for in-vitro and ex-vivo drug release studies with 52.01 ± 5.71 % for ERM and 87.04 ± 2.44 % for CFE at 48 h whereas ex-vivo release studies illustrated similar results of 51.08 ± 3.56 % for ERM and 69.2 ± 2.16 % for CFE. The anti-hyperalgesic capability of microneedles was verified by the acetic acid writhing test, and the non-toxicity of synthetic microneedles was confirmed by histopathology and serotonin toxicity studies. The novel 3D applicator effectively delivered the microneedle array into the nasal cavity for systemic action. Therefore, the fabricated rapid dissolving microneedles combining two drugs ergotamine and caffeine with use of 3D applicator proved to be a coherent technique for intranasal delivery of ergotamine in the treatment of migraine.
Collapse
Affiliation(s)
- Preeti Dali
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Vile Parle (W), Mumbai, India.
| |
Collapse
|
20
|
Microneedle arrays for cutaneous and transcutaneous drug delivery, disease diagnosis, and cosmetic aid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
21
|
Kang D, Ge Q, Natabou MA, Xu W, Liu X, Xu B, Bao X, Kalia YN, Chen Y. Bolus delivery of palonosetron through skin by tip-loaded dissolving microneedles with short-duration iontophoresis: A potential strategy to rapidly relieve emesis associated with chemotherapy. Int J Pharm 2022; 628:122294. [DOI: 10.1016/j.ijpharm.2022.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022]
|
22
|
Wang J, Zeng J, Liu Z, Zhou Q, Wang X, Zhao F, Zhang Y, Wang J, Liu M, Du R. Promising Strategies for Transdermal Delivery of Arthritis Drugs: Microneedle Systems. Pharmaceutics 2022; 14:pharmaceutics14081736. [PMID: 36015362 PMCID: PMC9416616 DOI: 10.3390/pharmaceutics14081736] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Arthritis is a general term for various types of inflammatory joint diseases. The most common clinical conditions are mainly represented by rheumatoid arthritis and osteoarthritis, which affect more than 4% of people worldwide and seriously limit their mobility. Arthritis medication generally requires long-term application, while conventional administrations by oral delivery or injections may cause gastrointestinal side effects and are inconvenient for patients during long-term application. Emerging microneedle (MN) technology in recent years has created new avenues of transdermal delivery for arthritis drugs due to its advantages of painless skin perforation and efficient local delivery. This review summarizes various types of arthritis and current therapeutic agents. The current development of MNs in the delivery of arthritis drugs is highlighted, demonstrating their capabilities in achieving different drug release profiles through different self-enhancement methods or the incorporation of nanocarriers. Furthermore, the challenges of translating MNs from laboratory studies to the clinical practice and the marketplace are discussed. This promising technology provides a new approach to the current drug delivery paradigm in treating arthritis in transdermal delivery.
Collapse
Affiliation(s)
- Jitong Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia Zeng
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai 200032, China
| | - Zhidan Liu
- Department of Rehabilitation, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Qin Zhou
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fan Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiamiao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (M.L.); (R.D.)
| | - Ruofei Du
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (M.L.); (R.D.)
| |
Collapse
|
23
|
Sartawi Z, Blackshields C, Faisal W. Dissolving microneedles: Applications and growing therapeutic potential. J Control Release 2022; 348:186-205. [PMID: 35662577 DOI: 10.1016/j.jconrel.2022.05.045] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Microneedles are a rapidly developing method for the transdermal delivery of therapeutic compounds. All types of microneedles, whether solid, hollow, coated, or dissolving function by penetrating the stratum corneum layer of the skin producing a microchannel through which therapeutic agents may be delivered. To date, coated and hollow microneedles have been the most successful, despite suffering from issues such as poor drug loading capabilities and blocked pores. Dissolving microneedles, on the other hand, have superior drug loading as well as other positive attributes that make it an ideal delivery system, including simple methods of fabrication and disposal, and abundantly available materials. Indeed, dissolvable microneedles can even be fabricated entirely from the therapeutic agent itself thus eliminating the requirement for additional excipients. This focused review presents the recent developments and trends of dissolving microneedles as well as potential future directions. The advantages, and disadvantages of dissolving microneedles as well as fabrication materials and methods are discussed. The potential applications of dissolving microneedles as a drug delivery system in different therapeutic areas in both research literature and clinical trials is highlighted. Applications including the delivery of cosmetics, vaccine delivery, diagnosis and monitoring, cancer, pain and inflammation, diabetes, hair and scalp disorders and inflammatory skin diseases are presented. The current trends observed in the microneedle landscape with particular emphasis on contemporary clinical trials and commercial successes as well as barriers impeding microneedle development and commercialisation are also discussed.
Collapse
Affiliation(s)
- Ziad Sartawi
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Waleed Faisal
- School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
24
|
Kim MJ, Seong KY, Kim DS, Jeong JS, Kim SY, Lee S, Yang SY, An BS. Minoxidil-loaded hyaluronic acid dissolving microneedles to alleviate hair loss in an alopecia animal model. Acta Biomater 2022; 143:189-202. [PMID: 35202857 DOI: 10.1016/j.actbio.2022.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Alopecia is defined as hair loss in a part of the head due to various causes, such as drugs, stress and autoimmune disorders. Various therapeutic agents have been suggested depending on the cause of the condition and patient sex, and age. Minoxidil (MXD) is commonly used topically to treat alopecia, but its low absorption rate limits widespread use. To overcome the low absorption, we suggest microneedles (MNs) as controlled drug delivery systems that release MXD. We used hyaluronic acid (HA) to construct MN, as it is biocompatible and safe. We examined the effect of HA on the hair dermal papilla (HDP) cells that control the development of hair follicles. HA enhanced proliferation, migration, and aggregation of HDP cell by increasing cell-cell adhesion and decreasing cell substratum. These effects were mediated by the cluster of differentiation (CD)-44 and phosphorylation of serine‑threonine kinase (Akt). In chemotherapy-induced alopecia mice, topical application of HA tended to decrease chemotherapy-induced hair loss. Although the amount of MXD administered by HA-MNs was 10% of topical treatment, the MXD-containing HA-MNs (MXD-HA-MNs) showed better effects on the growth of hair than topical application of MXD. In summary, our results demonstrated that HA reduces hair loss in alopecia mice, and that delivery of MXD and HA using MXD-HA-MNs maximizes therapeutic effects and minimize the side effects of MXD for the treatment of alopecia. STATEMENT OF SIGNIFICANCE: (1) Significance, This work reports a new approach for treatment of alopecia using a dissolving microneedle (MN) prepared with hyaluronic acid (HA). The HA provided a better environment for cellular functions in the hair dermal papilla cells. The HA-MNs containing minoxidil (MXD) exhibited a significant reduction of hair loss, although amount of MXD contained in them was only 10% of topically applied MXD., (2) Scientific impact, This is the first report demonstrating the direct anti-alopecia effects of HA administrated in a transdermal route and the feasibility of novel therapeutics using MXD-containing HA-MNs. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and alopecia.
Collapse
|
25
|
Hu W, Bian Q, Zhou Y, Gao J. Pain management with transdermal drug administration: A review. Int J Pharm 2022; 618:121696. [PMID: 35337906 DOI: 10.1016/j.ijpharm.2022.121696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 12/31/2022]
Abstract
Pain management is an urgent issue to solve with complex mechanisms. Localized acute pain requires rapid and accurate delivery of drugs with less distribution in the blood circulation while chronic pain requires controlled release of drugs with long drug retention time. The transdermal route, a promising way with high patient compliance was known for painless delivery, long drug retention time, stable blood concentration, easily controlled dosage and release rate as well as the fewer side effects. This review presents transdermal route for pain management according to the different sites of action which drugs aim to reach, and illustrates different analgesic mechanisms, dosage forms, transdermal enhancements and clinical applications. In addition, the review concludes the difference of pain types and presents the future aims of pain management, thereby providing a reference for researches focusing on percutaneous analgesia.
Collapse
Affiliation(s)
- Weitong Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Zhou
- Zhejiang Huanling Pharmaceutical Technology Company, Jinhua 321000, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jiangsu Engineering Research Center for New-type External and Transdermal Preparations , Changzhou 213149, China; Jinhua Institute of Zhejiang University, Jinhua 321002, China.
| |
Collapse
|
26
|
|
27
|
Bhadale RS, Londhe VY. Inclusion complexed iloperidone loaded dissolving microneedles: Characterization, in-vitro study, and dermatopharmacokinetics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Men Z, Lu X, He T, Wu M, Su T, Shen T. Microneedle patch-assisted transdermal administration of recombinant hirudin for the treatment of thrombotic diseases. Int J Pharm 2022; 612:121332. [PMID: 34902453 DOI: 10.1016/j.ijpharm.2021.121332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
The painless microneedle patch (MNP), widely explored for transdermal drug delivery of macromolecules, can overcome the limitations of traditional administrations of protein and polypeptide anticoagulant drugs. We constructed a recombinant hirudin-loaded microneedle patch, suitable for patients with thrombotic diseases requiring long-term preventive medication. The recombinant hirudin-loaded dissoluble microneedle patch (RHDMNP) was created using a mold casting technique and polyvinylpyrrolidone and polyvinyl alcohol were used as the matrix material with a 1:1.2 ratio. We prepared bilayer RHDMNPs with pyramidal appearance and 0.37 N/needle strength. The intradermal dissolution height of the microneedle reached approximately 78.67% of the total height, and 68.12% of the drug was delivered into the skin. The 12-hour cumulative permeation of the MNP was 21.69 ± 3.90 μg/cm2. The MNP showed a Tmax of 1.5 h, Cmax of 144 ± 71 ng/mL, and area under curve (AUC) of 495 ± 66 ng/mL·min compared to Tmax of 0.5 h, Cmax of 249 ± 89 ng/mL, and AUC of 944 ± 65 ng/mL·min for the subcutaneous injection group. Both in vivo and in vitro experiments showed that the RHDMNP exerted effective anticoagulant effects, prevented the incidence of acute pulmonary embolism, and revealed the potential for venous thrombosis prevention.
Collapse
Affiliation(s)
- Zening Men
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaotong Lu
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Ting He
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Mengfang Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, Shanghai, China
| | - Tong Su
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Teng Shen
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Sully RE, Moore CJ, Garelick H, Loizidou E, Podoleanu AG, Gubala V. Nanomedicines and microneedles: a guide to their analysis and application. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3326-3347. [PMID: 34313266 DOI: 10.1039/d1ay00954k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fast-advancing progress in the research of nanomedicine and microneedle applications in the past two decades has suggested that the combination of the two concepts could help to overcome some of the challenges we are facing in healthcare. They include poor patient compliance with medication and the lack of appropriate administration forms that enable the optimal dose to reach the target site. Nanoparticles as drug vesicles can protect their cargo and deliver it to the target site, while evading the body's defence mechanisms. Unfortunately, despite intense research on nanomedicine in the past 20 years, we still haven't answered some crucial questions, e.g. about their colloidal stability in solution and their optimal formulation, which makes the translation of this exciting technology from the lab bench to a viable product difficult. Dissolvable microneedles could be an effective way to maintain and stabilise nano-sized formulations, whilst enhancing the ability of nanoparticles to penetrate the stratum corneum barrier. Both concepts have been individually investigated fairly well and many analytical techniques for tracking the fate of nanomaterials with their precious cargo, both in vitro and in vivo, have been established. Yet, to the best of our knowledge, a comprehensive overview of the analytical tools encompassing the concepts of microneedles and nanoparticles with specific and successful examples is missing. In this review, we have attempted to briefly analyse the challenges associated with nanomedicine itself, but crucially we provide an easy-to-navigate scheme of methods, suitable for characterisation and imaging the physico-chemical properties of the material matrix.
Collapse
Affiliation(s)
- Rachel E Sully
- Medway School of Pharmacy, Universities of Greenwich and Kent, Anson Building, Central Avenue, Chatham, ME4 4TB, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Yadav PR, Munni MN, Campbell L, Mostofa G, Dobson L, Shittu M, Pattanayek SK, Uddin MJ, Das DB. Translation of Polymeric Microneedles for Treatment of Human Diseases: Recent Trends, Progress, and Challenges. Pharmaceutics 2021; 13:1132. [PMID: 34452093 PMCID: PMC8401662 DOI: 10.3390/pharmaceutics13081132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The ongoing search for biodegradable and biocompatible microneedles (MNs) that are strong enough to penetrate skin barriers, easy to prepare, and can be translated for clinical use continues. As such, this review paper is focused upon discussing the key points (e.g., choice polymeric MNs) for the translation of MNs from laboratory to clinical practice. The review reveals that polymers are most appropriately used for dissolvable and swellable MNs due to their wide range of tunable properties and that natural polymers are an ideal material choice as they structurally mimic native cellular environments. It has also been concluded that natural and synthetic polymer combinations are useful as polymers usually lack mechanical strength, stability, or other desired properties for the fabrication and insertion of MNs. This review evaluates fabrication methods and materials choice, disease and health conditions, clinical challenges, and the future of MNs in public healthcare services, focusing on literature from the last decade.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India;
| | | | - Lauryn Campbell
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Golam Mostofa
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
| | - Lewis Dobson
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Morayo Shittu
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | | | - Md. Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| |
Collapse
|
31
|
Mdanda S, Ubanako P, Kondiah PPD, Kumar P, Choonara YE. Recent Advances in Microneedle Platforms for Transdermal Drug Delivery Technologies. Polymers (Basel) 2021; 13:polym13152405. [PMID: 34372008 PMCID: PMC8348894 DOI: 10.3390/polym13152405] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
In many clinical applications, the transdermal route is used as an alternative approach to avoid the significant limitations associated with oral drug delivery. There is a long history for drug delivery through the skin utilizing transdermal microneedle arrays. Microneedles are reported to be versatile and very efficient devices. This technique has spurred both industrial and scientific curiosity, due to its outstanding characteristics such as painless penetration, affordability, excellent medicinal efficiency, and relative protection. Microneedles possess outstanding properties for diverse biomedical uses such as the delivery of very large substances with ionic and hydrophilic physicochemical properties. Importantly, microneedles are applicable in numerous biomedical fields such as therapy, diagnosis, and vaccine administration. Microneedles are emerging tools that have shown profound potential for biomedical applications. Transdermal microneedle technologies are likely to become a preferred route of therapeutic substances administration in the future since they are effective, painless, and affordable. In this review, we summarize recent advances in microneedles for therapeutic applications. We explore their constituent materials and fabrication methods that improve the delivery of critical therapeutic substances through the skin. We further discuss the practicality of advanced microneedles used as drug delivery tools.
Collapse
|
32
|
Zhang L, Guo R, Wang S, Yang X, Ling G, Zhang P. Fabrication, evaluation and applications of dissolving microneedles. Int J Pharm 2021; 604:120749. [PMID: 34051319 DOI: 10.1016/j.ijpharm.2021.120749] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023]
Abstract
In recent years, transdermal preparations have emerged as one of the most promising modes of administration. In particular, dissolving microneedles have attracted extensive attention because of their painlessness, safety, high delivery efficiency and easily operation for patients. This article mainly reviews the preparation methods, the types of matrix polymer materials, the content of dissolving microneedles performance testing, and the applications of dissolving microneedles. It is expected to lay a solid knowledge foundation for the in-depth study of the dissolving microneedles.
Collapse
Affiliation(s)
- Lijing Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Siqi Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaotong Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
33
|
Microneedle for transdermal drug delivery: current trends and fabrication. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021; 51:503-517. [PMID: 33686358 PMCID: PMC7931162 DOI: 10.1007/s40005-021-00512-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Background Transdermal delivery has the advantage of bypassing the first-pass effect and allowing sustained release of the drug. However, the drug delivery is limited owing to the barrier created by the stratum corneum. Microneedles are a transdermal drug delivery system that is painless, less invasive, and easy to self-administer, with a high drug bioavailability. Area covered The dose, delivery rate, and efficacy of the drugs can be controlled by the microneedle design and drug formulations. This review introduces the types of microneedles and their design, materials used for fabrication, and manufacturing methods. Additionally, recent biological applications and clinical trials are introduced. Expert opinion With advancements made in formulation technologies, the drug-loading capability of microneedles can be improved. 3D printing and digital technology contribute to the improvement of microneedle fabrication technology. However, regulations regarding the manufacture of microneedle products should be established as soon as possible to promote commercialization.
Collapse
|
34
|
Lim SH, Kathuria H, Amir MHB, Zhang X, Duong HT, Ho PCL, Kang L. High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide. J Control Release 2021; 329:907-918. [DOI: 10.1016/j.jconrel.2020.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
|
35
|
Gupta J, Gupta R, Vanshita. Microneedle Technology: An Insight into Recent Advancements and Future Trends in Drug and Vaccine Delivery. Assay Drug Dev Technol 2020; 19:97-114. [PMID: 33297823 DOI: 10.1089/adt.2020.1022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, microneedle (MN) induced microporation multifunctional approaches to enhance the delivery of drugs through the skin. MN technology included micron-sized needles to create microchannels into the Stratum corneum of skin, the most significant protective layer. Delivery of drugs and vaccines through the transdermal route is an alternative route for hypodermic and oral. It overcomes the problems associated with gastrointestinal along with drug deterioration. It is affordable, noninvasive, painless, simple, and self-administered techniques that provide prolonged release of drugs to enhance patient compliance. The MN delivery focused on biopharmaceuticals like proteins or peptides. The novel concepts have drawn interest in using these techniques in tandem with other enhancement approaches. This review article discussed the latest advancements in MN technology. It emphasized types of MNs, methodology, mechanisms, strategies for delivery of several drugs and vaccines, and significant challenges in the marketing of biopharmaceuticals. Furthermore, relevant U.S. patents and clinical trials based on MNs are also accentuated. Therefore, MN techniques will play a pivotal role in promoting clinical applications and innovative research for scientists and researchers working in the pharmaceutical field.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | - Vanshita
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
36
|
|
37
|
Jamaledin R, Makvandi P, Yiu CKY, Agarwal T, Vecchione R, Sun W, Maiti TK, Tay FR, Netti PA. Engineered Microneedle Patches for Controlled Release of Active Compounds: Recent Advances in Release Profile Tuning. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000171] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering University of Naples Federico II Naples 80125 Italy
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| | - Pooyan Makvandi
- Center for Micro‐BioRobotics Istituto Italiano di Tecnologia (IIT) Viale R. Piaggio 34, 56025 Pontedera Pisa Italy
| | - Cynthia K. Y. Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Prince Philip Dental Hospital The University of Hong Kong Hong Kong SAR China
| | - Tarun Agarwal
- Department of Biotechnology Indian Institute of Technology Kharagpur 721302 India
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| | - Wujin Sun
- Department of Bioengineering Center for Minimally Invasive Therapeutics University of California, Los Angeles Los Angeles CA 90095 USA
| | - Tapas Kumar Maiti
- Department of Biotechnology Indian Institute of Technology Kharagpur 721302 India
| | | | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| |
Collapse
|
38
|
Villarruel Mendoza LA, Scilletta NA, Bellino MG, Desimone MF, Catalano PN. Recent Advances in Micro-Electro-Mechanical Devices for Controlled Drug Release Applications. Front Bioeng Biotechnol 2020; 8:827. [PMID: 32850709 PMCID: PMC7405504 DOI: 10.3389/fbioe.2020.00827] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 01/27/2023] Open
Abstract
In recent years, controlled release of drugs has posed numerous challenges with the aim of optimizing parameters such as the release of the suitable quantity of drugs in the right site at the right time with the least invasiveness and the greatest possible automation. Some of the factors that challenge conventional drug release include long-term treatments, narrow therapeutic windows, complex dosing schedules, combined therapies, individual dosing regimens, and labile active substance administration. In this sense, the emergence of micro-devices that combine mechanical and electrical components, so called micro-electro-mechanical systems (MEMS) can offer solutions to these drawbacks. These devices can be fabricated using biocompatible materials, with great uniformity and reproducibility, similar to integrated circuits. They can be aseptically manufactured and hermetically sealed, while having mobile components that enable physical or analytical functions together with electrical components. In this review we present recent advances in the generation of MEMS drug delivery devices, in which various micro and nanometric structures such as contacts, connections, channels, reservoirs, pumps, valves, needles, and/or membranes can be included in their design and manufacture. Implantable single and multiple reservoir-based and transdermal-based MEMS devices are discussed in terms of fundamental mechanisms, fabrication, performance, and drug release applications.
Collapse
Affiliation(s)
| | - Natalia Antonela Scilletta
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Martín, Argentina
| | | | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Paolo Nicolas Catalano
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Martín, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
39
|
Singh P, Zeng X, Chen X, Yang Y, Chen Y, Cui S, Carrier A, Oakes K, Luan T, Zhang X. Quantitation of polymeric-microneedle-delivered HA15 in tissues using liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2020; 185:113230. [PMID: 32169789 DOI: 10.1016/j.jpba.2020.113230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/15/2022]
Abstract
A rapid and sensitive liquid chromatography-tandem mass spectrometric method was developed and validated for the determination of HA15, an emerging anticancer compound targeting GSPA5/BIP delivered by dissolvable polymeric microneedles. The linear range of quantification for HA15 was 2.5-1000 ng/ml in plasma and tissue homogenate and the limit of detection and lower limit of quantification are 1 and 2.5 ng/ml, respectively. The inter- and intra-day accuracy and precision were within the acceptable range. HA15 was extracted from mouse plasma and organs using protein precipitation and using dabrafenib as an internal standard and the drug was stable under relevant analytical conditions. The method was used to analyze drug loading, dissolution in vitro, and release ex vivo from dissolvable polymeric microneedles and used to compare these materials to subcutaneous injection for the tissue distribution in tumor bearing nude mice.
Collapse
Affiliation(s)
- Parbeen Singh
- State Key Laboratory Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Xiliu Zeng
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Xiaowu Chen
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, 518110, China
| | - Yikun Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yongli Chen
- State Key Laboratory Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China.
| | - Shufen Cui
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Andrew Carrier
- Department of Chemistry, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Tiangang Luan
- State Key Laboratory Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xu Zhang
- Department of Chemistry, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada.
| |
Collapse
|
40
|
Mao J, Wang H, Xie Y, Fu Y, Li Y, Liu P, Du H, Zhu J, Dong L, Hussain M, Li Y, Zhang L, Zhu J, Tao J. Transdermal delivery of rapamycin with poor water-solubility by dissolving polymeric microneedles for anti-angiogenesis. J Mater Chem B 2020; 8:928-934. [PMID: 31912081 DOI: 10.1039/c9tb00912d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Angiogenesis plays an important role in the occurrence and development of skin tumors and vascular anomalies (VAs). Many drugs have been adopted for the inhibition of angiogenesis, among which rapamycin (RAPA) possesses good application prospects. However, the clinical potential of RAPA for VAs is limited by its poor solubility, low bioavailability, and high cytotoxicity. To extend its application prospect for VAs treatment, in this study, we develop RAPA-loaded dissolving polymeric microneedles (RAPA DMNs) made of polyvinylpyrrolidone (PVP) due to its excellent solubilizing ability. RAPA DMNs are shown to have sufficient mechanical strength to overcome the skin barrier of the stratum corneum and could deliver RAPA to a depth of 200 μm. The microneedle shafts completely dissolve and 80% of the drug could be released within 10 min after insertion ex vivo. The DMNs-penetrated mice skin could repair itself within 4 h after the application of RAPA DMNs. RAPA DMNs also show good anti-angiogenic effect by inhibiting the growth of human umbilical vein endothelial cells (HUVECs) and decreasing the secretion of vascular endothelial growth factor (VEGF). Therefore, RAPA DMNs promisingly provide a safe and efficient approach for VAs treatment.
Collapse
Affiliation(s)
- Jinzhu Mao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Hua Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Ying Xie
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Yangxue Fu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Yuce Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Pei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Hongyao Du
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Liyun Dong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Mubashir Hussain
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Yan Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| |
Collapse
|
41
|
Lee KJ, Jeong SS, Roh DH, Kim DY, Choi HK, Lee EH. A practical guide to the development of microneedle systems – In clinical trials or on the market. Int J Pharm 2020; 573:118778. [DOI: 10.1016/j.ijpharm.2019.118778] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
|
42
|
Singh P, Carrier A, Chen Y, Lin S, Wang J, Cui S, Zhang X. Polymeric microneedles for controlled transdermal drug delivery. J Control Release 2019; 315:97-113. [DOI: 10.1016/j.jconrel.2019.10.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 01/03/2023]
|
43
|
Silberstein SD, Shrewsbury SB, Hoekman J. Dihydroergotamine (DHE) - Then and Now: A Narrative Review. Headache 2019; 60:40-57. [PMID: 31737909 PMCID: PMC7003832 DOI: 10.1111/head.13700] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To provide a narrative review of clinical development programs for non-oral, non-injectable formulations of dihydroergotamine (DHE) for the treatment of migraine. BACKGROUND Dihydroergotamine was one of the first "synthetic drugs" developed in the 20th century for treating migraine. It is effective and recommended for acute migraine treatment. Since oral DHE is extensively metabolized, it must be given by a non-oral route. Intravenous DHE requires healthcare personnel to administer, subcutaneous/intramuscular injection is challenging to self-administer, and the approved nasal spray formulation exhibits low bioavailability and high variability that limits its efficacy. Currently there are several attempts underway to develop non-oral, non-injected formulations of DHE. METHOD A systematic search of MEDLINE/PubMed and ClinicalTrials.gov databases, then narrative review of identified reports, focusing on those published in the last 10 years. RESULTS Of 1881 references to DHE from a MEDLINE/PubMed search, 164 were from the last 10 years and were the focus of this review. Further cross reference was made to ClinicalTrials.gov for 19 clinical studies, of which some results have not yet been published, or are studies that are currently underway. Three nasal DHE products are in clinical development, reawakening interest in this route of delivery for migraine. Other routes of DHE administration have been, or are being, explored. CONCLUSION There is renewed appreciation for DHE and the need for non-oral, non-injected delivery is now being addressed.
Collapse
|
44
|
Yan L, Alba M, Tabassum N, Voelcker NH. Micro‐ and Nanosystems for Advanced Transdermal Delivery. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Li Yan
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
| | - Nazia Tabassum
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- The University of Central Punjab Johar Town Lahore 54000 Pakistan
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria 3168 Australia
| |
Collapse
|
45
|
Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B 2019; 9:469-483. [PMID: 31193810 PMCID: PMC6543086 DOI: 10.1016/j.apsb.2019.03.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/29/2019] [Accepted: 02/16/2019] [Indexed: 12/22/2022] Open
Abstract
The microneedle (MN), a highly efficient and versatile device, has attracted extensive scientific and industrial interests in the past decades due to prominent properties including painless penetration, low cost, excellent therapeutic efficacy, and relative safety. The robust microneedle enabling transdermal delivery has a paramount potential to create advanced functional devices with superior nature for biomedical applications. In this review, a great effort has been made to summarize the advance of microneedles including their materials and latest fabrication method, such as three-dimensional printing (3DP). Importantly, a variety of representative biomedical applications of microneedles such as disease treatment, immunobiological administration, disease diagnosis and cosmetic field, are highlighted in detail. At last, conclusions and future perspectives for development of advanced microneedles in biomedical fields have been discussed systematically. Taken together, as an emerging tool, microneedles have showed profound promise for biomedical applications.
Collapse
|
46
|
Bhatnagar S, Bankar NG, Kulkarni MV, Venuganti VVK. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model. Int J Pharm 2019; 556:263-275. [DOI: 10.1016/j.ijpharm.2018.12.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023]
|
47
|
Xie Y, Wang H, Mao J, Li Y, Hussain M, Zhu J, Li Y, Zhang L, Tao J, Zhu J. Enhanced in vitro efficacy for inhibiting hypertrophic scar by bleomycin-loaded dissolving hyaluronic acid microneedles. J Mater Chem B 2019; 7:6604-6611. [DOI: 10.1039/c9tb01449g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hypertrophic scarring is a widespread skin disorder that affects a patient's confidence and quality of life.
Collapse
|
48
|
Nguyen HX, Banga AK. Electrically and Ultrasonically Enhanced Transdermal Delivery of Methotrexate. Pharmaceutics 2018; 10:pharmaceutics10030117. [PMID: 30081603 PMCID: PMC6161078 DOI: 10.3390/pharmaceutics10030117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022] Open
Abstract
In this study, we used sonophoresis and iontophoresis to enhance the in vitro delivery of methotrexate through human cadaver skin. Iontophoresis was applied for 60 min at a 0.4 mA/sq·cm current density, while low-frequency sonophoresis was applied at a 20 kHz frequency (2 min application, and 6.9 W/sq·cm intensity). The treated skin was characterized by dye binding, transepidermal water loss, skin electrical resistance, and skin temperature measurement. Both sonophoresis and iontophoresis resulted in a significant reduction in skin electrical resistance as well as a marked increase in transepidermal water loss value (p < 0.05). Furthermore, the ultrasonic waves resulted in a significant increase in skin temperature (p < 0.05). In permeation studies, the use of iontophoresis led to a significantly higher drug permeability than the untreated group (n = 4, p < 0.05). The skin became markedly more permeable to methotrexate after the treatment by sonophoresis than by iontophoresis (p < 0.01). A synergistic effect for the combined application of sonophoresis and iontophoresis was also observed. Drug distribution in the skin layers revealed a significantly higher level of methotrexate in the sonicated skin than that in iontophoresis and untreated groups. Iontophoresis and low-frequency sonophoresis were found to enhance the transdermal and intradermal delivery of methotrexate in vitro.
Collapse
Affiliation(s)
- Hiep X Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| | - Ajay K Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| |
Collapse
|
49
|
Farias C, Lyman R, Hemingway C, Chau H, Mahacek A, Bouzos E, Mobed-Miremadi M. Three-Dimensional (3D) Printed Microneedles for Microencapsulated Cell Extrusion. Bioengineering (Basel) 2018; 5:E59. [PMID: 30065227 PMCID: PMC6164407 DOI: 10.3390/bioengineering5030059] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
Cell-hydrogel based therapies offer great promise for wound healing. The specific aim of this study was to assess the viability of human hepatocellular carcinoma (HepG2) cells immobilized in atomized alginate capsules (3.5% (w/v) alginate, d = 225 µm ± 24.5 µm) post-extrusion through a three-dimensional (3D) printed methacrylate-based custom hollow microneedle assembly (circular array of 13 conical frusta) fabricated using stereolithography. With a jetting reliability of 80%, the solvent-sterilized device with a root mean square roughness of 158 nm at the extrusion nozzle tip (d = 325 μm) was operated at a flowrate of 12 mL/min. There was no significant difference between the viability of the sheared and control samples for extrusion times of 2 h (p = 0.14, α = 0.05) and 24 h (p = 0.5, α = 0.05) post-atomization. Factoring the increase in extrusion yield from 21.2% to 56.4% attributed to hydrogel bioerosion quantifiable by a loss in resilience from 5470 (J/m³) to 3250 (J/m³), there was no significant difference in percentage relative payload (p = 0.2628, α = 0.05) when extrusion occurred 24 h (12.2 ± 4.9%) when compared to 2 h (9.9 ± 2.8%) post-atomization. Results from this paper highlight the feasibility of encapsulated cell extrusion, specifically protection from shear, through a hollow microneedle assembly reported for the first time in literature.
Collapse
Affiliation(s)
- Chantell Farias
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Roman Lyman
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Cecilia Hemingway
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Huong Chau
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Anne Mahacek
- SCU Maker Lab, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Evangelia Bouzos
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Maryam Mobed-Miremadi
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| |
Collapse
|
50
|
Mini-Review: Assessing the Potential Impact of Microneedle Technologies on Home Healthcare Applications. MEDICINES 2018; 5:medicines5020050. [PMID: 29890643 PMCID: PMC6023334 DOI: 10.3390/medicines5020050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023]
Abstract
The increasing devolution of healthcare towards community care has meant that the management of many conditions is conducted within the home either by community nurses or by the patients themselves. The administration of medicines within home healthcare scenarios can however be problematic—especially when considering the delivery of medicines through injection. The possibility of needlestick injury (NSI) has become an ever-present hazard within healthcare settings, with a significant proportion of percutaneous injuries occurring during the handling and disposal of the needle. The emergence of transdermal microneedle systems, however, offers a potentially revolutionary advance and could dramatically improve safety—particularly within home healthcare where there are mounting concerns over the use and disposal of sharps. A mini-review of the advantages proffered by microneedle drug delivery technologies is presented and the potential impact on delivery of medicines within the home is critically appraised.
Collapse
|