1
|
d'Avanzo N, Paolino D, Barone A, Ciriolo L, Mancuso A, Christiano MC, Tolomeo AM, Celia C, Deng X, Fresta M. OX26-cojugated gangliosilated liposomes to improve the post-ischemic therapeutic effect of CDP-choline. Drug Deliv Transl Res 2024; 14:2771-2787. [PMID: 38478324 PMCID: PMC11384645 DOI: 10.1007/s13346-024-01556-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 09/10/2024]
Abstract
Cerebrovascular impairment represents one of the main causes of death worldwide with a mortality rate of 5.5 million per year. The disability of 50% of surviving patients has high social impacts and costs in long period treatment for national healthcare systems. For these reasons, the efficacious clinical treatment of patients, with brain ischemic stroke, remains a medical need. To this aim, a liposome nanomedicine, with monosialic ganglioside type 1 (GM1), OX26 (an anti-transferrin receptor antibody), and CDP-choline (a neurotrophic drug) (CDP-choline/OX26Lip) was prepared. CDP-choline/OX26Lip were prepared by a freeze and thaw method and then extruded through polycarbonate filters, to have narrow size distributed liposomes of ~80 nm. CDP-choline/OX26Lip were stable in human serum, they had suitable pharmacokinetic properties, and 30.0 ± 4.2% of the injected drug was still present in the blood stream 12 h after its systemic injection. The post-ischemic therapeutic effect of CDP-choline/OX26Lip is higher than CDP-choline/Lip, thus showing a significantly high survival rate of the re-perfused post-ischemic rats, i.e. 96% and 78% after 8 days. The treatment with CDP-choline/OX26Lip significantly decreased the peroxidation rate of ~5-times compared to CDP-choline/Lip; and the resulting conjugated dienes, that was 13.9 ± 1.1 mmol/mg proteins for CDP-choline/Lip and 3.1 ± 0.8 for CDP-choline/OX26Lip. OX26 increased the accumulation of GM1-liposomes in the brain tissues and thus the efficacious of CDP-choline. Therefore, this nanomedicine may represent a strategy for the reassessment of CDP-choline to treat post-ischemic events caused by brain stroke, and respond to a significant clinical need.
Collapse
Affiliation(s)
- Nicola d'Avanzo
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Antonella Barone
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Luigi Ciriolo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Maria Chiara Christiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Anna Maria Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, 35128, Padua, Italy
- Perdiatric Research Institute "Città della Speranza", Corso Stati Uniti, 4, 35127, Padua, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy.
- Lithuanian University of Health Sciences, Laboratory of Drug Targets Histopathology, Institute of Cardiology, A. Mickeviciaus g. 9, LT-44307, Kaunas, Lithuania.
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy.
| |
Collapse
|
2
|
Fu F, Crespy D, Landfester K, Jiang S. In situ characterization techniques of protein corona around nanomaterials. Chem Soc Rev 2024. [PMID: 39291461 DOI: 10.1039/d4cs00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nanoparticles (NPs) inevitably interact with proteins upon exposure to biological fluids, leading to the formation of an adsorption layer known as the "protein corona". This corona imparts NPs with a new biological identity, directly influencing their interactions with living systems and dictating their fates in vivo. Thus, gaining a comprehensive understanding of the dynamic interplay between NPs and proteins in biological fluids is crucial for predicting therapeutic effects and advancing the clinical translation of nanomedicines. Numerous methods have been established to decode the protein corona fingerprints. However, these methods primarily rely on prior isolation of NP-protein complex from the surrounding medium by centrifugation, resulting in the loss of outer-layer proteins that directly interact with the biological system and determine the in vivo fate of NPs. We discuss here separation techniques as well as in situ characterization methods tailored for comprehensively unraveling the inherent complexities of NP-protein interactions, highlighting the challenges of in situ protein corona characterization and its significance for nanomedicine development and clinical translation.
Collapse
Affiliation(s)
- Fangqin Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | | | - Shuai Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Xie L, Zhang Q, Zhu Q, Wang Y, Niu S, Zhang X, Huang Y, Li J, Liu X, Xue Z, Zhao X, Zheng Y. The Effect of Lipid Composition on the Liposomal Delivery of Camptothecin Developed by Active Click Loading. Mol Pharm 2024; 21:2327-2339. [PMID: 38576375 DOI: 10.1021/acs.molpharmaceut.3c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In the present study, we investigated the role of lipid composition of camptothecin (CPT)-loaded liposomes (CPT-Lips) to adjust their residence time, drug distribution, and therefore the toxicities and antitumor activity. The CPT was loaded into liposomes using a click drug loading method, which utilized liposomes preloaded with GSH and then exposed to CPT-maleimide. The method produced CPT-Lips with a high encapsulation efficiency (>95%) and sustained drug release. It is shown that the residence times of CPT-Lips in the body were highly dependent on lipid compositions with an order of non-PEGylated liposomes of unsaturated lipids < non-PEGylated liposomes of saturated lipids < PEGylated liposomes of saturated lipids. Interestingly, the fast clearance of CPT-Lips resulted in significantly decreased toxicities but did not cause a significant decrease in their in vivo antitumor activity. These results suggested that the lipid composition could effectively adjust the residence time of CPT-Lips in the body and further optimize their therapeutic index, which would guide the development of a liposomal formulation of CPT.
Collapse
Affiliation(s)
- Lei Xie
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610083, China
| | - Qian Zhang
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610083, China
| | - Qian Zhu
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610083, China
| | - Yang Wang
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610083, China
| | - Shuijiao Niu
- Shandong Institute for Food and Drug Control, Ji'nan 250101, China
| | - Xinyue Zhang
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610083, China
| | - Yuting Huang
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610083, China
| | - Jiayao Li
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610083, China
| | - Xiaoxue Liu
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610083, China
| | - Zhiyuan Xue
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610083, China
| | - Xia Zhao
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Clinical Medical College, Chengdu Medical College, Chengdu 610083, China
| | - Yaxin Zheng
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610083, China
| |
Collapse
|
4
|
Cong X, Tan H, Lv Y, Mao K, Xin Y, Wang J, Meng X, Guan M, Wang H, Yang YG, Sun T. Impacts of cationic lipid-DNA complexes on immune cells and hematopoietic cells in vivo. Biomater Sci 2024; 12:2381-2393. [PMID: 38500446 DOI: 10.1039/d4bm00148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The inability to systemic administration of nanoparticles, particularly cationic nanoparticles, has been a significant barrier to their clinical translation due to toxicity concerns. Understanding the in vivo behavior of cationic lipids is crucial, given their potential impact on critical biological components such as immune cells and hematopoietic stem cells (HSC). These cells are essential for maintaining the body's homeostasis, and their interaction with cationic lipids is a key factor in determining the safety and efficacy of these nanoparticles. In this study, we focused on the cytotoxic effects of cationic lipid/DNA complexes (CLN/DNA). Significantly, we observed that the most substantial cytotoxic effects, including a marked increase in numbers of long-term hematopoietic stem cells (LT-HSC), occurred 24 h post-CLN/DNA treatment in mice. Furthermore, we found that CLN/DNA-induced HSC expansion in bone marrow (BM) led to a notable decrease in the ability to reestablish blood cell production. Our study provides crucial insights into the interaction between cationic lipids and vital cellular components of the immune and hematopoietic systems.
Collapse
Affiliation(s)
- Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Huizhu Tan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Yue Lv
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Jialiang Wang
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Meng Guan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
| | - Haorui Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
5
|
He Z, Qu S, Shang L. Perspectives on Protein-Nanoparticle Interactions at the In Vivo Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7781-7790. [PMID: 38572817 DOI: 10.1021/acs.langmuir.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The distinct features of nanoparticles have provided a vast opportunity of developing new diagnosis and therapy strategies for miscellaneous diseases. Although a few nanomedicines are available in the market or in the translation stage, many important issues are still unsolved. When entering the body, nanomaterials will be quickly coated by proteins from their surroundings, forming a corona on their surface, the so-called protein corona. Studies have shown that the protein corona has many important biological implications, particularly at the in vivo level. For example, they can promote the immune system to rapidly clear these outer materials and prevent nanoparticles from playing their designed role in therapy. In this Perspective, the available techniques for characterizing protein-nanoparticle interactions are critically summarized. Effects of nanoparticle properties and environmental factors on protein corona formation, which can further regulate the in vivo fate of nanoparticles, are highlighted and discussed. Moreover, recent progress on the biomedical application of protein corona-engineered nanoparticles is introduced, and future directions for this important yet challenging research area are also briefly discussed.
Collapse
Affiliation(s)
- Zhenhua He
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 China
| | - Shaohua Qu
- School of Physics and Electronic Information, Yan'an University, Yan'an, Shannxi 716000, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072 China
| |
Collapse
|
6
|
Guo F, Luo S, Wang L, Wang M, Wu F, Wang Y, Jiao Y, Du Y, Yang Q, Yang X, Yang G. Protein corona, influence on drug delivery system and its improvement strategy: A review. Int J Biol Macromol 2024; 256:128513. [PMID: 38040159 DOI: 10.1016/j.ijbiomac.2023.128513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Nano drug delivery systems offer several benefits, including enhancing drug solubility, regulating drug release, prolonging drug circulation time, and minimized toxicity and side effects. However, upon entering the bloodstream, nanoparticles (NPs) encounter a complex biological environment and get absorbed by various biological components, primarily proteins, leading to the formation of a 'Protein Corona'. The formation of the protein corona is affected by the characteristics of NPs, the physiological environment, and experimental design, which in turn affects of the immunotoxicity, specific recognition, cell uptake, and drug release of NPs. To improve the abundance of a specific protein on NPs, researchers have explored pre-coating, modifying, or wrapping NPs with the cell membrane to reduce protein adsorption. This paper, we have reviewed studies of the protein corona in recent years, summarized the formation and detection methods of the protein corona, the effect of the protein corona composition on the fate of NPs, and the design of new drug delivery systems based on the optimization of protein corona to provide a reference for further study of the protein corona and a theoretical basis for the clinical transformation of NPs.
Collapse
Affiliation(s)
- Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuai Luo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengqi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fang Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujia Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunlong Jiao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinzhou Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyan Yang
- Zhejiang Provincial People's Hospital, Hangzhou 314408, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
Chen X, Ji S, Yan Y, Lin S, He L, Huang X, Chang L, Zheng D, Lu Y. Engineered Plant-Derived Nanovesicles Facilitate Tumor Therapy: Natural Bioactivity Plus Drug Controlled Release Platform. Int J Nanomedicine 2023; 18:4779-4804. [PMID: 37635909 PMCID: PMC10460188 DOI: 10.2147/ijn.s413831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are the second-most common disease in the world, killing people at an alarming rate. As issues with drug resistance, lack of targeting, and severe side effects are revealed, there is a growing demand for precision-targeted drug delivery systems. Plant-derived nanovesicles (PDNVs), which arecomposed of proteins, lipids, RNA, and metabolites, are widely distributed and readily accessible. The potential for anti-proliferative, pro-apoptotic, and drug-resistant-reversing effects on tumor cells, as well as the ability to alter the tumor microenvironment (TME) by modulating tumor-specific immune cells, make PDNVs promising anti-tumor therapeutics. With a lipid bilayer structure that allows drug loading and a transmembrane capacity readily endocytosed by cells, PDNVs are also expected to become a new drug delivery platform. Exogenous modifications of PDNVs enhance their circulating stability, tumor targeting ability, high cell endocytosis rate, and controlled-release capacity. In this review, we summarize PDNVs' natural antitumor activity, as well as engineered PDNVs as efficient precision-targeted drug delivery tools that enhance therapeutic effects. Additionally, we discuss critical considerations related to the issues raised in this area, which will encourage researchers to improve PDNVs as better anti-tumor therapeutics for clinic applications.
Collapse
Affiliation(s)
- Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Shuaiqi Ji
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Shuoqi Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Lianghang He
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Lin Chang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
8
|
Hardy E, Sarker H, Fernandez-Patron C. Could a Non-Cellular Molecular Interactome in the Blood Circulation Influence Pathogens' Infectivity? Cells 2023; 12:1699. [PMID: 37443732 PMCID: PMC10341357 DOI: 10.3390/cells12131699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
We advance the notion that much like artificial nanoparticles, relatively more complex biological entities with nanometric dimensions such as pathogens (viruses, bacteria, and other microorganisms) may also acquire a biomolecular corona upon entering the blood circulation of an organism. We view this biomolecular corona as a component of a much broader non-cellular blood interactome that can be highly specific to the organism, akin to components of the innate immune response to an invading pathogen. We review published supporting data and generalize these notions from artificial nanoparticles to viruses and bacteria. Characterization of the non-cellular blood interactome of an organism may help explain apparent differences in the susceptibility to pathogens among individuals. The non-cellular blood interactome is a candidate therapeutic target to treat infectious and non-infectious conditions.
Collapse
Affiliation(s)
- Eugenio Hardy
- Center of Molecular Immunology, P.O. Box 16040, Havana 11600, Cuba
| | - Hassan Sarker
- Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
9
|
Zhang W, Zhou H, Gong D, Wu H, Huang X, Miao Z, Peng H, Zha Z. AIPH-Encapsulated Thermo-Sensitive Liposomes for Synergistic Microwave Ablation and Oxygen-Independent Dynamic Therapy. Adv Healthc Mater 2023:e2202947. [PMID: 36829272 DOI: 10.1002/adhm.202202947] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/12/2023] [Indexed: 02/26/2023]
Abstract
Microwave ablation (MWA) is a novel treatment modality that can lead to the death of tumor cells by heating the ions and polar molecules in the tissue through high-speed vibration and friction. However, the single hyperthermia is not sufficient to completely inhibit tumor growth. Herein, a thermodynamic cancer-therapeutic modality has been fabricated which could be able to overcome hypoxia's limitations in the tumor microenvironment. Using thermo-sensitive liposomes (TSLs) and oxygen-independent radical generators (2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride [AIPH]), a nano-drug delivery system denoted as ATSL is developed for efficient sequential cancer treatment. Under the microwave field, the temperature rise of local tissue could not only lead to the damage of tumor cells but also induce the release of AIPH encapsulated in ATSL to produce free radicals, eliciting tumor cell death. In addition, the ATSL developed here would avoid the side effects caused by the uncontrolled diffusion of AIPH to normal tissues. The ATSLs have shown excellent therapeutic effects both in vitro and in vivo, suggesting its highly promising potential for clinic.
Collapse
Affiliation(s)
- Wenjie Zhang
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hu Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Deyan Gong
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haitao Wu
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiang Huang
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhaohua Miao
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hu Peng
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhengbao Zha
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
10
|
Hosokawa M, Ito S, Noda K, Kono Y, Ogawara KI. Preparation and Evaluation of Paclitaxel-Loaded PEGylated Niosomes Composed of Sorbitan Esters. Biol Pharm Bull 2023; 46:1479-1483. [PMID: 37779050 DOI: 10.1248/bpb.b23-00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Niosomes are non-ionic surfactant (NIS)-based bilayer vesicles and, like liposomes, have great potential as drug-delivery systems. Our previous study revealed that polyethylene glycol (PEG) niosomes using different sorbitan ester (Span) surfactants (sorbitan monoester, Span 20, 40, 60, 80; sorbitan triester, Span 65) distributed within tumors similarly to PEG liposomes. The aim of this study was to encapsulate efficiently an anti-cancer drug, paclitaxel (PTX) into Span PEG niosomes, and evaluate PTX release profiles and anti-tumor efficacy of PTX-loaded Span PEG niosomes. Niosome sizes ranged between 100-150 nm, and the PTX encapsulation efficiency was more than 50%. All niosomes examined, in the presence of serum, yielded sustained PTX-release profiles. PTX release at 24 and 48 h from Span 80 PEG niosomes was significantly the highest among the other Span PEG niosomes examined. In C26 tumor-bearing mice, PTX-loaded Span 40 PEG niosomes (the lowest PTX release in vitro) suppressed tumor growth while PTX-loaded Span 80 PEG niosomes (the highest PTX release in vitro) did not. Thus, we succeeded in the control of PTX release from Span PEG niosomes by modifying the component of niosomes, and it influenced the effects of drugs loaded into niosomes. This demonstrates that the excellent NIS physicochemical properties of Spans make them an ideal candidate for anti-cancer drug-carrier niosomes.
Collapse
Affiliation(s)
- Mika Hosokawa
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University
| | - Shiori Ito
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University
| | - Kaito Noda
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University
| | - Yusuke Kono
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University
| | | |
Collapse
|
11
|
Yang K, Tran K, Salvati A. Tuning Liposome Stability in Biological Environments and Intracellular Drug Release Kinetics. Biomolecules 2022; 13:biom13010059. [PMID: 36671444 PMCID: PMC9855369 DOI: 10.3390/biom13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Ideal drug carriers should be stable in biological environments but eventually release their drug load once inside the targeted cells. These two aspects can be in contrast with each other, thus they need to be carefully tuned in order to achieve the desired properties for specific applications. Quantifying drug release profiles in biological environments or inside cells can be highly challenging, and standard methods to determine drug release kinetics in many cases cannot be applied to complex biological environments or cells. Within this context, the present work combined kinetic studies by flow cytometry with aging experiments in biological fluids and size-exclusion chromatography to determine drug release profiles in biological environments and inside cells. To this purpose, anionic and zwitterionic liposomes were used as model nanomedicines. By changing lipid composition, liposome stability in serum and intracellular release kinetics could be tuned and formulations with very different properties could be obtained. The methods presented can be used to characterize liposome release profiles in complex biological media, as well as inside cells. In this way, liposome composition can be tuned in order to achieve formulations with optimal balance between stability and release kinetics for specific applications.
Collapse
|
12
|
Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14102195. [PMID: 36297630 PMCID: PMC9608678 DOI: 10.3390/pharmaceutics14102195] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Liposomes are well-known nanoparticles with a non-toxic nature and the ability to incorporate both hydrophilic and hydrophobic drugs simultaneously. As modern drug delivery formulations are produced by emerging technologies, numerous advantages of liposomal drug delivery systems over conventional liposomes or free drug treatment of cancer have been reported. Recently, liposome nanocarriers have exhibited high drug loading capacity, drug protection, improved bioavailability, enhanced intercellular delivery, and better therapeutic effect because of resounding success in targeting delivery. The site targeting of smart responsive liposomes, achieved through changes in their physicochemical and morphological properties, allows for the controlled release of active compounds under certain endogenous or exogenous stimuli. In that way, the multifunctional and stimuli-responsive nanocarriers for the drug delivery of cancer therapeutics enhance the efficacy of treatment prevention and fighting over metastases, while limiting the systemic side effects on healthy tissues and organs. Since liposomes constitute promising nanocarriers for site-targeted and controlled anticancer drug release, this review focuses on the recent progress of smart liposome achievements for anticancer drug delivery applications.
Collapse
|
13
|
Wang YF, Zhou Y, Sun J, Wang X, Jia Y, Ge K, Yan Y, Dawson KA, Guo S, Zhang J, Liang XJ. The Yin and Yang of the protein corona on the delivery journey of nanoparticles. NANO RESEARCH 2022; 16:715-734. [PMID: 36156906 PMCID: PMC9483491 DOI: 10.1007/s12274-022-4849-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/12/2023]
Abstract
Nanoparticles-based drug delivery systems have attracted significant attention in biomedical fields because they can deliver loaded cargoes to the target site in a controlled manner. However, tremendous challenges must still be overcome to reach the expected targeting and therapeutic efficacy in vivo. These challenges mainly arise because the interaction between nanoparticles and biological systems is complex and dynamic and is influenced by the physicochemical properties of the nanoparticles and the heterogeneity of biological systems. Importantly, once the nanoparticles are injected into the blood, a protein corona will inevitably form on the surface. The protein corona creates a new biological identity which plays a vital role in mediating the bio-nano interaction and determining the ultimate results. Thus, it is essential to understand how the protein corona affects the delivery journey of nanoparticles in vivo and what we can do to exploit the protein corona for better delivery efficiency. In this review, we first summarize the fundamental impact of the protein corona on the delivery journey of nanoparticles. Next, we emphasize the strategies that have been developed for tailoring and exploiting the protein corona to improve the transportation behavior of nanoparticles in vivo. Finally, we highlight what we need to do as a next step towards better understanding and exploitation of the protein corona. We hope these insights into the "Yin and Yang" effect of the protein corona will have profound implications for understanding the role of the protein corona in a wide range of nanoparticles.
Collapse
Affiliation(s)
- Yi-Feng Wang
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260 China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - JiaBei Sun
- China National Institute of Food and Drug Control, Beijing, 100061 China
| | - Xiaotong Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| | - Yaru Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| | - Yan Yan
- Centre for BioNano Interactions, School of Chemistry, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, D04V1W8 Ireland
| | - Kenneth A. Dawson
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260 China
- Centre for BioNano Interactions, School of Chemistry, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, D04V1W8 Ireland
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| | - Xing-Jie Liang
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260 China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| |
Collapse
|
14
|
Wang Y, Fens MH, van Kronenburg NCH, Shi Y, Lammers T, Heger M, van Nostrum CF, Hennink WE. Magnetic beads for the evaluation of drug release from biotinylated polymeric micelles in biological media. J Control Release 2022; 349:954-962. [PMID: 35931210 DOI: 10.1016/j.jconrel.2022.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
Abstract
To improve the reliability of in vitro release studies of drug delivery systems, we developed a novel in vitro method for the evaluation of drug release from polymeric micelles in complex biological media. Polymeric micelles based on poly(N-2-hydroxypropyl methacrylamide)-block-poly(N-2-benzoyloxypropyl methacrylamide) (p(HPMAm)-b-p(HPMAm-Bz)) of which 10% of the chains was functionalized with biotin at the p(HPMAm) terminus were prepared using a solvent extraction method. The size of the micelles when loaded with a hydrophobic agent, namely paclitaxel (a clinically used cytostatic drug) or curcumin (a compound with multiple pharmacological activities), was around 65 nm. The biotin decoration allowed the binding of the micelles to streptavidin-coated magnetic beads which occurred within 10 min and reached a binding efficiency of 90 ± 6%. Drug release in different media was studied after the magnetic separation of micelles bound to the streptavidin-coated beads, by determination of the released drug in the media as well as the retained drug in the micellar fraction bound to the beads. The in vitro release of paclitaxel and curcumin at 37 °C in PBS, PBS containing 2% v/v Tween 80, PBS containing 4.5% w/v bovine serum albumin, mouse plasma, and whole mouse blood was highly medium-dependent. In all media studied, paclitaxel showed superior micellar retention compared to curcumin. Importantly, the presence of serum proteins accelerated the release of both paclitaxel and curcumin. The results presented in this study show great potential for predicting drug release from nanomedicines in biological media which in turn is crucial for their further pharmaceutical development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, the Netherlands
| | - Marcel H Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, the Netherlands
| | - Nicky C H van Kronenburg
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbecktrasse 55, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbecktrasse 55, 52074 Aachen, Germany
| | - Michal Heger
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, the Netherlands; Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, the Netherlands.
| |
Collapse
|
15
|
The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022; 188:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.
Collapse
|
16
|
Khan S, Sharifi M, Gleghorn JP, Babadaei MMN, Bloukh SH, Edis Z, Amin M, Bai Q, Ten Hagen TLM, Falahati M, Cho WC. Artificial engineering of the protein corona at bio-nano interfaces for improved cancer-targeted nanotherapy. J Control Release 2022; 348:127-147. [PMID: 35660636 DOI: 10.1016/j.jconrel.2022.05.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have been demonstrated in numerous applications as anticancer, antibacterial and antioxidant agents. Artificial engineering of protein interactions with NPs in biological systems is crucial to develop potential NPs for drug delivery and cancer nanotherapy. The protein corona (PC) on the NP surface, displays an interface between biomacromolecules and NPs, governing their pharmacokinetics and pharmacodynamics. Upon interaction of proteins with the NP surface, their surface features are modified and they can easily be removed from the circulation by the mononuclear phagocytic system (MPS). PC properties heavily depend on the biological microenvironment and NP surface physicochemical parameters. Based on this context, we have surveyed different approaches that have been used for artificial engineering of the PC composition on NP surfaces. We discuss the effects of NP size, shape, surface modifications (PEGylation, self-peptide, other polymers), and protein pre-coating on the PC properties. Additionally, other factors including protein source and structure, intravenous injection and the subsequent shear flow, plasma protein gradients, temperature and local heat transfer, and washing media are considered in the context of their effects on the PC properties and overall target cellular effects. Moreover, the effects of NP-PC complexes on cancer cells based on cellular interactions, organization of intracellular PC (IPC), targeted drug delivery (TDD) and regulation of burst drug release profile of nanoplatforms, enhanced biocompatibility, and clinical applications were discussed followed by challenges and future perspective of the field. In conclusion, this paper can provide useful information to manipulate PC properties on the NP surface, thus trying to provide a literature survey to shorten their shipping from preclinical to clinical trials and to lay the basis for a personalized PC.
Collapse
Affiliation(s)
- Suliman Khan
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, USA; Department of Biological Sciences, University of Delaware, Newark, USA
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Mohammadreza Amin
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Qian Bai
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong.
| |
Collapse
|
17
|
Villa Nova M, Gan K, Wacker MG. Biopredictive tools for the development of injectable drug products. Expert Opin Drug Deliv 2022; 19:671-684. [PMID: 35603724 DOI: 10.1080/17425247.2022.2081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Biopredictive release tests are commonly used in the evaluation of oral medicines. They support decision-making in formulation development and allow predictions of the expected in-vivo performances. So far, there is limited experience in the application of these methodologies to injectable drug products. AREAS COVERED Parenteral drug products cover a variety of dosage forms and administration sites including subcutaneous, intramuscular, and intravenous injections. In this area, developing biopredictive and biorelevant methodologies often confronts us with unique challenges and knowledge gaps. Here, we provide a formulation-centric approach and explain the key considerations and workflow when designing biopredictive assays. Also, we outline the key role of computational methods in achieving clinical relevance and put all considerations into context using liposomal nanomedicines as an example. EXPERT OPINION Biopredictive tools are the need of the hour to exploit the tremendous opportunities of injectable drug products. A growing number of biopharmaceuticals such as peptides, proteins, and nucleic acids require different strategies and a better understanding of the influences on drug absorption. Here, our design strategy must maintain the balance of robustness and complexity required for effective formulation development.
Collapse
Affiliation(s)
- Mônica Villa Nova
- State University of Maringá, Department of Pharmacy, Maringá, Paraná, Brazil
| | - Kennard Gan
- National University of Singapore, Department of Pharmacy, Singapore
| | | |
Collapse
|
18
|
Tang Y, Gao J, Wang T, Zhang Q, Wang A, Huang M, Yu R, Chen H, Gao X. The effect of drug loading and multiple administration on the protein corona formation and brain delivery property of PEG-PLA nanoparticles. Acta Pharm Sin B 2022; 12:2043-2056. [PMID: 35847504 PMCID: PMC9279712 DOI: 10.1016/j.apsb.2021.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The presence of protein corona on the surface of nanoparticles modulates their physiological interactions such as cellular association and targeting property. It has been shown that α-mangostin (αM)-loaded poly(ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles (NP-αM) specifically increased low density lipoprotein receptor (LDLR) expression in microglia and improved clearance of amyloid beta (Aβ) after multiple administration. However, how do the nanoparticles cross the blood‒brain barrier and access microglia remain unknown. Here, we studied the brain delivery property of PEG-PLA nanoparticles under different conditions, finding that the nanoparticles exhibited higher brain transport efficiency and microglia uptake efficiency after αM loading and multiple administration. To reveal the mechanism, we performed proteomic analysis to characterize the composition of protein corona formed under various conditions, finding that both drug loading and multiple dosing affect the composition of protein corona and subsequently influence the cellular uptake of nanoparticles in b.End3 and BV-2 cells. Complement proteins, immunoglobulins, RAB5A and CD36 were found to be enriched in the corona and associated with the process of nanoparticles uptake. Collectively, we bring a mechanistic understanding about the modulator role of protein corona on targeted drug delivery, and provide theoretical basis for engineering brain or microglia-specific targeted delivery system.
Collapse
|
19
|
Liu K, Salvati A, Sabirsh A. Physiology, pathology and the biomolecular corona: the confounding factors in nanomedicine design. NANOSCALE 2022; 14:2136-2154. [PMID: 35103268 DOI: 10.1039/d1nr08101b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biomolecular corona that forms on nanomedicines in different physiological and pathological environments confers a new biological identity. How the recipient biological system's state can potentially affect nanomedicine corona formation, and how this can be modulated, remains obscure. With this perspective, this review summarizes the current knowledge about the content of biological fluids in various compartments and how they can be affected by pathological states, thus impacting biomolecular corona formation. The content of representative biological fluids is explored, and the urgency of integrating corona formation, as an essential component of nanomedicine designs for effective cargo delivery, is highlighted.
Collapse
Affiliation(s)
- Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713AV, The Netherlands
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
20
|
Kamaly N, Farokhzad OC, Corbo C. Nanoparticle protein corona evolution: from biological impact to biomarker discovery. NANOSCALE 2022; 14:1606-1620. [PMID: 35076049 DOI: 10.1039/d1nr06580g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticles exposed to biological fluids such as blood, quickly interact with their surrounding milieu resulting in a biological coating that results in large part as a function of the physicochemical properties of the nanomaterial. The large nanoparticle surface area-to-volume ratio further augments binding of biological molecules and the resulting biomolecular or protein corona, once thought of as problematic biofouling, is now viewed as a rich source of biological information that can guide the development of nanomedicines. This review gives an overview of the utility of the protein corona in proteomic profiling and discusses how a better understanding of nano-bio interactions can accelerate the clinical translation of nanomedicines and facilitate the identification of disease-specific biomarkers. With the FDA requirement of the protein corona analysis of nanoparticles in place, it is envisaged that analyzing the protein corona of nanoparticles on a case-by-case basis can provide highly valuable nano-bio interface information that can aid and improve their clinical translation.
Collapse
Affiliation(s)
- Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, UK.
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.
| | - Claudia Corbo
- Department of Medicine and Surgery, Center for Nanomedicine NANOMIB, University of Milan Bicocca, Milan, Italy.
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
21
|
Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomater 2021; 134:57-78. [PMID: 34364016 DOI: 10.1016/j.actbio.2021.07.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Although an established drug delivery platform, liposomes have not fulfilled their true potential. In the body, interactions of liposomes are mediated by the layer of plasma proteins adsorbed on the surface, the protein corona. The review aims to collect the data of the last decade on liposome protein corona, tracing the path from interactions of individual proteins to the effects mediated by the protein corona in vivo. It offers a classification of the approaches to exploitation of the protein corona-rather than elimination thereof-based on the bilayer composition-corona composition-molecular interactions-biological performance framework. The multitude of factors that affect each level of this relationship urge to the widest implementation of bioinformatics tools to predict the most effective liposome compositions relying on the data on protein corona. Supplementing the picture with new pieces of accurately reported experimental data will contribute to the accuracy and efficiency of the predictions. STATEMENT OF SIGNIFICANCE: The review focuses on liposomes as an established nanomedicine platform and analyzes the available data on how the protein corona formed on liposome surface in biological fluids affects performance of the liposomes. The review offers a rigorous account of existing literature and critical analysis of methodology currently applied to the assessment of liposome-plasma protein interactions. It introduces a classification of the approaches to exploitation of the protein corona and tailoring liposome carriers to advance the field of nanoparticulate drug delivery systems for the benefit of patients.
Collapse
|
22
|
Subasic CN, Kuilamu E, Cowin G, Minchin RF, Kaminskas LM. The pharmacokinetics of PEGylated liposomal doxorubicin are not significantly affected by sex in rats or humans, but may be affected by immune dysfunction. J Control Release 2021; 337:71-80. [PMID: 34245788 DOI: 10.1016/j.jconrel.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
PEGylated liposomal doxorubicin (PLD, Caelyx®, Doxil®) has been suggested to show significant sex-based differences in plasma clearance, as well as high inter-individual variability that may be driven by monocyte counts in cancer patients. This study aimed to establish if these differences are similarly observed in rats, which exhibit similar liposome clearance mechanisms to humans, and to use this model to identify sources of inter-individual and sex-based pharmacokinetic variability. The plasma and lymphatic pharmacokinetics of PLD were evaluated in male and female rats by quantifying doxorubicin as well as the 3H-labelled liposome. In general, the pharmacokinetics of doxorubicin and the 3H-liposome did not differ significantly between male and female rats when corrected for body surface area. Female rats did, however, show significantly higher doxorubicin concentrations in lymph compared to male rats. With the exception of serum testosterone concentrations in males, none of the physiological parameters evaluated correlated with plasma clearance. Further, reanalysis of published human data that formerly reported sex-differences in PLD plasma clearance similarly revealed no significant differences in PLD plasma clearance between males and females with solid tumours, but increased plasma clearance in patients with Kaposi's sarcoma (generally HIV+/immunocompromised). These data suggest that with the exception of lymphatic exposure, there are unlikely to be significant sex effects in the pharmacokinetics of liposomes, but immune function may contribute to inter individual variability.
Collapse
Affiliation(s)
- Christopher N Subasic
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Esther Kuilamu
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
23
|
Kristensen K, Münter R, Kempen PJ, Thomsen ME, Stensballe A, Andresen TL. Isolation methods commonly used to study the liposomal protein corona suffer from contamination issues. Acta Biomater 2021; 130:460-472. [PMID: 34116227 DOI: 10.1016/j.actbio.2021.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
The liposomal protein corona has been the focus of numerous studies, but there is still no consensus regarding its extent and composition. Rather, the literature is full of conflicting reports on the matter. To elucidate whether there could be a methodological explanation for this, we here scrutinize the efficiency of three commonly used liposome isolation methods at isolating stealth liposomes from human plasma. Firstly, we show that size-exclusion chromatography (SEC) in its standard form is prone to isolating unbound protein material together with the liposomes, but also that the method may be optimized to mitigate this issue. Secondly, we demonstrate that SEC in combination with membrane ultrafiltration is no better at removing the unbound protein material than SEC alone. Thirdly, we show that centrifugation is not able to pellet the liposomes. Overall, our results suggest that previous research on the liposomal protein corona may have suffered from significant methodological problems, in particular related to contaminant proteins interfering with the analysis of the protein corona. We believe that the data presented here may help guide future research around this challenge to reach a converging understanding about the properties of the protein corona on liposomes. STATEMENT OF SIGNIFICANCE: Upon administration into the circulatory system, liposomal drug carriers encounter an environment rich in proteins. These proteins may adsorb to the liposomes to form what is known as the protein corona, potentially governing the interactions of the liposomes with tissues and cells. However, despite decades of intense research efforts, there is currently no clear understanding about the extent and composition of the liposomal protein corona, making it impossible to assess its mechanistic importance. Here we report that the methods commonly used to isolate liposomes from blood plasma or serum to study the protein corona are susceptible to protein contamination. This may be the underlying technical reason for the current confusion about the characteristics of the liposomal protein corona.
Collapse
Affiliation(s)
- Kasper Kristensen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Rasmus Münter
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Paul J Kempen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikkel E Thomsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Thomas L Andresen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
24
|
Kamali Shahri SM, Sharifi S, Mahmoudi M. Interdependency of influential parameters in therapeutic nanomedicine. Expert Opin Drug Deliv 2021; 18:1379-1394. [PMID: 33887999 DOI: 10.1080/17425247.2021.1921732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction:Current challenges to successful clinical translation of therapeutic nanomedicine have discouraged many stakeholders, including patients. Significant effort has been devoted to uncovering the reasons behind the less-than-expected success, beyond failures or ineffectiveness, of therapeutic nanomedicine products (e.g. cancer nanomedicine). Until we understand and address the factors that limit the safety and efficacy of NPs, both individually and in combination, successful clinical development will lag.Areas covered:This review highlights the critical roles of interdependent factors affecting the safety and therapeutic efficacy of therapeutic NPs for drug delivery applications.Expert opinion:Deep analysis of the current nanomedical literature reveals ahistory of unanticipated complexity by awide range of stakeholders including researchers. In the manufacture of nanomedicines themselves, there have been persistent difficulties with reproducibility and batch-to-batch variation. The unanticipated complexity and interdependency of nano-bio parameters has delayed our recognition of important factors affecting the safety and therapeutic efficacy of nanomedicine products. These missteps have had many factors including our lack of understanding of the interdependency of various factors affecting the biological identity and fate of NPs and biased interpretation of data. All these issues could raise significant concern regarding the reproducibility- or even the validity- of past publications that in turn formed the basis of many clinical trials of therapeutic nanomedicines. Therefore, the individual and combined effects of previously overlooked factors on the safety and therapeutic efficacy of NPs need to be fully considered in nanomedicine reports and product development.
Collapse
Affiliation(s)
- Seyed Mehdi Kamali Shahri
- Department of Radiology and Precision Health Program, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Shahriar Sharifi
- Department of Radiology and Precision Health Program, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
25
|
Mechanistic investigation of thermosensitive liposome immunogenicity and understanding the drivers for circulation half-life: A polyethylene glycol versus 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol study. J Control Release 2021; 333:1-15. [DOI: 10.1016/j.jconrel.2021.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
|
26
|
Hadjidemetriou M, Rivers-Auty J, Papafilippou L, Eales J, Kellett KAB, Hooper NM, Lawrence CB, Kostarelos K. Nanoparticle-Enabled Enrichment of Longitudinal Blood Proteomic Fingerprints in Alzheimer's Disease. ACS NANO 2021; 15:7357-7369. [PMID: 33730479 PMCID: PMC8155389 DOI: 10.1021/acsnano.1c00658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Blood-circulating biomarkers have the potential to detect Alzheimer's disease (AD) pathology before clinical symptoms emerge and to improve the outcomes of clinical trials for disease-modifying therapies. Despite recent advances in understanding concomitant systemic abnormalities, there are currently no validated or clinically used blood-based biomarkers for AD. The extremely low concentration of neurodegeneration-associated proteins in blood necessitates the development of analytical platforms to address the "signal-to-noise" issue and to allow an in-depth analysis of the plasma proteome. Here, we aimed to discover and longitudinally track alterations of the blood proteome in a transgenic mouse model of AD, using a nanoparticle-based proteomics enrichment approach. We employed blood-circulating, lipid-based nanoparticles to extract, analyze and monitor AD-specific protein signatures and to systemically uncover molecular pathways associated with AD progression. Our data revealed the existence of multiple proteomic signals in blood, indicative of the asymptomatic stages of AD. Comprehensive analysis of the nanoparticle-recovered blood proteome by label-free liquid chromatography-tandem mass spectrometry resulted in the discovery of AD-monitoring signatures that could discriminate the asymptomatic phase from amyloidopathy and cognitive deterioration. While the majority of differentially abundant plasma proteins were found to be upregulated at the initial asymptomatic stages, the abundance of these molecules was significantly reduced as a result of amyloidosis, suggesting a disease-stage-dependent fluctuation of the AD-specific blood proteome. The potential use of the proposed nano-omics approach to uncover information in the blood that is directly associated with brain neurodegeneration was further exemplified by the recovery of focal adhesion cascade proteins. We herein propose the integration of nanotechnology with already existing proteomic analytical tools in order to enrich the identification of blood-circulating signals of neurodegeneration, reinvigorating the potential clinical utility of the blood proteome at predicting the onset and kinetics of the AD progression trajectory.
Collapse
Affiliation(s)
- Marilena Hadjidemetriou
- Nanomedicine
Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
- (M.H.)
| | - Jack Rivers-Auty
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Lana Papafilippou
- Nanomedicine
Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - James Eales
- Division
of Cardiovascular Sciences, School of Medical Sciences, Faculty of
Biology, Medicine and Health, The University
of Manchester M13 9PT, Manchester, United Kingdom
| | - Katherine A. B. Kellett
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Nigel M. Hooper
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Catherine B. Lawrence
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
- (K.K.)
| |
Collapse
|
27
|
Huang W, Xiao G, Zhang Y, Min W. Research progress and application opportunities of nanoparticle-protein corona complexes. Biomed Pharmacother 2021; 139:111541. [PMID: 33848776 DOI: 10.1016/j.biopha.2021.111541] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles (NPs) can be used to design for nanomedicines with different chemical surface properties owing to their size advantages and the capacity of specific delivery to targeted sites in organisms. The discovery of the presence of protein corona (PC) has changed our classical view of NPs, stimulating researchers to investigate the in vivo fate of NPs as they enter biological systems. Both NPs and PC have their specificity but complement each other, so they should be considered as a whole. The formation and characterization of NP-PC complexes provide new insights into the design, functionalization, and application of nanocarriers. Based on progress of recent researches, we reviewed the formation, characterization, and composition of the PC, and introduced those critical factors influencing PC, simultaneously expound the effect of PC on the biological function of NPs. Especially we put forward the opportunities and challenges when NP-PC as a novel nano-drug carrier for targeted applications. Furthermore, we discussed the pros versus cons of the PC, as well as how to make better PC in the future application of NPs.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pharmacy, The First People's Hospital of Jiande, Jiande 311600, China; Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Gao Xiao
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Yujuan Zhang
- Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China.
| | - Weiping Min
- Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China
| |
Collapse
|
28
|
Chu Y, Tang W, Zhang Z, Li C, Qian J, Wei X, Ying T, Lu W, Zhan C. Deciphering Protein Corona by scFv-Based Affinity Chromatography. NANO LETTERS 2021; 21:2124-2131. [PMID: 33617264 DOI: 10.1021/acs.nanolett.0c04806] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It remains challenging to precisely decipher the structural and functional characteristics of protein coronas. To overcome the drawbacks frequently occurring in the traditional separation methods, an anti-PEG single-chain variable fragment (PEG-scFv) based affinity chromatography (AfC) was developed to achieve precise and efficient separation of protein coronas on PEGylated liposomes (sLip). His-tagged PEG-scFv could readily capture sLip without affecting protein corona compositions, and separate sLip/protein complex from plasma protein aggregates and endogenous vesicles through the Ni-NTA column. AfC demonstrated 43-fold higher protein corona collecting efficiency than centrifugation, which was extremely crucial for separation of in vivo protein coronas due to the limitation of sample size. AfC evaded contamination by endogenous vesicles and protein aggregates occurring in centrifugation, and reserved the loosely bound proteins, providing an unprecedented approach to deeply decipher protein coronas. The scFv-based AfC also paves new avenues for the separation of protein coronas formed on other nanomedicines.
Collapse
Affiliation(s)
- Yuxiu Chu
- Department of Pharmacology, School of Basic Medical Sciences, and Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Wenjing Tang
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, P.R. China
| | - Zui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, and Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Cheng Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, P.R. China
| | - Jun Qian
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, P.R. China
| | - Xiaoli Wei
- Department of Pharmacology, School of Basic Medical Sciences, and Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, P.R. China
| | - Weiyue Lu
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, P.R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, and Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032, P.R. China
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, P.R. China
| |
Collapse
|
29
|
Singh N, Marets C, Boudon J, Millot N, Saviot L, Maurizi L. In vivo protein corona on nanoparticles: does the control of all material parameters orient the biological behavior? NANOSCALE ADVANCES 2021; 3:1209-1229. [PMID: 36132858 PMCID: PMC9416870 DOI: 10.1039/d0na00863j] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/13/2021] [Indexed: 05/18/2023]
Abstract
Nanomaterials have a huge potential in research fields from nanomedicine to medical devices. However, surface modifications of nanoparticles (NPs) and thus of their physicochemical properties failed to predict their biological behavior. This requires investigating the "missing link" at the nano-bio interface. The protein corona (PC), the set of proteins binding to the NPs surface, plays a critical role in particle recognition by the innate immune system. Still, in vitro incubation offers a limited understanding of biological interactions and fails to explain the in vivo fate. To date, several reports explained the impact of PC in vitro but its applications in the clinical field have been very limited. Furthermore, PC is often considered as a biological barrier reducing the targeting efficiency of nano vehicles. But the protein binding can actually be controlled by altering PC both in vitro and in vivo. Analyzing PC in vivo could accordingly provide a deep understanding of its biological effect and speed up the transfer to clinical applications. This review demonstrates the need for clarifications on the effect of PC in vivo and the control of its behavior by changing its physicochemical properties. It unfolds the recent in vivo developments to understand mechanisms and challenges at the nano-bio interface. Finally, it reports recent advances in the in vivo PC to overcome and control the limitations of the in vitro PC by employing PC as a boosting resource to prolong the NPs half-life, to improve their formulations and thereby to increase its use for biomedical applications.
Collapse
Affiliation(s)
- Nimisha Singh
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Célia Marets
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| |
Collapse
|
30
|
Mishra RK, Ahmad A, Vyawahare A, Alam P, Khan TH, Khan R. Biological effects of formation of protein corona onto nanoparticles. Int J Biol Macromol 2021; 175:1-18. [PMID: 33508360 DOI: 10.1016/j.ijbiomac.2021.01.152] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022]
Abstract
Administration of nanomaterials based medicinal and drug carrier systems into systemic circulation brings about interaction of blood components e.g. albumin and globulin proteins with these nanosystems. These blood or serum proteins either get loosely attached over these nanocarriers and form soft protein corona or are tightly adsorbed over nanoparticles and hard protein corona formation occurs. Formation of protein corona has significant implications over a wide array of physicochemical and medicinal attributes. Almost all pharmacological, toxicological and carrier characteristics of nanoparticles get prominently touched by the protein corona formation. It is this interaction of nanoparticle protein corona that decides and influences fate of nanomaterials-based systems. In this article, authors reviewed several diverse aspects of protein corona formation and its implications on various possible outcomes in vivo and in vitro. A brief description regarding formation and types of protein corona has been included along with mechanisms and pharmacokinetic, pharmacological behavior and toxicological profiles of nanoparticles has been described. Finally, significance of protein corona in context of its in vivo and in vitro behavior, involvement of biomolecules at nanoparticle plasma interface and other interfaces and effects of protein corona on biocompatibility characteristics have also been touched upon.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, PO box 173, Alkharj, 11942, Saudi Arabia
| | | | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
31
|
Conventional Nanosized Drug Delivery Systems for Cancer Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:3-27. [PMID: 33543453 DOI: 10.1007/978-3-030-58174-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical responses and tolerability of conventional nanocarriers (NCs) are sometimes different from those expected in anticancer therapy. Thus, new smart drug delivery systems (DDSs) with stimuli-responsive properties and novel materials have been developed. Several clinical trials demonstrated that these DDSs have better clinical therapeutic efficacy in the treatment of many cancers than free drugs. Composition of DDSs and their surface properties increase the specific targeting of therapeutics versus cancer cells, without affecting healthy tissues, and thus limiting their toxicity versus unspecific tissues. Herein, an extensive revision of literature on NCs used as DDSs for cancer applications has been performed using the available bibliographic databases.
Collapse
|
32
|
Regenold M, Steigenberger J, Siniscalchi E, Dunne M, Casettari L, Heerklotz H, Allen C. Determining critical parameters that influence in vitro performance characteristics of a thermosensitive liposome formulation of vinorelbine. J Control Release 2020; 328:551-561. [DOI: 10.1016/j.jconrel.2020.08.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
|
33
|
Cheng X, Li H, Ge X, Chen L, Liu Y, Mao W, Zhao B, Yuan WE. Tumor-Microenvironment- Responsive Size-Shrinkable Drug-Delivery Nanosystems for Deepened Penetration Into Tumors. Front Mol Biosci 2020; 7:576420. [PMID: 33330618 PMCID: PMC7729065 DOI: 10.3389/fmolb.2020.576420] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023] Open
Abstract
Over the years, the manipulation and clinical application of drug-delivery nanosystems for cancer diseases have attracted a rapid growth of academic research interests, and some nanodrugs have been approved for clinic application. Although encouraging achievements have been made, the potency of nanomedicines in cancer treatment is far from satisfaction, and one significant reason is the inefficient penetration of nanoparticles into solid tumors. Particle size is one of the most significant features that influence diffusion ability of the drug-delivery system in tumors. Size-shrinkable drug-delivery nanosystems possess a size-switchable property that can achieve passive targeting via the enhanced permeability and retention (EPR) effect and transform into ultrasmall particles in tumors for deep penetration into tumors. The tumor microenvironment is characterized by acidic pH, hypoxia, upregulated levels of enzymes, and a redox environment. In this review, we summarize and analyze the current research progresses and challenges in tumor microenvironment responsive size-shrinkable drug-delivery nanosystems. We further expect to present some meaningful proposals and enlightenments on promoting deep penetration into tumors of nanoparticles.
Collapse
Affiliation(s)
- Xiaoliang Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Houli Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Lijuan Chen
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Yao Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Wenwei Mao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Nano-Bio Interaction between Blood Plasma Proteins and Water-Soluble Silicon Quantum Dots with Enabled Cellular Uptake and Minimal Cytotoxicity. NANOMATERIALS 2020; 10:nano10112250. [PMID: 33202926 PMCID: PMC7696914 DOI: 10.3390/nano10112250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023]
Abstract
A better understanding of the compatibility of water-soluble semiconductor quantum dots (QDs) upon contact with the bloodstream is important for biological applications, including biomarkers working in the first therapeutic spectral window for deep tissue imaging. Herein, we investigated the conformational changes of blood plasma proteins during the interaction with near-infrared light-emitting nanoparticles, consisting of Pluronic F127 shells and cores comprised of assembled silicon QDs terminated with decane monolayers. Albumin and transferrin have high quenching constants and form a hard protein corona on the nanoparticle. In contrast, fibrinogen has low quenching constants and forms a soft protein corona. A circular dichroism (CD) spectrometric study investigates changes in the protein’s secondary and tertiary structures with incremental changes in the nanoparticle concentrations. As expected, the addition of nanoparticles causes the denaturation of the plasma proteins. However, it is noteworthy that the conformational recovery phenomena are observed for fibrinogen and transferrin, suggesting that the nanoparticle does not influence the ordered structure of proteins in the bloodstream. In addition, we observed enabled cellular uptake (NIH3T3 Fibroblasts) and minimal cytotoxicity using different cell lines (HeLa, A549, and NIH3T3). This study offers a basis to design QDs without altering the biomacromolecule’s original conformation with enabled cellular uptake with minimal cytotoxicity.
Collapse
|
35
|
Westmeier D, Siemer S, Vallet C, Steinmann J, Docter D, Buer J, Knauer SK, Stauber RH. Boosting nanotoxicity to combat multidrug-resistant bacteria in pathophysiological environments. NANOSCALE ADVANCES 2020; 2:5428-5440. [PMID: 36132026 PMCID: PMC9419095 DOI: 10.1039/d0na00644k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/21/2020] [Indexed: 06/15/2023]
Abstract
Nanomaterials are promising novel antibiotics, but often ineffective. We found that nanomaterial-bacteria complex formation occurred with various nanomaterials. The bactericidal activity of NMs strongly depends on their physical binding to (multidrug-resistant) bacteria. Nanomaterials' binding and antibiotic effect was reduced by various pathophysiological biomolecule coronas strongly inhibiting their antibiotic effects. We show from analytical to in vitro to in vivo that nanomaterial-based killing could be restored by acidic pH treatments. Here, complex formation of negatively-charged, plasma corona-covered, nanomaterials with bacteria was electrostatically enhanced by reducing bacteria's negative surface charge. Employing in vivo skin infection models, acidic pH-induced complex formation was critical to counteract Staphylococcus aureus infections by silver nanomaterials. We explain why nano-antibiotics show reduced activity and provide a clinically practical solution.
Collapse
Affiliation(s)
- Dana Westmeier
- ENT Department, University Medical Center Mainz Langenbeckstrasse 1 55131 Mainz Germany
| | - Svenja Siemer
- ENT Department, University Medical Center Mainz Langenbeckstrasse 1 55131 Mainz Germany
| | - Cecilia Vallet
- Department of Molecular Biology II, Center for Medical Biotechnology/Nanointegration (ZMB/CENIDE), University Duisburg-Essen, Universitätsstrasse 5 45117 Essen Germany
| | - Jörg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen Hufelandstrasse 55 45112 Essen Germany
| | - Dominic Docter
- ENT Department, University Medical Center Mainz Langenbeckstrasse 1 55131 Mainz Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen Hufelandstrasse 55 45112 Essen Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Center for Medical Biotechnology/Nanointegration (ZMB/CENIDE), University Duisburg-Essen, Universitätsstrasse 5 45117 Essen Germany
| | - Roland H Stauber
- ENT Department, University Medical Center Mainz Langenbeckstrasse 1 55131 Mainz Germany
| |
Collapse
|
36
|
Sebak AA, Gomaa IEO, ElMeshad AN, Farag MH, Breitinger U, Breitinger HG, AbdelKader MH. Distinct Proteins in Protein Corona of Nanoparticles Represent a Promising Venue for Endogenous Targeting - Part I: In vitro Release and Intracellular Uptake Perspective. Int J Nanomedicine 2020; 15:8845-8862. [PMID: 33204091 PMCID: PMC7667594 DOI: 10.2147/ijn.s273713] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Protein corona (PC) deposition on nanoparticles (NPs) in biological systems contributes to a great extent to NPs' fates; their targeting potential, the interaction with different biological systems and the subsequent functions. PC - when properly tuned - can serve as a potential avenue for optimization of NPs' use in cancer therapy. Methods Poly-lactic co-glycolic acid (PLGA)-based NPs exhibiting different physicochemical properties were fabricated and characterized. The PC makeup of these NPs were qualitatively and quantitatively analyzed by Western blot and Bradford assay, respectively. The effect of PC on the release of NPs' cargos and the intracellular uptake into B16F10 melanoma cells has been studied. Results The composition of NPs (polymeric PLGA NPs vs lipid-polymer hybrid NPs) and the conjugation of an active targeting ligand (cRGDyk peptide) represented the major determinants of the PC makeup of NPs. The in vitro release of the loaded cargos from the NPs depended on the PC and the presence of serum proteins in the release medium. Higher cumulative release has been recorded in the presence of proteins in the case of peptide conjugated NPs, cNPs, while the unconjugated formulations, uNPs, showed an opposite pattern. NPs intracellular uptake studies revealed important roles of distinct serum and cellular proteins on the extent of NPs' accumulation in melanoma cells. For example, the abundance of vitronectin (VN) protein from serum has been positively related to the intracellular accumulation of the NPs. Conclusion Careful engineering of nanocarriers can modulate the recruitment of some proteins suggesting a potential use for achieving endogenous targeting to overcome the current limitations of targeted delivery of chemotherapeutic agents.
Collapse
Affiliation(s)
- Aya Ahmed Sebak
- Pharmaceutical Technology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| | - Iman Emam Omar Gomaa
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Aliaa Nabil ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Mahmoud Hussien Farag
- Pharmaceutical Technology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| | - Ulrike Breitinger
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| | - Hans-Georg Breitinger
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| | - Mahmoud Hashem AbdelKader
- National Institute of Laser Enhanced Sciences (NILES), Cairo University (CU), Giza, Egypt.,European University in Egypt (EUE), New Administrative Capital, Cairo, Egypt
| |
Collapse
|
37
|
Gardner L, Warrington J, Rogan J, Rothwell DG, Brady G, Dive C, Kostarelos K, Hadjidemetriou M. The biomolecule corona of lipid nanoparticles contains circulating cell-free DNA. NANOSCALE HORIZONS 2020; 5:1476-1486. [PMID: 32853302 DOI: 10.1039/d0nh00333f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The spontaneous adsorption of biomolecules onto the surface of nanoparticles (NPs) in complex physiological biofluids has been widely investigated over the last decade. Characterisation of the protein composition of the 'biomolecule corona' has dominated research efforts, whereas other classes of biomolecules, such as nucleic acids, have received no interest. Scarce, speculative statements exist in the literature about the presence of nucleic acids in the biomolecule corona, with no previous studies attempting to describe the contribution of genomic content to the blood-derived NP corona. Herein, we provide the first experimental evidence of the interaction of circulating cell-free DNA (cfDNA) with lipid-based NPs upon their incubation with human plasma samples, obtained from healthy volunteers and ovarian carcinoma patients. Our results also demonstrate an increased amount of detectable cfDNA in patients with cancer. Proteomic analysis of the same biomolecule coronas revealed the presence of histone proteins, suggesting an indirect, nucleosome-mediated NP-cfDNA interaction. The finding of cfDNA as part of the NP corona, offers a previously unreported new scope regarding the chemical composition of the 'biomolecule corona' and opens up new possibilities for the potential exploitation of the biomolecule corona for the enrichment and analysis of blood-circulating nucleic acids.
Collapse
Affiliation(s)
- Lois Gardner
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Designing peptide nanoparticles for efficient brain delivery. Adv Drug Deliv Rev 2020; 160:52-77. [PMID: 33031897 DOI: 10.1016/j.addr.2020.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood-brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain: from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain.
Collapse
|
39
|
Ruiz A, Ma G, Seitsonen J, Pereira SGT, Ruokolainen J, Al-Jamal WT. Encapsulated doxorubicin crystals influence lysolipid temperature-sensitive liposomes release and therapeutic efficacy in vitro and in vivo. J Control Release 2020; 328:665-678. [PMID: 32961247 DOI: 10.1016/j.jconrel.2020.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX)-loaded lysolipid temperature-sensitive liposomes (LTSLs) are a promising stimuli-responsive drug delivery system that rapidly releases DOX in response to mild hyperthermia (HT). This study investigates the influence of loaded DOX crystals on the thermosensitivity of LTSLs and their therapeutic efficacy in vitro and in vivo. The properties of DOX crystals were manipulated using different remote loading methods (namely (NH4)2SO4, NH4-EDTA and MnSO4) and varying the lipid:DOX weight ratio during the loading step. Our results demonstrated that (NH4)2SO4 or NH4-EDTA remote loading methods had a comparable encapsulation efficiency (EE%) into LTSLs in contrast to the low DOX EE% obtained using the metal complexation method. Cryogenic transmission electron microscopy (cryo-TEM) revealed key differences in the nature of DOX crystals formed inside LTSLs based on the loading buffer or/and the lipid:DOX ratio used, resulting in different DOX release profiles in response to mild HT. The in vitro assessment of DOX release/uptake in CT26 and PC-3 cells revealed that the use of a high lipid:DOX ratio exhibited a fast and controlled release profile in combination with mild HT, which correlated well with their cytotoxicity studies. Similarly, in vivo DOX release, tumour growth inhibition and mice survival rates were influenced by the physicochemical properties of LTSLs payload. This study demonstrates, for the first time, that the characteristics of DOX crystals loaded into LTSLs, and their conformational rearrangement during HT, are important factors that impact the TSLs performance in vivo.
Collapse
Affiliation(s)
- Amalia Ruiz
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Guanglong Ma
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Jani Seitsonen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Sara G T Pereira
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Wafa T Al-Jamal
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
40
|
Sharifi S, Caracciolo G, Mahmoudi M. Biomolecular Corona Affects Controlled Release of Drug Payloads from Nanocarriers. Trends Pharmacol Sci 2020; 41:641-652. [DOI: 10.1016/j.tips.2020.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
|
41
|
Kari OK, Tavakoli S, Parkkila P, Baan S, Savolainen R, Ruoslahti T, Johansson NG, Ndika J, Alenius H, Viitala T, Urtti A, Lajunen T. Light-Activated Liposomes Coated with Hyaluronic Acid as a Potential Drug Delivery System. Pharmaceutics 2020; 12:E763. [PMID: 32806740 PMCID: PMC7465487 DOI: 10.3390/pharmaceutics12080763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 01/22/2023] Open
Abstract
Light-activated liposomes permit site and time-specific drug delivery to ocular and systemic targets. We combined a light activation technology based on indocyanine green with a hyaluronic acid (HA) coating by synthesizing HA-lipid conjugates. HA is an endogenous vitreal polysaccharide and a potential targeting moiety to cluster of differentiation 44 (CD44)-expressing cells. Light-activated drug release from 100 nm HA-coated liposomes was functional in buffer, plasma, and vitreous samples. The HA-coating improved stability in plasma compared to polyethylene glycol (PEG)-coated liposomes. Liposomal protein coronas on HA- and PEG-coated liposomes after dynamic exposure to undiluted human plasma and porcine vitreous samples were hydrophilic and negatively charged, thicker in plasma (~5 nm hard, ~10 nm soft coronas) than in vitreous (~2 nm hard, ~3 nm soft coronas) samples. Their compositions were dependent on liposome formulation and surface charge in plasma but not in vitreous samples. Compared to the PEG coating, the HA-coated liposomes bound more proteins in vitreous samples and enriched proteins related to collagen interactions, possibly explaining their slightly reduced vitreal mobility. The properties of the most abundant proteins did not correlate with liposome size or charge, but included proteins with surfactant and immune system functions in plasma and vitreous samples. The HA-coated light-activated liposomes are a functional and promising alternative for intravenous and ocular drug delivery.
Collapse
Affiliation(s)
- Otto K. Kari
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Shirin Tavakoli
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Petteri Parkkila
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Simone Baan
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
- Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80.082, 3508 TB Utrecht, The Netherlands
| | - Roosa Savolainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Teemu Ruoslahti
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland;
| | - Joseph Ndika
- Human Microbiome Research, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (J.N.); (H.A.)
| | - Harri Alenius
- Human Microbiome Research, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (J.N.); (H.A.)
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland;
| | - Arto Urtti
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
- Institute of Chemistry, St. Petersburg State University, Petergof, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Tatu Lajunen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Science, Tokyo University of Pharmacy & Life Sciences, 1432-1 Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
42
|
Sforzi J, Palagi L, Aime S. Liposome-Based Bioassays. BIOLOGY 2020; 9:E202. [PMID: 32752243 PMCID: PMC7466007 DOI: 10.3390/biology9080202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
This review highlights the potential of using liposomes in bioassays. Liposomes consist of nano- or micro-sized, synthetically constructed phospholipid vesicles. Liposomes can be loaded with a number of reporting molecules that allow a dramatic amplification of the detection threshold in bioassays. Liposome-based sensors bind or react with the biological components of targets through the introduction of properly tailored vectors anchored on their external surface. The use of liposome-based formulations allows the set-up of bioassays that are rapid, sensitive, and often suitable for in-field applications. Selected applications in the field of immunoassays, as well as recognition/assessment of corona proteins, nucleic acids, exosomes, bacteria, and viruses are surveyed. The role of magnetoliposomes is also highlighted as an additional tool in the armory of liposome-based systems for bioassays.
Collapse
|
43
|
Sharifi S, Hajipour MJ, Gould L, Mahmoudi M. Nanomedicine in Healing Chronic Wounds: Opportunities and Challenges. Mol Pharm 2020; 18:550-575. [PMID: 32519875 DOI: 10.1021/acs.molpharmaceut.0c00346] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The poor healing associated with chronic wounds affects millions of people worldwide through high mortality rates and associated costs. Chronic wounds present three main problems: First, the absence of a suitable environment to facilitate cell migration, proliferation, and angiogenesis; second, bacterial infection; and third, unbalanced and prolonged inflammation. Unfortunately, current therapeutic approaches have not been able to overcome these main issues and, therefore, have limited clinical success. Over the past decade, incorporating the unique advantages of nanomedicine into wound healing approaches has yielded promising outcomes. Nanomedicine is capable of stimulating various cellular and molecular mechanisms involved in the wound microenvironment via antibacterial, anti-inflammatory, and angiogenetic effects, potentially reversing the wound microenvironment from nonhealing to healing. This review briefly discusses wound healing mechanisms and pathophysiology and then highlights recent findings regarding the opportunities and challenges of using nanomedicine in chronic wound management.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mohammad Javad Hajipour
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lisa Gould
- Brown University School of Medicine, Providence, Rhode Island 02912, United States.,South Shore Health System Center for Wound Healing, Weymouth, Massachusetts 02189, United States
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
44
|
Ndumiso M, Buchtová N, Husselmann L, Mohamed G, Klein A, Aucamp M, Canevet D, D'Souza S, Maphasa RE, Boury F, Dube A. Comparative whole corona fingerprinting and protein adsorption thermodynamics of PLGA and PCL nanoparticles in human serum. Colloids Surf B Biointerfaces 2020; 188:110816. [PMID: 31991290 PMCID: PMC7061085 DOI: 10.1016/j.colsurfb.2020.110816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022]
Abstract
Nanoparticles (NPs) based on biocompatible and biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) represent effective systems for systemic drug delivery. Upon injection into the blood circuit, the NP surface is rapidly modified due to adsorption of proteins that form a 'protein corona' (PC). The PC plays an important role in cellular targeting, uptake and NP bio-distribution. Hence, the study of interactions between NPs and serum proteins appears as key for biomedical applications and safety of NPs. In the present work, we report on the comparative protein fluorescence quenching extent, thermodynamics of protein binding and identification of proteins in the soft and hard corona layers of PLGA and PCL NPs. NPs were prepared via a single emulsion-solvent evaporation technique and characterized with respect to size, zeta potential, surface morphology and hydrophobicity. Protein fluorescence quenching experiments were performed against human serum albumin. The thermodynamics of serum protein binding onto the NPs was studied using isothermal titration calorimetry. Semi-quantitative analysis of proteins in the PC layers was conducted using gel electrophoresis and mass spectrometry using human serum. Our results demonstrated the influence of particle hydrophobicity on the thermodynamics of protein binding. Human serum proteins bind to a greater extent and with greater affinity to PCL NPs than PLGA NPs. Several proteins were detected in the hard and soft corona of the NPs, representing their unique proteome fingerprints. Some proteins were unique to the PCL NPs. We anticipate that our findings will assist with rational design of polymeric NPs for effective drug delivery applications.
Collapse
Affiliation(s)
- Myolisi Ndumiso
- School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| | - Nela Buchtová
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Lizex Husselmann
- Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Gadija Mohamed
- Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Ashwil Klein
- Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Marique Aucamp
- School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| | - David Canevet
- Université d'Angers, Laboratoire MOLTECH-Anjou, UMR CNRS 6200, Angers, France
| | - Sarah D'Souza
- School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| | | | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
45
|
Effect of Temperature on Drug Release: Production of 5-FU-Encapsulated Hydroxyapatite-Gelatin Polymer Composites via Spray Drying and Analysis of In Vitro Kinetics. INT J POLYM SCI 2020. [DOI: 10.1155/2020/8017035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this study, 5-fluorouracil- (5-FU-) loaded hydroxyapatite-gelatin (HAp-GEL) polymer composites were produced in the presence of a simulated body fluid (SBF) to investigate the effects of temperature and cross-linking agents on drug release. The composites were produced by wet precipitation at pH 7.4 and temperature 37°C using glutaraldehyde (GA) as the cross-linker. The effects of different amounts of glutaraldehyde on drug release profiles were studied. Encapsulation (drug loading) was performed with 5-FU using a spray drier, and the drug release of 5-FU from the HAp-GEL composites was determined at temperatures of 32°C, 37°C, and 42°C. Different mathematical models were used to obtain the release mechanism of the drug. The morphologies and structures of the composites were analyzed by X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The results demonstrated that for the HAp-GEL composites, the initial burst decreased with increasing GA content at all three studied temperatures. Further, three kinetic models were investigated, and it was determined that all the composites best fit the Higuchi model. It was concluded that the drug-loaded HAp-GEL composites have the potential to be used in drug delivery applications.
Collapse
|
46
|
Böhmert L, Voß L, Stock V, Braeuning A, Lampen A, Sieg H. Isolation methods for particle protein corona complexes from protein-rich matrices. NANOSCALE ADVANCES 2020; 2:563-582. [PMID: 36133244 PMCID: PMC9417621 DOI: 10.1039/c9na00537d] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Background: Nanoparticles become rapidly encased by a protein layer when they are in contact with biological fluids. This protein shell is called a corona. The composition of the corona has a strong influence on the surface properties of the nanoparticles. It can affect their cellular interactions, uptake and signaling properties. For this reason, protein coronae are investigated frequently as an important part of particle characterization. Main body of the abstract: The protein corona can be analyzed by different methods, which have their individual advantages and challenges. The separation techniques to isolate corona-bound particles from the surrounding matrices include centrifugation, magnetism and chromatographic methods. Different organic matrices, such as blood, blood serum, plasma or different complex protein mixtures, are used and the approaches vary in parameters such as time, concentration and temperature. Depending on the investigated particle type, the choice of separation method can be crucial for the subsequent results. In addition, it is important to include suitable controls to avoid misinterpretation and false-positive or false-negative results, thus allowing the achievement of a valuable protein corona analysis result. Conclusion: Protein corona studies are an important part of particle characterization in biological matrices. This review gives a comparative overview about separation techniques, experimental parameters and challenges which occur during the investigation of the protein coronae of different particle types.
Collapse
Affiliation(s)
- Linda Böhmert
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Linn Voß
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Valerie Stock
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| |
Collapse
|
47
|
Affiliation(s)
- Munishwar Nath Gupta
- Former Professor, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
48
|
Huang Y, Deng X, Liang J. Review of the Application of Nanovesicles and the Human Interstitial Fluid in Gastrointestinal Premalignant Lesion Detection, Diagnosis, Prognosis and Therapy. Int J Nanomedicine 2019; 14:9469-9482. [PMID: 31819444 PMCID: PMC6896916 DOI: 10.2147/ijn.s208559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Premalignant lesions arise from cells that abnormally proliferate and have a tendency to become cancerous. Developing methods to specifically target and remove these premalignant lesions is imperative to the prevention of malignant progression into gastrointestinal (GI) tumors. However, accurate detection and diagnosis of GI precancerous lesions is challenging, as these lesions show little or no structural change. Thus, this prevents early intervention and reduces the success rate of therapy. In this review, we performed a systematic analysis of the technological advancements in the combined application of nanovesicles (NVs) and the human interstitial fluid (HIF) to specifically target GI premalignant lesions. NVs, which include quantum dots (QDs), are small membranous vehicles of a nanometer diameter that are widely used as drug delivery vectors, therapeutic effectors and diagnostic sensors. HIF is the fluid that is present in human interstitial tissues (HITs) in which signaling molecules and agents travel and can be found throughout the body. HIF is exploited by tumor cells for their invasion, migration and spread. Because the HITs span the entire submucosa of the gastrointestinal tract, they have been increasingly targeted in GI tumor therapy. The challenges involved in the combined application of NVs and HIF in the detection, diagnosis, prognosis and therapy of GI premalignant lesions are also discussed.
Collapse
Affiliation(s)
- Yu Huang
- Liuzhou Traditional Chinese Medical Hospital, Liuzhou 545001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Deng
- Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region, People's Republic of China.,Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jian Liang
- Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
49
|
Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315:1-22. [DOI: 10.1016/j.jconrel.2019.09.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
|
50
|
Potential clinical applications of the personalized, disease-specific protein corona on nanoparticles. Clin Chim Acta 2019; 501:102-111. [PMID: 31678275 DOI: 10.1016/j.cca.2019.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Nanoscale objects lose their original identity once in contact with biological fluids and get a new biological identity, referred to as a protein corona (PC). The PC modifies many of the physicochemical properties of nanoparticles (NPs), including surface charge, size, and aggregation state. These changes, in turn, affect the biological fate of NPs, including their biodistribution, pharmacokinetics, and therapeutic efficacy. It is well known that even small differences in the composition of a protein source (e.g., plasma and serum) can considerably change the composition of the corona formed on the surface of the same NPs. Recently, it has been shown that the PC is intensely affected by the patient's specific disease. Consequently, the same nanomaterial incubated with proteins of biological fluids belonging to patients with different pathologies adsorbs protein coronas with different compositions, giving rise to the concept of the personalized protein corona (PPC). Herein, we review recent advances on the topic of PPC, with a particular focus on their clinical significance.
Collapse
|