1
|
Yang H, Chen Q, Qiang H, Wang B, Chen J, Xie Y, Peng L, Zhao H, Tian J. Corrole-based photothermal nanocomposite hydrogel with nitric oxide release for diabetic wound healing. Acta Biomater 2025; 192:431-445. [PMID: 39653317 DOI: 10.1016/j.actbio.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
The management of chronic diabetic wounds remains a significant challenge due to persistent bacterial infections and impaired angiogenesis. Herein, we reported a nanocomposite hydrogel (M/P-SNO/G) incorporated with M/P-SNO nanoparticles engineered by supramolecular assembly of the photosensitizing mono-carboxyl corrole (MCC) and S-nitrosothiol-modified polyethylene glycol (mPEG-SNO) for synergistic photothermal therapy (PTT)/nitric oxide (NO) treatment of diabetic wounds. The strong π-π interaction among aggregated MCC in M/P-SNO enhances the optical absorption and photothermal ability, thereby facilitating the precise release of NO upon laser irradiation. The hydrogel matrix, composed of oxidized hyaluronic acid and carboxymethyl chitosan crosslinked by Schiff-base, demonstrates good injectability and self-healing characteristics, providing an ideal environment for wound repair. As expected, M/P-SNO/G exhibits a desirable photothermal performance and a controlled laser-responsive NO release, realizing enhanced bactericidal effect and anti-biofilm ability in vitro. In a full-thickness skin defect model on diabetic mice, M/P-SNO/G has proven effective in bacteria clearance and angiogenesis, significantly accelerating wound healing. This study presents a feasible supramolecular strategy to develop diabetic wound dressings with synergistic PTT/NO treatment. STATEMENT OF SIGNIFICANCE: Developing advanced dressings that simultaneously eliminate bacteria and accelerate wound recovery is essential for treating diabetic wounds. This study developed a nanocomposite hydrogel (M/P-SNO/G) featuring the synergistic effect of photothermal therapy (PTT) and nitric oxide (NO) treatment to accelerate infected diabetic wound healing. M/P-SNO nanoparticles within the hydrogel are self-assembled through the hydrophobic photosensitizing mono-carboxyl corrole (MCC) and the hydrophilic NO-releasing polymer (mPEG-SNO), where highly aggregated MCC molecules ensure superior photothermal performance. Meanwhile, the temperature increase induced by the photothermal effect activates NO release from the hydrogel. Under 660 nm laser irradiation, M/P-SNO/G demonstrates a PTT/NO synergy to effectively inhibit bacterial proliferation and promote angiogenesis, offering significant benefits in diabetic wound repair and further expanding the biomedical applications of corroles.
Collapse
Affiliation(s)
- Haixia Yang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Huaqiong Qiang
- The Affiliated Hospital of Hubei Provincial Government (Hubei Rehabilitation Hospital), Wuhan 430071, China.
| | - Bo Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Junyang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yingling Xie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Liyan Peng
- Department of Otorhinolaryngology, Tongji hospital, Tongji medical college, Huazhong University of Science and technology, Wuhan 430030, China.
| | - Huanhuan Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jian Tian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Yoon H, Park S, Jeon S, Lim M. Photoexcitation Dynamics of V-PYRRO/NO Investigated Using Femtosecond Time-Resolved Infrared Spectroscopy. J Phys Chem Lett 2024; 15:11975-11981. [PMID: 39584794 DOI: 10.1021/acs.jpclett.4c02943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Diazeniumdiolates spontaneously release nitric oxide (NO) in aqueous solutions. Therefore, protected diazeniumdiolates have been developed for the controlled administration of NO to specific targets. Diazeniumdiolates with photoprotecting groups are useful for spatiotemporal NO delivery. To develop photoactivated NO donors, understanding the photodissociation dynamics of photoprotected diazeniumdiolates is essential. The dynamics of photoexcited V-PYRRO/NO (a well-studied liver-selective NO prodrug) was investigated to understand the photodissociation mechanism of protected diazeniumdiolates at the molecular level. Upon excitation at 305 nm, the N═N bond of V-PYRRO/NO was cleaved within 0.3 ps, producing N-nitrosopyrrolidine and CH2═CHON. CH2═CHON, the first oxynitrene directly observed in the solution in real-time, was formed in the singlet state and rearranged into CH2═CHNO with a time constant of 16 ± 5 ns. The calculated potential energy surfaces of the excited states confirmed the unusual breakage of the N═N bond. The findings can be utilized to develop more effective photoactivated diazeniumdiolates.
Collapse
Affiliation(s)
- Hojeong Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Seongbeom Jeon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
3
|
Lai X, Yu L, Huang X, Gardner W, Bamford SE, Pigram PJ, Wang S, Brun APL, Muir BW, Song J, Wang Y, Hsu HY, Chan PWH, Shen HH. Enhanced Nitric Oxide Delivery Through Self-Assembling Nanoparticles for Eradicating Gram-Negative Bacteria. Adv Healthc Mater 2024; 13:e2403046. [PMID: 39263842 DOI: 10.1002/adhm.202403046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In the current battle against antibiotic resistance, the resilience of Gram-negative bacteria against traditional antibiotics is due not only to their protective outer membranes but also to mechanisms like efflux pumps and enzymatic degradation of drugs, underscores the urgent need for innovative antimicrobial tactics. Herein, this study presents an innovative method involving the synthesis of three furoxan derivatives engineered to self-assemble into nitric oxide (NO) donor nanoparticles (FuNPs). These FuNPs, notably supplied together with polymyxin B (PMB), achieve markedly enhanced bactericidal efficacy against a wide spectrum of bacterial phenotypes at considerably lower NO concentrations (0.1-2.8 µg mL-1), which is at least ten times lower than the reported data for NO donors (≥200 µg mL-1). The bactericidal mechanism is elucidated using confocal, scanning, and transmission electron microscopy techniques. Neutron reflectometry confirms that FuNPs initiate membrane disruption by specifically engaging with the polysaccharides on bacterial surfaces, causing structural perturbations. Subsequently, PMB binds to lipid A on the outer membrane, enhancing permeability and resulting in a synergistic bactericidal action with FuNPs. This pioneering strategy underscores the utility of self-assembly in NO delivery as a groundbreaking paradigm to circumvent traditional antibiotic resistance barriers, marking a significant leap forward in the development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Xiangfeng Lai
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Lei Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Xiangyi Huang
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Wil Gardner
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Sarah E Bamford
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Paul J Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Shuhong Wang
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2232, Australia
| | | | - Jiangning Song
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Shanghai, Wenzhou, 325027, China
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | | | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
4
|
Asadi K, Azarpira N, Heidari R, Hamidi M, Yousefzadeh-Chabok S, Nemati MM, Ommati MM, Amini A, Gholami A. Trinitroglycerin-loaded chitosan nanogels accelerate angiogenesis in wound healing process. Int J Biol Macromol 2024; 278:134937. [PMID: 39179074 DOI: 10.1016/j.ijbiomac.2024.134937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Trinitroglycerin (TNG) with remarkable angiogenic, antibacterial, and antioxidative activity is a promising candidate to govern wound healing capacity. However, its clinical administration is limited due to associated complications and NO short half-life. In the current study, TNG-loaded chitosan nanogels (TNG-Ngs) were examined in-vitro and in-vivo to gain insight into their clinical application. We prepared TNG-Ngs and characterized their physiochemical properties. The potential of TNG-Ngs was assessed using biocompatibility, scratch assay, and a full-thickness skin wounds model, followed by histopathological and immunohistochemistry examinations. TNG-Ngs particle size 96 ± 18 and definite size distribution histogram. The loading capacity (LC) and encapsulation efficiency (EE) of prepared TNG-Ngs were 70.2 % and 2.1 %, respectively. The TNG-Ngs samples showed enhanced migration of HUVECs with no apparent cytotoxicity. The topical use of TNG-Ngs200 on the wounds revealed a complete wound closure ratio, skin component formation, less scar width, remarkable granulation tissue, promoted collagen deposition, and enhanced the relative mean density of α-SMA and CD31. TNG-Ngs accelerated wound healing by promoting collagen deposition and angiogenic activity, as well as reducing inflammation. The findings indicated that TNG-Ngs is expected to be well vascularized in the wound area and to be more effective in topical therapy.
Collapse
Affiliation(s)
- Khatereh Asadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran; Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Hamidi
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | | | - Mohammad Mehdi Nemati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Abbas Amini
- Abdullah Al Salem University (AASU), College of Engineering and Energy, Khaldiya, Kuwait; Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW, Australia
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Hu J, Chen Y, Lin M, Duan K, Xu M, Li T, Zhao Y, Lee BH, Deng H. Arginine-loaded globular BSAMA/fibrous GelMA biohybrid cryogels with multifunctional features and enhanced healing for soft gingival tissue regeneration. Int J Biol Macromol 2024; 278:134932. [PMID: 39179087 DOI: 10.1016/j.ijbiomac.2024.134932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Mucogingival surgery has been widely used in soft gingival tissue augmentation in which autografts are predominantly employed. However, the autografts face grand challenges, such as scarcity of palatal donor tissue and postoperative discomfort. Therefore, development of alternative soft tissue substitutes has been an imperative need. Here, we engineered an interconnected porous bovine serum albumin methacryloyl (BSAMA: B, as a drug carrier and antioxidant)/gelatin methacryloyl (GelMA: G, as a biocompatible collagen-like component)-based cryogel with L-Arginine (Arg) loaded as an angiogenic molecule, which could serve as a promising gingival tissue biohybrid scaffold. BG@Arg cryogels featured macroporous architecture, biodegradation, sponge-like properties, suturability, and sustained Arg release. Moreover, BG@Arg cryogels promoted vessel formation and collagen deposition which play an important role in tissue regeneration. Most interestingly, BG@Arg cryogels were found to enhance antioxidant effects. Finally, the therapeutic effect of BG@Arg on promoting tissue regeneration was confirmed in rat full-thickness skin and oral gingival defect models. In vivo results revealed that BG@Arg2 could promote better angiogenesis, more collagen production, and better modulation of inflammation, as compared to a commercial collagen membrane. These advantages might render BG@Arg cryogels a promising alternative to commercial collagen membrane products and possibly autografts for soft gingival tissue regeneration.
Collapse
Affiliation(s)
- Jiajun Hu
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuan Chen
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mian Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Kairui Duan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Mengdie Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Tingting Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yueming Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bae Hoon Lee
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
6
|
Gong Y, Wang H, Sun J. AMP-Mimetic Antimicrobial Polymer-Involved Synergic Therapy with Various Coagents for Improved Efficiency. Biomacromolecules 2024; 25:4619-4638. [PMID: 38717069 DOI: 10.1021/acs.biomac.3c01458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The misuse of antibiotics contributes to the emergence of multidrug-resistant (MDR) bacteria. Infections caused by MDR bacteria are rapidly evolving into a significant threat to global healthcare due to the lack of effective and safe treatments. Antimicrobial peptides (AMPs) with broad-spectrum antibacterial activity kill bacteria generally through a membrane disruption mechanism; hence, they tend not to induce resistance readily. However, AMPs exhibit disadvantages, such as high cost and susceptibility to proteolytic degradation, which limit their clinical application. AMP-mimetic antimicrobial polymers, with low cost, stability to proteolysis, broad-spectrum antimicrobial activity, negligible antimicrobial resistance, and rapid bactericidal effect, have received extensive attention as a new type of antibacterial drugs. Lately, AMP-mimetic polymer-involved synergic therapy provides a superior alternative to combat MDR bacteria by distinct mechanisms. In this Review, we summarize the AMP-mimetic antimicrobial polymers involved in synergic therapy, particularly focusing on the different combinations between the polymers with commercially available antimicrobials, organic small molecule photosensitizers, inorganic nanomaterials, and nitric oxide.
Collapse
Affiliation(s)
- Yiyu Gong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Hepeng Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P. R. China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| |
Collapse
|
7
|
Jiang M, Zhang GH, Yu Y, Zhao YH, Liu J, Zeng Q, Feng MY, Ye F, Xiong DS, Wang L, Zhang YN, Yu L, Wei JJ, He LB, Zhi W, Du XR, Li NJ, Han CL, Yan HQ, Zhou ZT, Miao YB, Wang W, Liu WX. De novo design of a nanoregulator for the dynamic restoration of ovarian tissue in cryopreservation and transplantation. J Nanobiotechnology 2024; 22:330. [PMID: 38862987 PMCID: PMC11167790 DOI: 10.1186/s12951-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.
Collapse
Affiliation(s)
- Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Guo-Hui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Yuan Yu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yu-Hong Zhao
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Meng-Yue Feng
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fei Ye
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Dong-Sheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ya-Nan Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ling Yu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Jia-Jing Wei
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li-Bing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Weiwei Zhi
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Xin-Rong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ning-Jing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chang-Li Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - He-Qiu Yan
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Zhuo-Ting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wen Wang
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wei-Xin Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China.
| |
Collapse
|
8
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
9
|
Xu Q, Qiu L, Gu Q, Wang X, Pan X, Tong M, Fu Y, Zhao Y, Xi H. P407 hydrogel loaded with nitric oxide microbubbles promotes angiogenesis and functional improvement in testicular transplantation. Biomater Sci 2024; 12:1004-1015. [PMID: 38196338 DOI: 10.1039/d3bm01521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Prepubertal male patients with cancer have decreased fertility after treatment, but there are currently no suitable means for fertility rescue. Testicular transplantation seems to be a promising treatment. The short-term insufficiency of blood supply after transplantation is the key problem that needs to be solved. In this research, nitric oxide (NO), a gas and small molecule transmitter with the effect of promoting angiogenesis, acted at the site of testicular transplantation. Herein, poloxamer-407 (P407) and lipid microbubble materials served as transport carriers for NO and helped NO to function at the transplant site. P407 hydrogel loaded with NO microbubbles (PNO) slowly released NO in vitro. The three-dimensional space of the hydrogel provided a stable environment for NO microbubbles, which is conducive to the continuous release of NO. In this study, 25% PNO (w/v) was selected, and the gelling temperature was 19.47 °C. The gelling efficiency was relatively high at body temperature. Rheological experiments showed that PNO, at this concentration, had stable mechanical properties. The results from in vivo experiments demonstrated that testicular grafts in the PNO group exhibited a notably accelerated blood flow recovery compared to the other groups. Additionally, the PNO group displayed a significant improvement in reproductive function recovery. In conclusion, PNO exhibited slow release of NO, and a small amount of NO promoted angiogenesis in testicular grafts and restored reproductive function.
Collapse
Affiliation(s)
- Qi Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325025, China.
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Lin Qiu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325025, China.
| | - Qin Gu
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Xinji Wang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Xiehua Pan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Mengqi Tong
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Yanghua Fu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325025, China.
| | - Yingzheng Zhao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Haitao Xi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325025, China.
| |
Collapse
|
10
|
Sarkar S, Kumar R, Matson JB. Hydrogels for Gasotransmitter Delivery: Nitric Oxide, Carbon Monoxide, and Hydrogen Sulfide. Macromol Biosci 2024; 24:e2300138. [PMID: 37326828 PMCID: PMC11180494 DOI: 10.1002/mabi.202300138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Gasotransmitters, gaseous signaling molecules including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S), maintain myriad physiological processes. Low levels of gasotransmitters are often associated with specific problems or diseases, so NO, CO, and H2 S hold potential in treating bacterial infections, chronic wounds, myocardial infarction, ischemia, and various other diseases. However, their clinical applications as therapeutic agents are limited due to their gaseous nature, short half-life, and broad physiological roles. One route toward the greater application of gasotransmitters in medicine is through localized delivery. Hydrogels are attractive biomedical materials for the controlled release of embedded therapeutics as they are typically biocompatible, possess high water content, have tunable mechanical properties, and are injectable in certain cases. Hydrogel-based gasotransmitter delivery systems began with NO, and hydrogels for CO and H2 S have appeared more recently. In this review, the biological importance of gasotransmitters is highlighted, and the fabrication of hydrogel materials is discussed, distinguishing between methods used to physically encapsulate small molecule gasotransmitter donor compounds or chemically tether them to a hydrogel scaffold. The release behavior and potential therapeutic applications of gasotransmitter-releasing hydrogels are also detailed. Finally, the authors envision the future of this field and describe challenges moving forward.
Collapse
Affiliation(s)
| | | | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
11
|
Ali R, Sen S, Hameed R, Nazir A, Verma S. Strategies for gaseous neuromodulator release in chemical neuroscience: Experimental approaches and translational validation. J Control Release 2024; 365:132-160. [PMID: 37972768 DOI: 10.1016/j.jconrel.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Gasotransmitters are a group of short-lived gaseous signaling molecules displaying diverse biological functions depending upon their localized concentration. Nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO) are three important examples of endogenously produced gasotransmitters that play a crucial role in human neurophysiology and pathogenesis. Alterations in their optimal physiological concentrations can lead to various severe pathophysiological consequences, including neurological disorders. Exogenous administration of gasotransmitters has emerged as a prominent therapeutic approach for treating such neurological diseases. However, their gaseous nature and short half-life limit their therapeutic delivery. Therefore, developing synthetic gasotransmitter-releasing strategies having control over the release and duration of these gaseous molecules has become imperative. However, the complex chemistry of synthesis and the challenges of specific quantified delivery of these gases, make their therapeutic application a challenging task. This review article provides a focused overview of emerging strategies for delivering gasotransmitters in a controlled and sustained manner to re-establish neurophysiological homeostasis.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shantanu Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
12
|
Sheet PS, Lautner G, Meyerhoff ME, Schwendeman SP. Mechanistic analysis of the photolytic decomposition of solid-state S-nitroso-N-acetylpenicillamine. Nitric Oxide 2024; 142:38-46. [PMID: 37979933 DOI: 10.1016/j.niox.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
S-Nitroso-N-acetylpenicillamine (SNAP) is among the most common nitric oxide (NO)-donor molecules and its solid-state photolytic decomposition has potential for inhaled nitric oxide (iNO) therapy. The photochemical NO release kinetics and mechanism were investigated by exposing solid-state SNAP to a narrow-band LED as a function of nominal wavelength and intensity of incident light. The photolytic efficiency, decomposition products, and the photolytic pathways of the SNAP were examined. The maximum light penetration depth through the solid layer of SNAP was determined by an optical microscope and found to be within 100-200 μm, depending on the wavelength of light. The photolysis of solid-state SNAP to generate NO along with the stable thiyl (RS·) radical was confirmed using Electron Spin Resonance (ESR) spectroscopy. The fate of the RS· radical in the solid phase was studied both in the presence and absence of O2 using NMR, IR, ESR, and UPLC-MS. The changes in the morphology of SNAP due to its photolysis were examined using PXRD and SEM. The stable thiyl radical formed from the photolysis of solid SNAP was found to be reactive with another adjacent thiyl radical to form a disulfide (RSSR) or with oxygen to form various sulfonyl and sulfonyl peroxyl radicals {RS(O)xO·, x = 0 to 7}. However, the thiyl radical did not recombine with NO to reform the SNAP. From the PXRD data, it was found that the SNAP loses its crystallinity by generating the NO after photolysis. The initial release of NO during photolysis was increased with increased intensity of light, whereas the maximum light penetration depth was unaffected by light intensity. The knowledge gained about the photochemical reactions of SNAP may provide important insight in designing portable photoinduced NO-releasing devices for iNO therapy.
Collapse
Affiliation(s)
- Partha S Sheet
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gergely Lautner
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
Bai Q, Wang M, Liu J, Sun X, Yang P, Qu F, Lin H. Porous Molybdenum Nitride Nanosphere as Carrier-Free and Efficient Nitric Oxide Donor for Synergistic Nitric Oxide and Chemo/Sonodynamic Therapy. ACS NANO 2023; 17:20098-20111. [PMID: 37805936 DOI: 10.1021/acsnano.3c05790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Given its abundant physiological functions, nitric oxide (NO) has attracted much attention as a cancer therapy. The sensitive release and great supply capacity are significant indicators of NO donors and their performance. Here, a transition metal nitride (TMN) MoN@PEG is adopted as an efficient NO donor. The release process starts with H+-triggered denitrogen owing to the high electronegativity of the N atom and weak Mo-N bond. Then, these active NHx are oxidized by O2 and other reactive oxygen species (ROS) to form NO, endowing specific release to the tumor microenvironment (TME). With a porous nanosphere structure (80 nm), MoN@PEG does not require an extra carrier for NO delivery, contributing to ultrahigh atomic utilization for outstanding release ability (94.1 ± 5.6 μM). In addition, it can also serve as a peroxidase and sonosensitizer for anticancer treatment. To further improve the charge separation, MoN-Pt@PEG was prepared to enhance the sonodynamic therapy (SDT) effect. Accordingly, ultrasound (US) further promotes NO generation due to more ROS generation, facilitating in situ peroxynitrite (·ONOO-) generation with great cytotoxicity. At the same time, the nanostructure also degrades gradually, leading to high elimination (94.6%) via feces and urine within 14-day. The synergistic NO and chemo-/sono-dynamic therapy brings prominent antitumor efficiency and further activates the immune response to inhibit metastasis and recurrence. This work develops a family of NO donors that would further widen the application of NO therapy in other fields.
Collapse
Affiliation(s)
- Qingchen Bai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Miao Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jingwei Liu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
14
|
Zhao Z, Shan X, Zhang H, Shi X, Huang P, Sun J, He Z, Luo C, Zhang S. Nitric oxide-driven nanotherapeutics for cancer treatment. J Control Release 2023; 362:151-169. [PMID: 37633361 DOI: 10.1016/j.jconrel.2023.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule endowed with diverse biological functions, offering vast potential in the realm of cancer treatment. Considerable efforts have been dedicated to NO-based cancer therapy owing to its good biosafety and high antitumor activity, as well as its efficient synergistic therapy with other antitumor modalities. However, delivering this gaseous molecule effectively into tumor tissues poses a significant challenge. To this end, nano drug delivery systems (nano-DDSs) have emerged as promising platforms for in vivo efficient NO delivery, with remarkable achievements in recent years. This review aims to provide a summary of the emerging NO-driven antitumor nanotherapeutics. Firstly, the antitumor mechanism and related clinical trials of NO therapy are detailed. Secondly, the latest research developments in the stimulation of endogenous NO synthesis are presented, including the regulation of nitric oxide synthases (NOS) and activation of endogenous NO precursors. Moreover, the emerging nanotherapeutics that rely on tumor-specific delivery of NO donors are outlined. Additionally, NO-driven combined nanotherapeutics for multimodal cancer theranostics are discussed. Finally, the future directions, application prospects, and challenges of NO-driven nanotherapeutics in clinical translation are highlighted.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xinzhu Shan
- Department of State Key Laboratory of Natural and Biomimetic Drugs, College of Pharmaceutical Sciences, Peking University, Beijing 100871, PR China
| | - Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Peiqi Huang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
15
|
Ding K, Yu X, Wang D, Wang X, Li Q. Small diameter expanded polytetrafluoroethylene vascular graft with differentiated inner and outer biomacromolecules for collaborative endothelialization, anti-thrombogenicity and anti-inflammation. Colloids Surf B Biointerfaces 2023; 229:113449. [PMID: 37506438 DOI: 10.1016/j.colsurfb.2023.113449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
Without differentiated inner and outer biological function, expanded polytetrafluoroethylene (ePTFE) small-diameter (<6 mm) artificial blood vessels would fail in vivo due to foreign body rejection, thrombosis, and hyperplasia. In order to synergistically promote endothelialization, anti-thrombogenicity, and anti-inflammatory function, we modified the inner and outer surface of ePTFE, respectively, by grafting functional biomolecules, such as heparin and epigallocatechin gallate (EGCG), into the inner surface and polyethyleneimine and rapamycin into the outer surface via layer-by-layer self-assembly. Fourier-transform infrared spectroscopy showed the successful incorporation of EGCG, heparin, and rapamycin. The collaborative release profile of heparin and rapamycin lasted for 42 days, respectively. The inner surface promoted human umbilical vein endothelial cells (HUVECs) adhesion and growth and that the outer surface inhibited smooth muscle cells growth and proliferation. The modified ePTFE effectively regulated the differentiation behavior of RAW264.7, inhibited the expression of proinflammatory mediator TNF-α, and up-regulated the expression of anti-inflammatory genes Arg1 and Tgfb-1. The ex vivo circulation results indicated that the occlusions and total thrombus weight of modified ePTFE was much lower than that of the thrombus formed on the ePTFE, presenting good anti-thrombogenic properties. Hence, the straightforward yet efficient synergistic surface functionalization approach presented a potential resolution for the prospective clinical application of small-diameter ePTFE blood vessel grafts.
Collapse
Affiliation(s)
- Kangjia Ding
- School of Materials science & Engineering, Zhengzhou University, Zhengzhou 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xueke Yu
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Dongfang Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China; School of Mechanics and safety Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Xiaofeng Wang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China; School of Mechanics and safety Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qian Li
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
16
|
Samir M, Abdelkader RM, Boushehri MS, Mansour S, Lamprecht A, Tammam SN. Enhancement of mitochondrial function using NO releasing nanoparticles; a potential approach for therapy of Alzheimer's disease. Eur J Pharm Biopharm 2023; 184:16-24. [PMID: 36640916 DOI: 10.1016/j.ejpb.2023.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Increasing evidence is showing the important role of mitochondrial dysfunction in AD. Mitochondria based oxidative stress, decrease in respiratory chain activity and ATP production are all associated with AD, hence indicating that the enhancement of mitochondrial function and biogenesis present a promising therapeutic approach for AD. Nitric oxide (NO) is an initiator of mitochondrial biogenesis. However, its gaseous nature and very short half-life limit the realization of its therapeutic potential. Additionally, its uncontrolled in-vivo distribution results in generalized vasodilation, hypotension among other off-target effects. Diazeniumdiolates (NONOates) are NO donors that release NO in physiological temperature and pH. Their encapsulation within a hydrophobic matrix carrier system could control the release of NO, and at the same time enable its delivery to the brain. In this work, PAPANONOate (PN) a NO donor was encapsulated in small (92 ± 7 nm) poly (lactic-co-glycolic acid) (PLGA) NPs. These NPs did not induce hemolysis upon intravenous administration and were able to accumulate in the brains of lipopolysaccharides (LPS) induced neurodegeneration mouse models. The encapsulation of PN within a hydrophobic PLGA matrix enabled the sustained release of NO from NPs (≈ 3 folds slower relative to free PN) and successfully delivered PN to brain. As a result, PN-NPs but not free PN resulted in an enhancement in memory and cognition in animals with neurodegeneration as determined by the Y-maze test. The enhancement in cognition was a result of increased mitochondria function as indicated by the increased production of ATP and Cytochrome C oxidase enzyme activity.
Collapse
Affiliation(s)
- Mirna Samir
- Department of Pharmaceutical Technology, German University in Cairo (GUC), Egypt
| | - Reham M Abdelkader
- Department of Pharmacology, Toxicology and German University in Cairo (GUC), Egypt
| | - Maryam Shetab Boushehri
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Samar Mansour
- Department of Pharmaceutical Technology, German University in Cairo (GUC), Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Germany; Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France
| | - Salma N Tammam
- Department of Pharmaceutical Technology, German University in Cairo (GUC), Egypt.
| |
Collapse
|
17
|
Das RP, Singh BG, Aishwarya J, Kumbhare LB, Kunwar A. 3,3'-Diselenodipropionic acid immobilised gelatin gel: a biomimic catalytic nitric oxide generating material for topical wound healing application. Biomater Sci 2023; 11:1437-1450. [PMID: 36602012 DOI: 10.1039/d2bm01964g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) plays a pivotal role in the wound healing process and promotes the generation of healthy endothelium. In this work, a simple method has been developed for fabricating a diselenide grafted gelatin gel, which reduces NO donors such as S-nitroso-N-acetylpenicillamine (SNAP) by glutathione peroxidase-like mechanism to produce NO. Briefly, the process involved covalently conjugating 3,3'-diselenodipropionic acid (DSePA) with gelatin via carbodiimide coupling. The resulting gelatin-DSePA conjugate (G-Se-Se-G) demonstrated NO production upon incubation with SNAP and glutathione (GSH) with the flux of 4.8 ± 0.6 nmol cm-2 min-1 and 1.6 ± 0.1 nmol cm-2 min-1 at 10 min and 40 min, respectively. The G-Se-Se-G recovered even after 5 days of incubation with the reaction mixture retaining catalytic activity up to 74%. Subsequently, G-Se-Se-G was suspended (5% w/v) in water with lecithin (6% w/w of gelatin) and F127 (3% w/w of gelatin) to prepare gel through temperature dependant gelation method. The fabricated G-Se-Se-G gel exhibited desirable rheological characteristics and excellent mechanical stability under storage conditions and did not cause any significant toxicity in normal human keratinocytes (HaCaT) and fibroblast cells (WI38) up to 50 μg ml-1 of selenium equivalent. Finally, mice studies confirmed that topically applied G-Se-Se-G gel and SNAP promoted faster epithelization and collagen deposition at the wound site. In conclusion, the development of a biomimetic NO generating gel with sustained activity and biocompatibility was achieved.
Collapse
Affiliation(s)
- Ram P Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - J Aishwarya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India.,Advanced Centre for Treatment, Research and Education in Cancer, Mumbai-410210, India
| | - Liladhar B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
18
|
Yoon H, Park S, Lim M. Dynamics of Irreversible NO Release from Photoexcited Molsidomine. J Phys Chem Lett 2023; 14:516-523. [PMID: 36626829 DOI: 10.1021/acs.jpclett.2c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molsidomine (SIN-10), an orally administered NO-delivery drug for vasodilation, cannot be used to alleviate hypertensive crisis because it releases NO at a slow rate. SIN-10 may be used to treat sudden cardiac abnormalities if the rapid and immediate release of NO is achieved via photoactivation. The photodissociation dynamics associated with the NO release process from SIN-10 in CHCl3 was investigated using time-resolved infrared spectroscopy. Approximately 41% of photoexcited SIN-10 at 360 nm decomposed into CO2, CH2CH3 radical, and the remaining radical fragment [SIN-1A(-H)] with a time constant of 43 ps. All SIN-1A(-H) released NO spontaneously with a time constant of 68 ns, becoming N-morpholino-aminoacetonitrile, resulting in 41% for the quantum yield of immediate NO release from SIN-10. The results obtained can be used to realize the quantitative control of the NO administration at a specific time, and SIN-10 can be potentially used to address the phenomenon of hypertensive crisis.
Collapse
Affiliation(s)
- Hojeong Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan46241, Korea
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan46241, Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan46241, Korea
| |
Collapse
|
19
|
Li Y, Yoon B, Dey A, Nguyen VQ, Park JH. Recent progress in nitric oxide-generating nanomedicine for cancer therapy. J Control Release 2022; 352:179-198. [PMID: 36228954 DOI: 10.1016/j.jconrel.2022.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Nitric oxide (NO) is an endogenous, multipotent biological signaling molecule that participates in several physiological processes. Recently, exogenous supplementation of tumor tissues with NO has emerged as a potential anticancer therapy. In particular, it induces synergistic effects with other conventional therapies (such as chemo-, radio-, and photodynamic therapies) by regulating the activity of P-glycoprotein, acting as a vascular relaxant to relieve tumor hypoxia, and participating in the metabolism of reactive oxygen species. However, NO is highly reactive, and its half-life is relatively short after generation. Meanwhile, NO-induced anticancer activity is dose-dependent. Therefore, the targeted delivery of NO to the tumor is required for better therapeutic effects. In the past decade, NO-generating nanomedicines (NONs), which enable sustained and specific NO release in tumor tissues, have been developed for enhanced cancer therapy. This review describes the recent efforts and preclinical achievements in the development of NON-based cancer therapies. The chemical structures employed in the fabrication of NONs are summarized, and the strategies involved in NON-based cancer therapies are elaborated.
Collapse
Affiliation(s)
- Yuce Li
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Been Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Anup Dey
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
20
|
On-demand therapeutic delivery of hydrogen sulfide aided by biomolecules. J Control Release 2022; 352:586-599. [PMID: 36328076 DOI: 10.1016/j.jconrel.2022.10.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Hydrogen sulfide (H2S), known as the third gasotransmitter, exerts various physiological functions including cardiac protection, angiogenesis, anti-inflammatory, and anti-cancer capability. Given its promising therapeutic potential as well as severe perniciousness if improper use, the sustained and tunable H2S delivery systems are highly required for H2S-based gas therapy with enhanced bioactivity and reduced side effects. To this end, a series of stimuli-responsive compounds capable of releasing H2S (termed H2S donors) have been designed over the past two decades to mimic the endogenous generation of H2S and elucidate the biological functions. Further to improve the stability of H2S donors and achieve the targeted delivery, various delivery systems have been constructed. In this review, we focus on the recent advances of an emerging subset, biomolecular-based H2S delivery systems, which combine H2S donors with biomolecular vectors including polysaccharide, peptide, and protein. We demonstrated their basic structures, building strategies, and therapeutic applications respectively to unfold their inherent merits endued by biomolecules including biocompatibility, biodegradability as well as expansibility. The varied development potentials of biomolecular-based H2S delivery systems based on their specific properties are also discussed. At the end, brief future outlooks and upcoming challenges are presented as well.
Collapse
|
21
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
22
|
Tavares G, Alves P, Simões P. Recent Advances in Hydrogel-Mediated Nitric Oxide Delivery Systems Targeted for Wound Healing Applications. Pharmaceutics 2022; 14:pharmaceutics14071377. [PMID: 35890273 PMCID: PMC9315818 DOI: 10.3390/pharmaceutics14071377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the noticeable evolution in wound treatment over the centuries, a functional material that promotes correct and swift wound healing is important, considering the relative weight of chronic wounds in healthcare. Difficult to heal in a fashionable time, chronic wounds are more prone to infections and complications thereof. Nitric oxide (NO) has been explored for wound healing applications due to its appealing properties, which in the wound healing context include vasodilation, angiogenesis promotion, cell proliferation, and antimicrobial activity. NO delivery is facilitated by molecules that release NO when prompted, whose stability is ensured using carriers. Hydrogels, popular materials for wound dressings, have been studied as scaffolds for NO storage and delivery, showing promising results such as enhanced wound healing, controlled and sustained NO release, and bactericidal properties. Systems reported so far regarding NO delivery by hydrogels are reviewed.
Collapse
|
23
|
Targeting Arginine in COVID-19-Induced Immunopathology and Vasculopathy. Metabolites 2022; 12:metabo12030240. [PMID: 35323682 PMCID: PMC8953281 DOI: 10.3390/metabo12030240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents a major public health crisis that has caused the death of nearly six million people worldwide. Emerging data have identified a deficiency of circulating arginine in patients with COVID-19. Arginine is a semi-essential amino acid that serves as key regulator of immune and vascular cell function. Arginine is metabolized by nitric oxide (NO) synthase to NO which plays a pivotal role in host defense and vascular health, whereas the catabolism of arginine by arginase to ornithine contributes to immune suppression and vascular disease. Notably, arginase activity is upregulated in COVID-19 patients in a disease-dependent fashion, favoring the production of ornithine and its metabolites from arginine over the synthesis of NO. This rewiring of arginine metabolism in COVID-19 promotes immune and endothelial cell dysfunction, vascular smooth muscle cell proliferation and migration, inflammation, vasoconstriction, thrombosis, and arterial thickening, fibrosis, and stiffening, which can lead to vascular occlusion, muti-organ failure, and death. Strategies that restore the plasma concentration of arginine, inhibit arginase activity, and/or enhance the bioavailability and potency of NO represent promising therapeutic approaches that may preserve immune function and prevent the development of severe vascular disease in patients with COVID-19.
Collapse
|
24
|
Yang C, Chung N, Song C, Youm HW, Lee K, Lee JR. Promotion of angiogenesis toward transplanted ovaries using nitric oxide releasing nanoparticles in fibrin hydrogel. Biofabrication 2021; 14. [PMID: 34852328 DOI: 10.1088/1758-5090/ac3f28] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Transplantation of ovary is one method of facilitating fertility preservation to increase the quality of life of cancer survivors. Immediately after transplantation, ovaries are under ischemic conditions owing to a lack of vascular anastomosis between the graft and host tissues. The transplanted ovaries can suffer damage because of lack of oxygen and nutrients, resulting in necrosis and dysfunction. In the technique proposed in this paper, the ovary is encapsulated with nitric oxide-releasing nanoparticles (NO-NPs) in fibrin hydrogels, which form a carrying matrix to prevent ischemic damage and accelerate angiogenesis. The low concentration of NO released from mPEG-PLGA nanoparticles elicits blood vessel formation, which allows transplanted ovaries in the subcutis to recover from the ischemic period. In experiments with mice, the NO-NPs/fibrin hydrogel improved the total number and quality of ovarian follicles after transplantation. The intra-ovarian vascular density was 4.78 folds higher for the NO-NPs/fibrin hydrogel groups compared to that for the nontreated groups. Finally,in vitrofertilization revealed a successful blastocyst formation rate for NO-NPs/fibrin hydrogel coated ovaries. Thus, NO-NPs/fibrin hydrogels can provide an appropriate milieu to promote angiogenesis and be considered as adjuvant surgery materials for fertility preservation.
Collapse
Affiliation(s)
- Chungmo Yang
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.,Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nanum Chung
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chaeyoung Song
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hye Won Youm
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
25
|
Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021; 179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
In addition to being notorious air pollutants, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have also been known as endogenous gaseous signaling molecules (GSMs). These GSMs play critical roles in maintaining the homeostasis of living organisms. Importantly, the occurrence and development of many diseases such as inflammation and cancer are highly associated with the concentration changes of GSMs. As such, GSMs could also be used as new therapeutic agents, showing great potential in the treatment of many formidable diseases. Although clinically it is possible to directly inhale GSMs, the precise control of the dose and concentration for local delivery of GSMs remains a substantial challenge. The development of gaseous signaling molecule-releasing molecules provides a great tool for the safe and convenient delivery of GSMs. In this review article, we primarily focus on the recent development of macromolecular nanocarriers for the local delivery of various GSMs. Learning from the chemistry of small molecule-based donors, the integration of these gaseous signaling molecule-releasing molecules into polymeric matrices through physical encapsulation, post-modification, or direct polymerization approach renders it possible to fabricate numerous macromolecular nanocarriers with optimized pharmacokinetics and pharmacodynamics, revealing improved therapeutic performance than the small molecule analogs. The development of GSMs represents a new means for many disease treatments with unique therapeutic outcomes.
Collapse
|
26
|
Yong HW, Kakkar A. The unexplored potential of gas‐responsive polymers in drug delivery: progress, challenges and outlook. POLYM INT 2021. [DOI: 10.1002/pi.6320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hui Wen Yong
- Department of Chemistry McGill University Montréal QC Canada
| | - Ashok Kakkar
- Department of Chemistry McGill University Montréal QC Canada
| |
Collapse
|
27
|
Ma T, Zhang Z, Chen Y, Su H, Deng X, Liu X, Fan Y. Delivery of Nitric Oxide in the Cardiovascular System: Implications for Clinical Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms222212166. [PMID: 34830052 PMCID: PMC8625126 DOI: 10.3390/ijms222212166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in cardiovascular homeostasis and its abnormal delivery is highly associated with the occurrence and development of cardiovascular disease (CVD). The assessment and manipulation of NO delivery is crucial to the diagnosis and therapy of CVD, such as endothelial dysfunction, atherosclerotic progression, pulmonary hypertension, and cardiovascular manifestations of coronavirus (COVID-19). However, due to the low concentration and fast reaction characteristics of NO in the cardiovascular system, clinical applications centered on NO delivery are challenging. In this tutorial review, we first summarized the methods to estimate the in vivo NO delivery process, based on computational modeling and flow-mediated dilation, to assess endothelial function and vulnerability of atherosclerotic plaque. Then, emerging bioimaging technologies that have the potential to experimentally measure arterial NO concentration were discussed, including Raman spectroscopy and electrochemical sensors. In addition to diagnostic methods, therapies aimed at controlling NO delivery to regulate CVD were reviewed, including the NO release platform to treat endothelial dysfunction and atherosclerosis and inhaled NO therapy to treat pulmonary hypertension and COVID-19. Two potential methods to improve the effectiveness of existing NO therapy were also discussed, including the combination of NO release platform and computational modeling, and stem cell therapy, which currently remains at the laboratory stage but has clinical potential for the treatment of CVD.
Collapse
|
28
|
Yoon H, Park S, Lim M. Photodissociation Dynamics of Nitric Oxide from N-Acetylcysteine- or N-Acetylpenicillamine-bound Roussin's Red Ester. ACS OMEGA 2021; 6:27158-27169. [PMID: 34693136 PMCID: PMC8529681 DOI: 10.1021/acsomega.1c03820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/29/2021] [Indexed: 05/05/2023]
Abstract
The photochemical release of nitric oxide (NO) from a NO precursor is advantageous in terms of spatial, temporal, and dosage control of NO delivery to target sites. To realize full control of the quantitative NO administration from photoactivated NO precursors, it is necessary to have detailed dynamical information on the photodissociation of NO from NO precursors. We synthesized two new water-soluble Roussin's red esters (RREs), [Fe2(μ-N-acetylcysteine)2(NO)4] and [Fe2(μ-N-acetylpenicillamine)2(NO)4], which have five times longer lifetime than the well-known [Fe2(μ-cysteine)2(NO)4]. The photodissociation dynamics of NO from these RREs in water were investigated over a broad time range from 0.3 ps to 10 μs after excitation at 310 and 400 nm using femtosecond time-resolved infrared (IR) spectroscopy. When these RREs are excited, they either release one NO, producing a radical species deficient in one NO (R), [Fe2(μ-RS)2(NO)3], or relax into the ground state without photodeligation via an electronically excited intermediate state (M). R appears immediately after photoexcitation, suggesting that one NO is photodissociated faster than 0.3 ps. A certain fraction of R undergoes geminate recombination (GR) with NO with a time constant of 7-9 ps, while the remaining R competitively binds to the solvent. Solvent-bound R eventually bimolecularly recombines with NO with a rate constant of (1.3-1.6) × 108 M-1 s-1. For a given RRE molecule, the fractional yield of M (0.62-0.76) depends on the excitation wavelength (λex); however, the relaxation time of M (6 ± 1 ns) is independent of λex. Although the primary quantum yield of NO photodissociation (Φ1) was found to be 0.24-0.38, the final yield of NO suitable for other reactions (Φ2) was reduced to 0.14-0.29 due to the picosecond GR of the dissociated NO with R. Detailed photoexcitation dynamics of RRE can be utilized in the quantitative control of NO administration at a specific site and time, promoting pin-point usage of NO in chemistry and biology. We demonstrate that femtosecond IR spectroscopy combined with quantum chemical calculations is a powerful method for obtaining detailed dynamic information on photoactivated NO precursors such as Φ1 and Φ2, the GR yield, and secondary reactions of the nascent photoproducts, which are essential information for the design of efficient photoactivated NO precursors and their quantitative utilization.
Collapse
|
29
|
Yoon H, Park S, Lim M. Dynamics of photodissociation of nitric oxide from S-nitrosylated cysteine and N-acetylated cysteine derivatives in water. Phys Chem Chem Phys 2021; 23:13512-13525. [PMID: 34124727 DOI: 10.1039/d1cp01743h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cysteine and N-acetylated cysteine derivatives are ubiquitous in biological systems; they have thiol groups that bind NO to form S-nitrosothiols (RSNOs) such as S-nitrosocysteine (CySNO), S-nitroso-N-acetylcysteine (NacSNO), and S-nitroso-N-acetylpenicillamine (NapSNO). Although they have been utilised as thermally or catalytically decomposing NO donors, their photochemical applications are yet to be fully explored owing to the lack of photodissociation dynamics. To this end, the photoexcitation dynamics of these RSNOs in water at 330 nm were investigated using femtosecond time-resolved infrared (TRIR) spectroscopy over a broad time range encompassing the entire reaction, which includes the primary reaction, secondary reactions of the reaction intermediates, and product formation. We discovered that the acetate and amide groups in these RSNOs have strong vibrational bands sensitive to the bondage of NO and the electronic state of the compound, which facilitates the identification of reaction intermediates involved in photoexcitation. The simplest thiol available with the acetate group-thioglycolic acid-was nitrosylated; it produced S-nitrosothioglycolic acid (TgSNO) and was comparatively investigated. Transient absorption bands in the TRIR spectra of the RSNOs were assigned using quantum chemical calculations. Photoexcited cysteine-related RSNOs either decompose into RS and NO within 0.3 ps after excitation at 330 nm with a primary quantum yield (Φ1) of 0.46-1 or relax into an electronically excited intermediate state lying at 42 ± 3 kcal mol-1 above the ground state, which relaxes into the ground state with a time constant of 460-520 ps. A majority (62-80%) of the RS radical geminately rebinds with NO at a time constant of 3-7 ps. The remaining RS reacts with the neighbouring RSNO, which produces additional NO and RSSR with a (nearly) diffusion-limited rate constant that doubles the amount of NO produced; further, it remarkably extends the time window for the dissociated NO to react with the target compound. The final fraction of NO produced from these RSNOs at 330 nm was 0.32-0.58, and it depends on the geminate rebinding yield and Φ1. The detailed dynamics of the photoexcited RSNO can be utilised in the quantitative application of these RSNOs in practical use and in the synthesis of more efficient photoactivated NO precursors.
Collapse
Affiliation(s)
- Hojeong Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
30
|
Lee J, Yang C, Ahn S, Choi Y, Lee K. Enhanced NO-induced angiogenesis via NO/H 2S co-delivery from self-assembled nanoparticles. Biomater Sci 2021; 9:5150-5159. [PMID: 33949445 DOI: 10.1039/d1bm00448d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) have been the focus of research as therapeutic agents because of their biological functions. The controlled release of NO and H2S can enhance NO-induced angiogenesis by H2S inhibiting PDE5A. Polymeric carriers have been researched to deliver gasotransmitters and used as therapeutic agents because of their important ability to help control the concentration of NO and H2S. Here, NO/H2S-releasing nanoparticles were self-assembled from carboxyl-functionalized mPEG-PLGH-thiobenzamide [(methoxy poly (ethylene glycol-b-lactic-co-glycolic-co-hydroxymethyl propionic acid)-thiobenzamide)], PTA copolymer and encapsulated diethylenetriamine NONOate (DETA NONOate). The PTA copolymers were characterized by FT-IR and 1H NMR, and the PTA-NO nanoparticles (PTA-NO-NPs) were confirmed to have core-shell structures with a size of about 140 nm. The PTA-NO-NPs were demonstrated to be biocompatible with viabilities above 100% in various cell types, with a sustained NO and H2S releasing behavior over 72 h. Co-releasing NO and H2S accelerated tube formation by HUVECs compared to the only NO- or H2S-releasing groups in vitro. Also, PTA-NO-NPs performed enhanced angiogenesis compared to the control groups with statistically significant differences ex vivo. These results indicate the feasibility of medical applications through NO and H2S crosstalk.
Collapse
Affiliation(s)
- Jieun Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Chungmo Yang
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sangeun Ahn
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Yeonjeong Choi
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Delivering nitric oxide with poly(n-butyl methacrylate) films doped with S-nitroso-N-acetylpenicillamine. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Nowaczyk A, Kowalska M, Nowaczyk J, Grześk G. Carbon Monoxide and Nitric Oxide as Examples of the Youngest Class of Transmitters. Int J Mol Sci 2021; 22:ijms22116029. [PMID: 34199647 PMCID: PMC8199767 DOI: 10.3390/ijms22116029] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
The year 2021 is the 100th anniversary of the confirmation of the neurotransmission phenomenon by Otto Loewi. Over the course of the hundred years, about 100 neurotransmitters belonging to many chemical groups have been discovered. In order to celebrate the 100th anniversary of the confirmation of neurotransmitters, we present an overview of the first two endogenous gaseous transmitters i.e., nitric oxide, and carbon monoxide, which are often termed as gasotransmitters.
Collapse
Affiliation(s)
- Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland;
- Correspondence: ; Tel.: +48-52-585-3904
| | - Magdalena Kowalska
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland;
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland;
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 75 Ujejskiego St., 85-168 Bydgoszcz, Poland;
| |
Collapse
|
33
|
Pelegrino MT, Pieretti JC, Nakazato G, Gonçalves MC, Moreira JC, Seabra AB. Chitosan chemically modified to deliver nitric oxide with high antibacterial activity. Nitric Oxide 2020; 106:24-34. [PMID: 33098968 DOI: 10.1016/j.niox.2020.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
The aim of the current study is to report a simple and efficient method to chemically modify chitosan in order to form S-nitroso-chitosan for antibacterial applications. Firstly, commercial chitosan (CS) was modified to form thiolated chitosan (TCS) based on an easy and environmental-friendly method. TCS was featured based on physicochemical and morphological techniques. Results have confirmed that thiol groups in TCS formed after CS's primary amino groups were replaced with secondary amino groups. Free thiol groups in TCS were nitrosated to form S-nitrosothiol moieties covalently bond to the polymer backbone (S-nitroso-CS). Kinetic measurements have shown that S-nitroso-CS was capable of generating NO in a sustained manner at levels suitable for biomedical applications. The antibacterial activities of CS, TCS and S-nitroso-CS were evaluated based on the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill curves determined for Escherichia coli, Staphylococcus aureus and Streptococcus mutans. MIC/MBC values reached 25/25, 0.7/0.7 and 3.1/3.1 μg mL-1 for CS/TCS and 3.1/3.1, 0.1/0.2, 0.1/0.2 μg mL-1 for S-nitroso-CS, respectively. Decreased MIC and MBC values have indicated that S-nitroso-CS has higher antibacterial activity than CS and TCS. Time-kill curves have shown that the bacterial cell viability decreased 5-fold for E. coli and 2-fold for S. mutans in comparison to their respective controls, after 0.5 h of incubation with S-nitroso-CS. Together, CS backbone chemically modified with S-nitroso moieties have yielded a polymer capable of generating therapeutic NO concentrations with strong antibacterial effect.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - Joana C Pieretti
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| | - Marcelly Chue Gonçalves
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| | - José Carlos Moreira
- Center for Engineering, Modeling and Applied Social Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
34
|
The solution chemistry of nitric oxide and other reactive nitrogen species. Nitric Oxide 2020; 103:31-46. [DOI: 10.1016/j.niox.2020.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
|
35
|
Wang D, Xu Y, Lin YJ, Yilmaz G, Zhang J, Schmidt G, Li Q, Thomson JA, Turng LS. Biologically Functionalized Expanded Polytetrafluoroethylene Blood Vessel Grafts. Biomacromolecules 2020; 21:3807-3816. [DOI: 10.1021/acs.biomac.0c00897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dongfang Wang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China
- National Center for International Research of Micro−Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
- Department of Mechanical Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institute for Discovery, University of Wisconsin−Madison, Madison, Wisconsin 53715, United States
| | - Yiyang Xu
- Department of Mechanical Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institute for Discovery, University of Wisconsin−Madison, Madison, Wisconsin 53715, United States
| | - Yu-Jyun Lin
- Department of Mechanical Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institute for Discovery, University of Wisconsin−Madison, Madison, Wisconsin 53715, United States
| | - Galip Yilmaz
- Department of Mechanical Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institute for Discovery, University of Wisconsin−Madison, Madison, Wisconsin 53715, United States
| | - Jue Zhang
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - George Schmidt
- Department of Mechanical Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institute for Discovery, University of Wisconsin−Madison, Madison, Wisconsin 53715, United States
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China
- National Center for International Research of Micro−Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - James A. Thomson
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institute for Discovery, University of Wisconsin−Madison, Madison, Wisconsin 53715, United States
| |
Collapse
|
36
|
Yoon H, Park S, Lim M. Photorelease Dynamics of Nitric Oxide from Cysteine-Bound Roussin's Red Ester. J Phys Chem Lett 2020; 11:3198-3202. [PMID: 32250631 DOI: 10.1021/acs.jpclett.0c00739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nitric oxide (NO) can either boost or impede the growth of cancer cells depending on its concentration. Therefore, any anticancer treatment using NO requires precisely controlled NO administration to the target cells in terms of dosage and timing. In this context, photochemically activated NO donors were actively explored, but their detailed NO-releasing dynamics, which is crucial for their use, is not known yet. We determined detailed photoexcitation dynamics of a stable, nontoxic, and water-soluble NO precursor, cysteine-bound Roussin's Red Ester (Cys-RRE), including secondary reactions of the nascent photoproducts. The primary quantum yields of the NO dissociation from the photoexcited Cys-RRE were found to be 24-54% depending on the excitation wavelength; however, the geminate rebinding of NO with the nascent radical reduced the level of biologically available NO to as low as 12%. Such information is useful to achieve efficient NO delivery to practical chemical and biological targets.
Collapse
Affiliation(s)
- Hojeong Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
37
|
Islam M, Durie I, Ramadan R, Purchase D, Marvasi M. Exploitation of nitric oxide donors to control bacterial adhesion on ready-to-eat vegetables and dispersal of pathogenic biofilm from polypropylene. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3078-3086. [PMID: 32077490 DOI: 10.1002/jsfa.10340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Nitric oxide (NO) donors have been used to control biofilm formation. Nitric oxide can be delivered in situ using organic carriers and acts as a signaling molecule. Cells exposed to NO shift from biofilm to the planktonic state and are better exposed to the action of disinfectants. In this study, we investigate the capability of the NO donors molsidomine, MAHAMA NONOate, NO-aspirin and diethylamine NONOate to act as anti-adhesion agents on ready-to-eat vegetables, as well as dispersants for a number of pathogenic biofilms on plastic. RESULTS Our results showed that 10 pM molsidomine reduced the attachment of Salmonella enterica sv Typhimurium 14 028 to pea shoots and coriander leaves of about 0.5 Log(CFU/leaf) when compared with untreated control. The association of 10 pmol L-1 molsidomine with 0.006% H2 O2 showed a synergistic effect, leading to a significant reduction in cell collection on the surface of the vegetable of about 1 Log(CFU/leaf). Similar results were obtained for MAHMA NONOate. We also showed that the association of diethylamine NONOate at 10 mmol L-1 and 10 pmol L-1 with the quaternary ammonium compound diquat bromide improved the effectiveness of biofilm dispersal by 50% when compared with the donor alone. CONCLUSIONS Our findings reveal a dual role of NO compounds in biofilm control. Molsidomine, MAHMA NONOate, and diethylamine NONOate are good candidates for either preventing biofilm formation or dispersing biofilm, especially when used in conjunction with disinfectants. Nitric oxide compounds have the potential to be developed into a toolkit for pro-active practices for good agricultural practices (GAPs), hazard analysis and critical control points (HACCP), and cleaning-in-place (CIP) protocols in industrial settings where washing is routinely applied. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohammad Islam
- Department of Natural Sciences, Middlesex University London, London, UK
| | - Ian Durie
- Soil and Water Department, University of Florida, Gainesville, FL, USA
| | - Reham Ramadan
- Department of Natural Sciences, Middlesex University London, London, UK
| | - Diane Purchase
- Department of Natural Sciences, Middlesex University London, London, UK
| | | |
Collapse
|
38
|
Lei Z, Tang Q, Ju Y, Lin Y, Bai X, Luo H, Tong Z. Block copolymer@ZIF-8 nanocomposites as a pH-responsive multi-steps release system for controlled drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:695-711. [DOI: 10.1080/09205063.2020.1713451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhentao Lei
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiuju Tang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanshan Ju
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghui Lin
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaowen Bai
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haipeng Luo
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
39
|
H. M. Nascimento M, T. Pelegrino M, C. Pieretti J, B. Seabra A. How can nitric oxide help osteogenesis? AIMS MOLECULAR SCIENCE 2020. [DOI: 10.3934/molsci.2020003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
40
|
Niu X, Cao J, Zhang Y, Gao X, Cheng M, Liu Y, Wang W, Yuan Z. A glutathione responsive nitric oxide release system based on charge-reversal chitosan nanoparticles for enhancing synergistic effect against multidrug resistance tumor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102015. [DOI: 10.1016/j.nano.2019.102015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/09/2019] [Accepted: 05/03/2019] [Indexed: 01/04/2023]
|
41
|
Alimoradi H, Barzegar-Fallah A, Sammut IA, Greish K, Giles GI. Encapsulation of tDodSNO generates a photoactivated nitric oxide releasing nanoparticle for localized control of vasodilation and vascular hyperpermeability. Free Radic Biol Med 2019; 130:297-305. [PMID: 30367997 DOI: 10.1016/j.freeradbiomed.2018.10.433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/07/2018] [Accepted: 10/18/2018] [Indexed: 11/25/2022]
Abstract
We report the synthesis and characterization of a photoactive nitric oxide (NO) releasing nanoparticle (NP) by encapsulation of the NO donor tert-dodecane S-nitrosothiol (tDodSNO) into a co-polymer of styrene and maleic anhydride (SMA) to afford SMA-tDodSNO. Encapsulation did not affect tDodSNO's stability or NO release profile, but imparted water solubility and protection from degradation reactions with glutathione. Under photoactivation the NP acted as a potent NO donor, with photoactivation acting as a switch to induce localized vasodilation in aortic rings (EC50* 660 nM at 2700 W/m2) and cause vascular hyperpermeability in mesenteric beds (8-fold increase in dye uptake at 1 µM SMA-tDodSNO with 460 W/m2 photoactivation). The NP was markedly superior as a photoactive NO donor in comparison to the S-nitrosothiols GSNO and SNAP, which are commonly used in experimental studies, as well as sodium nitroprusside, a clinically used vasodilator. Future development of this NP may find wide ranging therapeutic applications for treating cardiovascular disease and other disorders related to NO signaling, as well as enhancing macromolecular drug delivery to target organs through selective hyperpermeability. Supporting information describing the biophysical characterization of SMA-tDodSNO is supplied in an accompanying Data in Brief article (Alimoradi et al., doi: 10.1016/j.dib.2018.10.149).
Collapse
Affiliation(s)
- Houman Alimoradi
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Anita Barzegar-Fallah
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Ivan A Sammut
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Khaled Greish
- College of Medicine and Medical Sciences, Department of Molecular Medicine, Nanomedicine Unit, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Gregory I Giles
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|