1
|
Galvão GF, Petrilli R, Arfelli VC, Carvalho AN, Martins YA, Rosales RRC, Archangelo LF, daSilva LLP, Lopez RFV. Iontophoresis-driven alterations in nanoparticle uptake pathway and intracellular trafficking in carcinoma skin cancer cells. Colloids Surf B Biointerfaces 2025; 248:114459. [PMID: 39709939 DOI: 10.1016/j.colsurfb.2024.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Effective treatment of squamous cell carcinoma (SCC) poses challenges due to intrinsic drug resistance and limited drug penetration into tumor cells. Nanoparticle-based drug delivery systems have emerged as a promising approach to enhance therapeutic efficacy; however, they often face hurdles such as inadequate cellular uptake and rapid lysosomal degradation. This study explores the potential of iontophoresis to augment the efficacy of liposome and immunoliposome-based drug delivery systems for SCC treatment. The study assessed iontophoresis effects on SCC cell line (A431) viability, nanoparticle uptake dynamics, and intracellular distribution patterns. Specific inhibitors were employed to delineate cellular internalization pathways, while fluorescence microscopy and immunohistochemistry examined changes in EGFR expression and lysosomal activity. Results demonstrated that iontophoresis significantly increased cellular uptake of liposomes and immunoliposomes, achieving approximately 50 % uptake compared to 10 % with passive treatment. This enhancement correlated with modifications in endocytic pathways, favoring macropinocytosis and caveolin-mediated endocytosis for liposomes, and macropinocytosis and clathrin-mediated pathways for immunoliposomes. Moreover, iontophoresis induced alterations in EGFR distribution and triggered syncytium-like cellular clustering. It also attenuated lysosomal activity, thereby reducing nanoparticle degradation and prolonging intracellular retention of therapeutic agents. These findings underscore the role of iontophoresis in modulating nanoparticle internalization pathways, offering insights that could advance targeted drug delivery strategies and mitigate therapeutic resistance in SCC and other malignancies.
Collapse
Affiliation(s)
- Gabriela Fávero Galvão
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil
| | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil; Institute of Health Sciences, University for International Integration of the Afro-Brazilian Lusophony, Redenção, CE, Brazil; Federal University of Ceara, Faculty of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Fortaleza, Ceará, Brazil
| | - Vanessa Cristina Arfelli
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Andréia Nogueira Carvalho
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Yugo Araújo Martins
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil
| | - Roberta Ribeiro Costa Rosales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leticia Fröhlich Archangelo
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Lamberti Pinto daSilva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil.
| |
Collapse
|
2
|
Viegas JSR, Araujo JS, Leite MN, Praça FG, Ciampo JOD, Espreáfico EM, Frade MAC, Bentley MVLB. Bcl-2 knockdown by multifunctional lipid nanoparticle and its influence in apoptosis pathway regarding cutaneous melanoma: in vitro and ex vivo studies. Drug Deliv Transl Res 2025; 15:753-768. [PMID: 39222192 DOI: 10.1007/s13346-024-01692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Multifunctional therapies have emerged as innovative strategies in cancer treatment. In this research article, we proposed a nanostructured lipid carrier (NLC) designed for the topical treatment of cutaneous melanoma, which simultaneously delivers 5-FU and Bcl-2 siRNA. The characterized nanoparticles exhibited a diameter of 259 ± 9 nm and a polydispersion index of 0.2, indicating a uniform size distribution. The NLCs were primarily localized in the epidermis, effectively minimizing the systemic release of 5-FU across skin layers. The ex vivo skin model revealed the formation of a protective lipid film, decreasing the desquamation process of the stratum corneum which can be associated to an effect of increasing permeation. In vitro assays demonstrated that A375 melanoma cells exhibited a higher sensitivity to the treatment compared to non-cancerous cells, reflecting the expected difference in their metabolic rates. The uptake of NLC by A375 cells reached approximately 90% within 4 h. The efficacy of Bcl-2 knockdown was thoroughly assessed using ELISA, Western blot, and qRT-PCR analyses, revealing a significant knockdown and synergistic action of the NLC formulation containing 5-FU and Bcl-2 siRNA (at low concentration --100 pM). Notably, the silencing of Bcl-2 mRNA also impacted other members of the Bcl-2 protein family, including Mcl-1, Bcl-xl, BAX, and BAK. The observed modulation of these proteins strongly indicated the activation of the apoptosis pathway, suggesting a successful inhibition of melanoma growth and prevention of its in vitro spread.
Collapse
Affiliation(s)
- Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jackeline Souza Araujo
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcel Nani Leite
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jose Orestes Del Ciampo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Enilza Maria Espreáfico
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marco Andrey Cipriani Frade
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
3
|
Amărandi RM, Marin L, Drăgoi B, Neamţu A. A Coarse-Grained Molecular Dynamics Perspective on the Release of 5-Fluorouracil from Liposomes. Mol Pharm 2024; 21:6137-6152. [PMID: 39515813 PMCID: PMC11615944 DOI: 10.1021/acs.molpharmaceut.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Liposomes, small bilayer phospholipid-containing vesicles, are frequently used to ensure slow drug release for a prolonged and improved therapeutic effect. Nevertheless, current findings on the membrane affinity and permeability of the anticancer agent 5-fluorouracil (5-FU) are confounding, which leads to a lack of a clear understanding of how lipid composition impacts the distribution of 5-FU within liposomal structures and its delivery. In the current work, we report a comprehensive coarse-grained molecular dynamics (CGMD) investigation on the influence of cholesterol (CHOL) and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) on the partitioning of 5-FU in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) double-bilayer systems, as well as its in vitro release from liposomes with identical lipid compositions. Our results show that 5-FU tends to accumulate at the water-lipid interface, in the vicinity of polar headgroups, without partitioning in the hydrophobic tail region. At the same time, the presence of CHOL proportionally increases the distribution of this drug in the interbilayer aqueous space, decreasing the drug's affinity toward the membrane polar head region, while DOTAP has only a slight effect on drug distribution. Thus, it is expected that 5-FU will be released slower from CHOL-containing DPPC liposomes but not DOTAP-containing vesicles. However, in vitro release studies showed that the release kinetics of 5-FU from DPPC vesicles is not influenced by the presence of CHOL and that the incorporation of 10 mol % DOTAP leads to the best release profile for 5-FU, highlighting the complexity of nanocarrier drug release kinetics. We hypothesize that the initial rapid release seen in dialysis experiments is not related to drug membrane permeability but rather to 5-FU adsorbed on the outer surface of liposomes.
Collapse
Affiliation(s)
- Roxana-Maria Amărandi
- Nanotechnology
Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot,
Street, Iaşi 700483, Romania
- Department
of Bioinformatics, TRANSCEND Research Center, Regional Institute of
Oncology, 2-4 General
Henri Mathias Berthelot, Street, Iaşi 700483, Romania
| | - Luminiţa Marin
- Nanotechnology
Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot,
Street, Iaşi 700483, Romania
- “Petru
Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Vodă Alley, Iaşi 700487, Romania
| | - Brînduşa Drăgoi
- Nanotechnology
Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot,
Street, Iaşi 700483, Romania
- Faculty
of Chemistry, Alexandru Ioan Cuza University
of Iaşi, 11 Carol
I Boulevard, Iaşi 700506, Romania
| | - Andrei Neamţu
- Department
of Bioinformatics, TRANSCEND Research Center, Regional Institute of
Oncology, 2-4 General
Henri Mathias Berthelot, Street, Iaşi 700483, Romania
- Department
of Physiology, “Grigore T. Popa”
University of Medicine and Pharmacy, 16 Universităţii Street, Iaşi 700115, Romania
| |
Collapse
|
4
|
Liu S, Chen D, Zhu X, Wang X, Li X, Du Y, Zhang P, Tian J, Song Y. Inhaled delivery of cetuximab-conjugated immunoliposomes loaded with afatinib: A promising strategy for enhanced non-small cell lung cancer treatment. Drug Deliv Transl Res 2024; 14:3147-3162. [PMID: 38381317 DOI: 10.1007/s13346-024-01536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Afatinib (AT), an FDA-approved aniline-quinazoline derivative, is a first-line treatment for metastatic non-small cell lung cancer (NSCLC). Combining it with cetuximab (CX), a chimeric human-murine derivative immunoglobulin-G1 monoclonal antibody (mAb) targeting the extracellular domain of epidermal growth factor receptor (EGFR), has shown significant improvements in median progression-free survival. Previously, we developed cetuximab-conjugated immunoliposomes loaded with afatinib (AT-MLP) and demonstrated their efficacy against NSCLC cells (A549 and H1975). In this study, we aimed to explore the potential of pulmonary delivery to mitigate adverse effects associated with oral administration and intravenous injection. We formulated AT-MLP dry powders (AT-MLP-DPI) via freeze drying using tert-butanol and mannitol as cryoprotectants in the hydration medium. The physicochemical and aerodynamic properties of dry powders were well analyzed firstly. In vitro cellular uptake and cytotoxicity study revealed concentration- and time-dependent cellular uptake behavior and antitumor efficacy of AT-MLP-DPI, while Transwell assay demonstrated the superior inhibitory effects on NSCLC cell invasion and migration. Furthermore, in vivo pharmacokinetic study showed that pulmonary delivery of AT-MLP-DPI significantly increased bioavailability, prolonged blood circulation time, and exhibited higher lung concentrations compared to alternative administration routes and formulations. The in vivo antitumor efficacy study carried on tumor-bearing nude mice indicated that inhaled AT-MLP-DPI effectively suppressed lung tumor growth.
Collapse
Affiliation(s)
- Sha Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China.
| | - Daoyuan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Xiaosu Zhu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Xiaowen Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Xiao Li
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Yuan Du
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Peng Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Jingwei Tian
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Yingjian Song
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, People's Republic of China.
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
5
|
Corte-Real M, Veiga F, Paiva-Santos AC, Pires PC. Improving Skin Cancer Treatment by Dual Drug Co-Encapsulation into Liposomal Systems-An Integrated Approach towards Anticancer Synergism and Targeted Delivery. Pharmaceutics 2024; 16:1200. [PMID: 39339235 PMCID: PMC11434718 DOI: 10.3390/pharmaceutics16091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Skin cancer is a high-incidence complex disease, representing a significant challenge to public health, with conventional treatments often having limited efficacy and severe side effects. Nanocarrier-based systems provide a controlled, targeted, and efficacious methodology for the delivery of therapeutic molecules, leading to enhanced therapeutic efficacy, the protection of active molecules from degradation, and reduced adverse effects. These features are even more relevant in dual-loaded nanosystems, with the encapsulated drug molecules leading to synergistic antitumor effects. This review examines the potential of improving the treatment of skin cancer through dual-loaded liposomal systems. The performed analysis focused on the characterization of the developed liposomal formulations' particle size, polydispersity index, zeta potential, encapsulation efficiency, drug release, and in vitro and/or in vivo therapeutic efficacy and safety. The combination of therapeutic agents such as doxorubicin, 5-fluorouracil, paclitaxel, cetuximab, celecoxib, curcumin, resveratrol, quercetin, bufalin, hispolon, ceramide, DNA, STAT3 siRNA, Bcl-xl siRNA, Aurora-A inhibitor XY-4, 1-Methyl-tryptophan, and cytosine-phosphate-guanosine anionic peptide led to increased and targeted anticancer effects, having relevant complementary effects as well, including antioxidant, anti-inflammatory, and immunomodulatory activities, all relevant in skin cancer pathophysiology. The substantial potential of co-loaded liposomal systems as highly promising for advancing skin cancer treatment is demonstrated.
Collapse
Affiliation(s)
- Margarida Corte-Real
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
6
|
Carolina Cruz de Sousa A, da Silva Santos E, da Silva Moreira T, Gabriela Araújo Mendes M, Rodrigues Arruda B, de Jesus Guimarães C, de Brito Vieira Neto J, Santiago de Oliveira Y, Pedro Ayala A, Rodrigues da Costa MD, Lima Sampaio T, Paula Negreiros Nunes Alves A, Pessoa C, Petrilli R, Eloy JO. Anti-EGFR immunoliposomes for cabazitaxel delivery: From formulation development to in vivo evaluation in prostate cancer xenograft model. Int J Pharm 2024; 661:124439. [PMID: 38972520 DOI: 10.1016/j.ijpharm.2024.124439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Liposomes functionalized with monoclonal antibodies offer targeted therapy for cancer, boasting advantages like sustained drug release, enhanced stability, passive accumulation in tumors, and interaction with overexpressed receptors on cancer cells. This study aimed to develop and characterize anti-EGFR immunoliposomes loaded with cabazitaxel and assess their properties against prostate cancer in vitro and in vivo. Using a Box-Behnken design, a formulation with soy phosphatidylcholine, 10% cholesterol, and a 1:20 drug-lipid ratio yielded nanometric particle size, low polydispersity and high drug encapsulation. Immunoliposomes were conjugated with cetuximab through DSPE-PEG-Maleimide lipid anchor. Characterization confirmed intact antibody structure and interaction with EGFR receptor following conjugation. Cabazitaxel was dispersed within the liposomes in the amorphous state, confirmed by solid-state analyses. In vitro release studies showed slower cabazitaxel release from immunoliposomes. Immunoliposomes had enhanced cabazitaxel cytotoxicity in EGFR-overexpressing DU145 cells without affecting non-tumor L929 cells. Cetuximab played an important role to improve cellular uptake in a time-dependent fashion in EGFR-overexpressing prostate cancer cells. In vivo, immunoliposomes led to significant tumor regression, improved survival, and reduced weight loss in xenograft mice. While cabazitaxel induced leukopenia, consistent with clinical findings, histological analysis revealed no evident toxicity. In conclusion, the immunoliposomes displayed suitable physicochemical properties for cabazitaxel delivery, exhibited cytotoxicity against EGFR-expressing prostate cancer cells, with high cell uptake, and induced significant tumor regression in vivo, with manageable systemic toxicity.
Collapse
Affiliation(s)
- Ana Carolina Cruz de Sousa
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza - CE, Brazil
| | - Elias da Silva Santos
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza - CE, Brazil
| | - Thais da Silva Moreira
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza - CE, Brazil
| | - Maria Gabriela Araújo Mendes
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza - CE, Brazil
| | - Bruno Rodrigues Arruda
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Celina de Jesus Guimarães
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil; Pharmacy Sector, Oncology Control Foundation of the State of Amazonas (FCECON), Manaus, AM, Brazil
| | - José de Brito Vieira Neto
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Yara Santiago de Oliveira
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony - UNILAB, Redenção - CE, Brazil
| | | | | | - Tiago Lima Sampaio
- Department of Clinical and Toxicological Analyzes, Federal University of Ceará, Fortaleza, Brazil
| | | | - Cláudia Pessoa
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony - UNILAB, Redenção - CE, Brazil
| | - Josimar O Eloy
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza - CE, Brazil.
| |
Collapse
|
7
|
Fidan Y, Muçaj S, Timur SS, Gürsoy RN. Recent advances in liposome-based targeted cancer therapy. J Liposome Res 2024; 34:316-334. [PMID: 37814217 DOI: 10.1080/08982104.2023.2268710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Nano-drug delivery systems have opened new pathways for tumor treatment by overcoming some of the limitations of conventional drugs, such as physiological degradation, short half-life, and rapid release. Liposomes are promising nanocarrier systems due to their biocompatibility, low toxicity, and high inclusivity, as well as their enhanced drug bioavailability. Various strategies for active targeting of liposomal formulations have been investigated to achieve the highest drug efficacy. This review aims to summarize current developments in novel liposomal formulations, particularly ligand-targeted liposomes (such as folate, transferrin, hyaluronic acid, antibodies, aptamer, and peptide, etc.) used for the therapy of various cancers and provide an insight on the challenges and future of liposomes for scientists and pharmaceutical companies.
Collapse
Affiliation(s)
- Yeliz Fidan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Stela Muçaj
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Marques AC, Costa PC, Velho S, Amaral MH. Analytical Techniques for Characterizing Tumor-Targeted Antibody-Functionalized Nanoparticles. Life (Basel) 2024; 14:489. [PMID: 38672759 PMCID: PMC11051252 DOI: 10.3390/life14040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process. Regardless of the type of nanoparticle, it is essential to perform physicochemical characterization to establish a solid foundation of knowledge and develop suitable preclinical studies. A meaningful physicochemical evaluation of antibody-conjugated nanoparticles should include determining the quantity and orientation of the antibodies, confirming the antibodies' integrity following attachment, and assessing the immunoreactivity of the obtained nanoconjugates. In this review, the authors describe the various techniques (electrophoresis, spectroscopy, colorimetric assays, immunoassays, etc.) used to analyze the physicochemical properties of nanoparticles functionalized with antibodies and discuss the main results.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
da Silva Gomes B, Cláudia Paiva-Santos A, Veiga F, Mascarenhas-Melo F. Beyond the adverse effects of the systemic route: Exploiting nanocarriers for the topical treatment of skin cancers. Adv Drug Deliv Rev 2024; 207:115197. [PMID: 38342240 DOI: 10.1016/j.addr.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Skin cancer is a heterogeneous disease that can be divided into two main groups, melanoma and nonmelanoma skin cancers. Conventional therapies for skin cancer have numerous systemic side effects and a high recurrence rate. Topical treatment is an alternative approach, but drug permeability remains a challenge. Therefore, nanocarriers appear as important nanotechnology tools that reduces both the side effects and improves clinical outcomes. This is why they are attracting growing interest. In this review, scientific articles on the use of nanocarriers for the topical treatment of skin cancer were collected. Despite the promising results of the presented nanocarriers and considering that some of them are already on the market, there is an urgent need for investment in the development of manufacturing methods, as well as of suitable toxicological and regulatory evaluations, since the conventional methods currently used to develop these nanocarriers-based products are more time-consuming and expensive than conventional products.
Collapse
Affiliation(s)
- Beatriz da Silva Gomes
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Francisco Veiga
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Filipa Mascarenhas-Melo
- University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300 - 307 Guarda, Portugal.
| |
Collapse
|
10
|
Adamus-Grabicka AA, Hikisz P, Sikora J. Nanotechnology as a Promising Method in the Treatment of Skin Cancer. Int J Mol Sci 2024; 25:2165. [PMID: 38396841 PMCID: PMC10889690 DOI: 10.3390/ijms25042165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The incidence of skin cancer continues to grow. There are an estimated 1.5 million new cases each year, of which nearly 350,000 are melanoma, which is often fatal. Treatment is challenging and often ineffective, with conventional chemotherapy playing a limited role in this context. These disadvantages can be overcome by the use of nanoparticles and may allow for the early detection and monitoring of neoplastic changes and determining the effectiveness of treatment. This article briefly reviews the present understanding of the characteristics of skin cancers, their epidemiology, and risk factors. It also outlines the possibilities of using nanotechnology, especially nanoparticles, for the transport of medicinal substances. Research over the previous decade on carriers of active substances indicates that drugs can be delivered more accurately to the tumor site, resulting in higher therapeutic efficacy. The article describes the application of liposomes, carbon nanotubes, metal nanoparticles, and polymer nanoparticles in existing therapies. It discusses the challenges encountered in nanoparticle therapy and the possibilities of improving their performance. Undoubtedly, the use of nanoparticles is a promising method that can help in the fight against skin cancer.
Collapse
Affiliation(s)
- Angelika A. Adamus-Grabicka
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
11
|
Pereira TA, Ramos DN, Sobral LM, Martins YA, Petrilli R, Fantini MDAC, Leopoldino AM, Lopez RFV. Liquid crystalline nanogel targets skin cancer via low-frequency ultrasound treatment. Int J Pharm 2023; 646:123431. [PMID: 37739094 DOI: 10.1016/j.ijpharm.2023.123431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The potential of low-frequency ultrasound (LFU) combined with nanotechnology-based formulations in improving skin tumors topical treatment was investigated. The impact of solid lipid nanoparticles (SLN) and hydrophilic nanogels as coupling media on LFU-induced skin localized transport regions (LTR) and the penetration of doxorubicin (DOX) in LFU-pretreated skin was evaluated. SLN were prepared by the microemulsion technique and liquid crystalline nanogels using Poloxamer. In vitro, the skin was pretreated with LFU until skin resistivity of ∼1 KΩ.cm2 using the various coupling media followed by evaluation of DOX penetration from DOX-nanogel and SLN-DOX in skin layers. Squamous cell carcinoma (SCC) induced in mice was LFU-treated using the nanogel with the LFU tip placed 5 mm or 10 mm from the tumor surface, followed by DOX-nanogel application. LFU with nanogel coupling achieved larger LTR areas than LFU with SLN coupling. In LFU-pretreated skin, DOX-nanogel significantly improved drug penetration to the viable epidermis, while SLN-DOX hindered drug transport through LTR. In vivo, LFU-nanogel pretreatment with the 10 mm tip distance induced significant tumor inhibition and reduced tumor cell numbers and necrosis. These findings suggest the importance of optimizing nanoparticle-based formulations and LFU parameters for the clinical application of LFU technology in skin tumor treatment.
Collapse
Affiliation(s)
- Tatiana Aparecida Pereira
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Danielle Nishida Ramos
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Lays Martin Sobral
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Yugo Araújo Martins
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil; Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Redenção, Brazil.
| | | | - Andréia Machado Leopoldino
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
12
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P, Ahmad FJ. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer 2023; 22:168. [PMID: 37803407 PMCID: PMC10559482 DOI: 10.1186/s12943-023-01854-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
Skin cancer is a global threat to the healthcare system and is estimated to incline tremendously in the next 20 years, if not diagnosed at an early stage. Even though it is curable at an early stage, novel drug identification, clinical success, and drug resistance is another major challenge. To bridge the gap and bring effective treatment, it is important to understand the etiology of skin carcinoma, the mechanism of cell proliferation, factors affecting cell growth, and the mechanism of drug resistance. The current article focusses on understanding the structural diversity of skin cancers, treatments available till date including phytocompounds, chemotherapy, radiotherapy, photothermal therapy, surgery, combination therapy, molecular targets associated with cancer growth and metastasis, and special emphasis on nanotechnology-based approaches for downregulating the deleterious disease. A detailed analysis with respect to types of nanoparticles and their scope in overcoming multidrug resistance as well as associated clinical trials has been discussed.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, 4102, Australia
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
13
|
Adnan M, Akhter MH, Afzal O, Altamimi ASA, Ahmad I, Alossaimi MA, Jaremko M, Emwas AH, Haider T, Haider MF. Exploring Nanocarriers as Treatment Modalities for Skin Cancer. Molecules 2023; 28:5905. [PMID: 37570875 PMCID: PMC10421083 DOI: 10.3390/molecules28155905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is a progressive disease of multi-factorial origin that has risen worldwide, probably due to changes in lifestyle, food intake, and environmental changes as some of the reasons. Skin cancer can be classified into melanomas from melanocytes and nonmelanoma skin cancer (NMSC) from the epidermally-derived cell. Together it constitutes about 95% of skin cancer. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (CSCC) are creditworthy of 99% of NMSC due to the limited accessibility of conventional formulations in skin cancer cells of having multiple obstacles in treatment reply to this therapeutic regime. Despite this, it often encounters erratic bioavailability and absorption to the target. Nanoparticles developed through nanotechnology platforms could be the better topical skin cancer therapy option. To improve the topical delivery, the nano-sized delivery system is appropriate as it fuses with the cutaneous layer and fluidized membrane; thus, the deeper penetration of therapeutics could be possible to reach the target spot. This review briefly outlooks the various nanoparticle preparations, i.e., liposomes, niosomes, ethosomes, transferosomes, transethosomes, nanoemulsions, and nanoparticles technologies tested into skin cancer and impede their progress tend to concentrate in the skin layers. Nanocarriers have proved that they can considerably boost medication bioavailability, lowering the frequency of dosage and reducing the toxicity associated with high doses of the medication.
Collapse
Affiliation(s)
- Mohammad Adnan
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India;
| | - Md. Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, Uttarakhand, India;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia;
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Tanweer Haider
- Amity Institute of Pharmacy, Amity University, Gwalior 474005, Madhya Pradesh, India;
| | - Md. Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India;
| |
Collapse
|
14
|
Melnikova N, Sheferov I, Panteleev D, Emasheva A, Druzhkova I, Ignatova N, Mishchenko T, Vedunova M. Design and Study of Nanoceria Modified by 5-Fluorouracil for Gel and Polymer Dermal Film Preparation. Pharmaceuticals (Basel) 2023; 16:1082. [PMID: 37630997 PMCID: PMC10458209 DOI: 10.3390/ph16081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
In this work we studied nanoceria (CeO2NPs) and nanoceria modified by 5-fluorouracil (5FU) as potential APIs. Nanoceria were synthesized by precipitation in a matrix of hydroxyethyl cellulose or hydroxypropylmethyl cellulose, using cerium (III) nitrate and meglumine. Nanoceria properties were estimated by UV, FTIR and X-ray photoelectron spectra; scanning electron and atomic force microscopy; powder X-ray diffraction patterns and energy dispersive X-ray microanalysis. The cytotoxicity of nanoceria and polymer-protected nanoparticles was evaluated using the established cell line NCTC clone 929 (C3H/An mouse, subcutaneous connective tissue, clone of L. line). The morphology and metabolic activity of nanoparticles at 10 μg∙mL-1 of cells was not significant. In addition, the cytotoxic effects of nanoceria were assessed on two human colorectal cancer cell lines (HT29 and HCT116), murine melanoma B16 cells and normal human skin fibroblasts. An inhibitory effect was shown for HCT116 human colorectal cancer cells. The IC50 values for pure CeO2NPs and CeO2NPs-5FU were 219.0 ± 45.6 μg∙mL-1 and 89.2 ± 14.0 μg∙mL-1, respectively. On the other hand, the IC50 of 5FU in the combination of CeO2NPs-5FU was 2-fold higher than that of pure 5FU, amounting to 5.0 nmol∙mL-1. New compositions of nanoceria modified by 5-fluorouracil in a polymer matrix were designed as a dermal polymer film and gel. The permeability of the components was studied using a Franz cell.
Collapse
Affiliation(s)
- Nina Melnikova
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Ilya Sheferov
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Dmitry Panteleev
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia;
| | - Anastasia Emasheva
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Tatiana Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
15
|
Melnikova N, Sheferov I, Panteleev D, Emasheva A, Druzhkova I, Ignatova N, Mishchenko T, Vedunova M. Design and Study of Nanoceria Modified by 5-Fluorouracil for Gel and Polymer Dermal Film Preparation. Pharmaceuticals (Basel) 2023; 16:1082. [DOI: https:/doi.org/10.3390/ph16081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023] Open
Abstract
In this work we studied nanoceria (CeO2NPs) and nanoceria modified by 5-fluorouracil (5FU) as potential APIs. Nanoceria were synthesized by precipitation in a matrix of hydroxyethyl cellulose or hydroxypropylmethyl cellulose, using cerium (III) nitrate and meglumine. Nanoceria properties were estimated by UV, FTIR and X-ray photoelectron spectra; scanning electron and atomic force microscopy; powder X-ray diffraction patterns and energy dispersive X-ray microanalysis. The cytotoxicity of nanoceria and polymer-protected nanoparticles was evaluated using the established cell line NCTC clone 929 (C3H/An mouse, subcutaneous connective tissue, clone of L. line). The morphology and metabolic activity of nanoparticles at 10 μg∙mL−1 of cells was not significant. In addition, the cytotoxic effects of nanoceria were assessed on two human colorectal cancer cell lines (HT29 and HCT116), murine melanoma B16 cells and normal human skin fibroblasts. An inhibitory effect was shown for HCT116 human colorectal cancer cells. The IC50 values for pure CeO2NPs and CeO2NPs-5FU were 219.0 ± 45.6 μg∙mL−1 and 89.2 ± 14.0 μg∙mL−1, respectively. On the other hand, the IC50 of 5FU in the combination of CeO2NPs-5FU was 2-fold higher than that of pure 5FU, amounting to 5.0 nmol∙mL−1. New compositions of nanoceria modified by 5-fluorouracil in a polymer matrix were designed as a dermal polymer film and gel. The permeability of the components was studied using a Franz cell.
Collapse
Affiliation(s)
- Nina Melnikova
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Ilya Sheferov
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Dmitry Panteleev
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Anastasia Emasheva
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Tatiana Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
16
|
Hariharan A, Tran SD. Localized Drug Delivery Systems: An Update on Treatment Options for Head and Neck Squamous Cell Carcinomas. Pharmaceutics 2023; 15:1844. [PMID: 37514031 PMCID: PMC10385385 DOI: 10.3390/pharmaceutics15071844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world, with surgery, radiotherapy, chemotherapy, and immunotherapy being the primary treatment modalities. The treatment for HNSCC has evolved over time, due to which the prognosis has improved drastically. Despite the varied treatment options, major challenges persist. HNSCC chemotherapeutic and immunotherapeutic drugs are usually administered systemically, which could affect the patient's quality of life due to the associated side effects. Moreover, the systemic administration of salivary stimulating agents for the treatment of radiation-induced xerostomia is associated with toxicities. Localized drug delivery systems (LDDS) are gaining importance, as they have the potential to provide non-invasive, patient-friendly alternatives to cancer therapy with reduced dose-limiting toxicities. LDDSs involve directly delivering a drug to the tissue or organ affected by the disease. Some of the common localized routes of administration include the transdermal and transmucosal drug delivery system (DDSs). This review will attempt to explore the different treatment options using LDDSs for the treatment of HNSCC and radiotherapy-induced damage and their potential to provide a better experience for patients, as well as the obstacles that need to be addressed to render them successful.
Collapse
Affiliation(s)
- Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
17
|
Andrade JFM, Cunha-Filho M, Gelfuso GM, Gratieri T. Iontophoresis for the cutaneous delivery of nanoentraped drugs. Expert Opin Drug Deliv 2023:1-14. [PMID: 37119173 DOI: 10.1080/17425247.2023.2209719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
INTRODUCTION The skin is an attractive route for drug delivery. However, the stratum corneum is a critical limiting barrier for drug permeation. Nanoentrapment is a way to enhance cutaneous drug delivery, by diverse mechanisms, with a notable trend of nanoparticles accumulating into the hair follicles when topically applied. Iontophoresis is yet another way of increasing drug transport by applying a mild electrical field that preferentially passes through the hair follicles, for being the pathway of lower resistance. So, iontophoresis application to nanocarriers could further increase actives accumulation into the hair follicles, impacting cutaneous drug delivery. AREAS COVERED In this review, the authors aimed to discuss the main factors impacting iontophoretic skin transport when combining nanocarriers with iontophoresis. We further provide an overview of the conditions in which this combination has been studied, the characteristics of nanosystems employed, and hypothesize why the association has succeeded or failed to enhance drug permeation. EXPERT OPINION Nanocarriers and iontophoresis association can be promising to enhance cutaneous drug delivery. For better results, the electroosmotic contribution to the iontophoretic transport, mainly of negatively charged nanocarriers, charge density, formulation pH, and skin models should be considered. Moreover, the transfollicular pathway should be considered, especially when designing the nanocarriers.
Collapse
Affiliation(s)
- Jayanaraian F M Andrade
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Tais Gratieri
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| |
Collapse
|
18
|
Soares Lima T, Silva de Oliveira MS, Reis AVF, Petrilli R, Eloy JO. Nanoencapsulation of Methylene-Blue for Enhanced Skin Cancer Cell Phototoxicity and Cutaneous Penetration in Association with Sonophoresis. Pharmaceutics 2023; 15:pharmaceutics15051371. [PMID: 37242613 DOI: 10.3390/pharmaceutics15051371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Photodynamic therapy (PDT) using methylene blue (MB) as a photosensitizer has emerged as an alternative treatment for skin cancers, such as squamous cell carcinoma (SCC). To increase the cutaneous penetration of the drug, some strategies are used, such as the association of nanocarriers and physical methods. Thus, herein we address the development of nanoparticles based on poly-Ɛ-caprolactone (PCL), optimized with the Box-Behnken factorial design, for topical application of MB associated with sonophoresis. The MB-nanoparticles were developed using the double emulsification-solvent evaporation technique and the optimized formulation resulted in an average size of 156.93 ± 8.27 nm, a polydispersion index of 0.11 ± 0.05, encapsulation efficiency of 94.22 ± 2.19% and zeta potential of -10.08 ± 1.12 mV. Morphological evaluation by scanning electron microscopy showed spherical nanoparticles. In vitro release studies show an initial burst compatible with the first-order mathematical model. The nanoparticle showed satisfactory generation of reactive oxygen species. The MTT assay was used to assess cytotoxicity and IC50; values of 79.84; 40.46; 22.37; 9.90 µM were obtained, respectively, for the MB-solution and the MB-nanoparticle without and with light irradiation after 2 h of incubation. Analysis using confocal microscopy showed high cellular uptake for the MB-nanoparticle. With regard to skin penetration, a higher concentration of MB was observed in the epidermis + dermis, corresponding to 9.81, 5.27 μg/cm2 in passive penetration and 24.31 and 23.81 μg/cm2 after sonophoresis, for solution-MB and nanoparticle-MB, respectively. To the best of our knowledge, this is the first report of MB encapsulation in PCL nanoparticles for application in skin cancer using PDT.
Collapse
Affiliation(s)
- Thayane Soares Lima
- Department of Pharmacy, Dentistry and Nursing, Faculty of Pharmacy, Federal University of Ceará, 1210 Pastor Samuel Munguba Street, Fortaleza 60430-160, CE, Brazil
| | - Monalisa Sthefani Silva de Oliveira
- Department of Pharmacy, Dentistry and Nursing, Faculty of Pharmacy, Federal University of Ceará, 1210 Pastor Samuel Munguba Street, Fortaleza 60430-160, CE, Brazil
| | - Alice Vitoria Frota Reis
- Department of Pharmacy, Dentistry and Nursing, Faculty of Pharmacy, Federal University of Ceará, 1210 Pastor Samuel Munguba Street, Fortaleza 60430-160, CE, Brazil
| | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Redenção 62790-000, CE, Brazil
| | - Josimar O Eloy
- Department of Pharmacy, Dentistry and Nursing, Faculty of Pharmacy, Federal University of Ceará, 1210 Pastor Samuel Munguba Street, Fortaleza 60430-160, CE, Brazil
| |
Collapse
|
19
|
DOPE/CHEMS-Based EGFR-Targeted Immunoliposomes for Docetaxel Delivery: Formulation Development, Physicochemical Characterization and Biological Evaluation on Prostate Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15030915. [PMID: 36986777 PMCID: PMC10052572 DOI: 10.3390/pharmaceutics15030915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Docetaxel (DTX) is a non-selective antineoplastic agent with low solubility and a series of side effects. The technology of pH-sensitive and anti-epidermal growth factor receptor (anti-EGFR) immunoliposomes aims to increase the selective delivery of the drug in the acidic tumor environment to cells with EFGR overexpression. Thus, the study aimed to develop pH-sensitive liposomes based on DOPE (dioleoylphosphatidylethanolamine) and CHEMS (cholesteryl hemisuccinate), using a Box–Behnken factorial design. Furthermore, we aimed to conjugate the monoclonal antibody cetuximab onto liposomal surface, as well as to thoroughly characterize the nanosystems and evaluate them on prostate cancer cells. The liposomes prepared by hydration of the lipid film and optimized by the Box–Behnken factorial design showed a particle size of 107.2 ± 2.9 nm, a PDI of 0.213 ± 0.005, zeta potential of −21.9 ± 1.8 mV and an encapsulation efficiency of 88.65 ± 20.3%. Together, FTIR, DSC and DRX characterization demonstrated that the drug was properly encapsulated, with reduced drug crystallinity. Drug release was higher in acidic pH. The liposome conjugation with the anti-EGFR antibody cetuximab preserved the physicochemical characteristics and was successful. The liposome containing DTX reached an IC50 at a concentration of 65.74 nM in the PC3 cell line and 28.28 nM in the DU145 cell line. Immunoliposome, in turn, for PC3 cells reached an IC50 of 152.1 nM, and for the DU145 cell line, 12.60 nM, a considerable enhancement of cytotoxicity for the EGFR-positive cell line. Finally, the immunoliposome internalization was faster and greater than that of liposome in the DU145 cell line, with a higher EGFR overexpression. Thus, based on these results, it was possible to obtain a formulation with adequate characteristics of nanometric size, a high encapsulation of DTX and liposomes and particularly immunoliposomes containing DTX, which caused, as expected, a reduction in the viability of prostate cells, with high cellular internalization in EGFR overexpressing cells.
Collapse
|
20
|
Marques AC, Costa PC, Velho S, Amaral MH. Lipid Nanoparticles Functionalized with Antibodies for Anticancer Drug Therapy. Pharmaceutics 2023; 15:216. [PMID: 36678845 PMCID: PMC9864942 DOI: 10.3390/pharmaceutics15010216] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Nanotechnology takes the lead in providing new therapeutic options for cancer patients. In the last decades, lipid-based nanoparticles-solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), liposomes, and lipid-polymer hybrid nanoparticles-have received particular interest in anticancer drug delivery to solid tumors. To improve selectivity for target cells and, thus, therapeutic efficacy, lipid nanoparticles have been functionalized with antibodies that bind to receptors overexpressed in angiogenic endothelial cells or cancer cells. Most papers dealing with the preclinical results of antibody-conjugated nanoparticles claim low systemic toxicity and effective tumor inhibition, which have not been successfully translated into clinical use yet. This review aims to summarize the current "state-of-the-art" in anticancer drug delivery using antibody-functionalized lipid-based nanoparticles. It includes an update on promising candidates that entered clinical trials and some explanations for low translation success.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
21
|
Abbasi H, Kouchak M, Mirveis Z, Hajipour F, Khodarahmi M, Rahbar N, Handali S. What We Need to Know about Liposomes as Drug Nanocarriers: An Updated Review. Adv Pharm Bull 2023; 13:7-23. [PMID: 36721822 PMCID: PMC9871273 DOI: 10.34172/apb.2023.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/13/2022] [Accepted: 03/31/2022] [Indexed: 02/03/2023] Open
Abstract
Liposomes have been attracted considerable attention as phospholipid spherical vesicles, over the past 40 years. These lipid vesicles are valued in biomedical application due to their ability to carry both hydrophobic and hydrophilic agents, high biocompatibility and biodegradability. Various methods have been used for the synthesis of liposomes, so far and numerous modifications have been performed to introduce liposomes with different characteristics like surface charge, size, number of their layers, and length of circulation in biological fluids. This article provides an overview of the significant advances in synthesis of liposomes via active or passive drug loading methods, as well as describes some strategies developed to fabricate their targeted formulations to overcome limitations of the "first-generation" liposomes.
Collapse
Affiliation(s)
- Hanieh Abbasi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zohreh Mirveis
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Hajipour
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Corresponding Authors: Nadereh Rahbar and Somayeh Handali, and
| | - Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Nadereh Rahbar and Somayeh Handali, and
| |
Collapse
|
22
|
Pereira Martins JR, Linhares de Aguiar AL, Barros Nogueira KA, Uchôa Bastos Filho AJ, da Silva Moreira T, Lima Holanda Araújo M, Pessoa C, Eloy JO, da Silva Junior IJ, Petrilli R. Nanoencapsulation of R-phycoerytrin extracted from Solieria filiformis improves protein stability and enables its biological application as a fluorescent dye. J Microencapsul 2023; 40:37-52. [PMID: 36630267 DOI: 10.1080/02652048.2023.2168081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We aimed to encapsulate R-PE to improve its stability for use as a fluorescent probe for cancer cells. Purified R-PE from the algae Solieria filiformis was encapsulated in polymeric nanoparticles using PCL. Nanoparticles were characterised and R-PE release was evaluated. Also, cellular uptake using breast and prostate cancer cells were performed. Nanoparticles presented nanometric particle size (198.8 ± 0.06 nm) with low polydispersity (0.13 ± 0.022), negative zeta potential (-18.7 ± 1.10 mV), and 50.0 ± 7.3% encapsulation. FTIR revealed that R-PE is molecularly dispersed in PCL. DSC peak at 307 °C indicates the presence of R-PE in the nanoparticle. Also, in vitro, it was demonstrated low release for nanoparticles and degradation for the free R-PE. Finally, cellular uptake demonstrated the potential of R-PE/PCL nanoparticles for cancer cell detection. Nanoparticles loaded with R-PE can overcome instability and allow application as a fluorescent probe for cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Thais da Silva Moreira
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | | | - Claudia Pessoa
- Department of Physiology and Pharmacology, College of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Josimar O Eloy
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | | | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Redenção, Brazil
| |
Collapse
|
23
|
Jindal M, Kaur M, Nagpal M, Singh M, Aggarwal G, Dhingra GA. Skin Cancer Management: Current Scenario And Future Perspectives. Curr Drug Saf 2023; 18:143-158. [PMID: 35422227 DOI: 10.2174/1574886317666220413113959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022]
Abstract
Skin cancer is a life-threatening disease and has caused significant loss to human health across the globe. Its prevalence has been increasing every year and is one of the common malignancies in the case of organ transplant recipients, of which 95% constitute basal cell and squamous cell carcinomas. The prime factor causing skin cancer is UV radiation. Around the 20th century, sunlight was the primary cause of skin cancer. A novel hypothesis by US scientists stated that cutaneous melanoma was mainly due to recurrent exposure to the sun, whereas keratinocyte cancer occurred due to progressive accumulation of sun exposure. Management of skin cancer is done via various approaches, including cryotherapy, radiotherapy, and photodynamic therapy. Post-discovery of X-rays, radiotherapy has proven to treat skin cancers to some extent, but the indications are uncertain since it depends upon the type of tumour and surgical treatment required for the patient. Due to various limitations of skin cancer treatment and increased severity, there is a requirement for cost-effective, novel, and efficient treatment. Various nanocarriers such as SLNs, magnetic nanoparticles, gold nanoparticles, carbon nanotubes, etc., are the potential carriers in the management and prognosis of both non-melanoma and melanoma skin cancer. Various research and review databases and patent reports have been studied, and information compiled to extract the results. The review also discusses the role of various nanocarriers in treating and diagnosing skin cancer.
Collapse
Affiliation(s)
- Mehak Jindal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, India
| | - Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3 MB Road, New Delhi 110017, India
| | | |
Collapse
|
24
|
Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions-An Overview of Dermo-Cosmetic and Dermatological Products. Int J Mol Sci 2022; 23:ijms232415980. [PMID: 36555619 PMCID: PMC9780930 DOI: 10.3390/ijms232415980] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials (NM) arouse interest in various fields of science and industry due to their composition-tunable properties and the ease of modification. They appear currently as components of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents, computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in products for topical applications improves the permeation/penetration of the bioactive compounds into deeper layers of the skin, providing a depot effect with sustained drug release and specific cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques, and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and potential threat to human health are still open and not fully explained. This review gives a brief outline of the latest nanotechnology achievements in products used in topical applications to prevent and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin (influence of physical-chemical properties of NPs, the experimental models for skin penetration, methods applied to improve the penetration of NPs through the skin, and methods applied to investigate the skin penetration by NPs). The review summarizes various therapies using NPs to diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and UV-protectant nano-cosmetics.
Collapse
|
25
|
Rodrigues Arruda B, Mendes MGA, Freitas PGCD, Reis AVF, Lima T, Crisóstomo LCCF, Nogueira KAB, Pessoa C, Petrilli R, Eloy JO. Nanocarriers for delivery of taxanes: A review on physicochemical and biological aspects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Hong Y, Yu H, Wang L, Chen X, Huang Y, Yang J, Ren S. Transdermal Insulin Delivery and Microneedles-based Minimally Invasive Delivery Systems. Curr Pharm Des 2022; 28:3175-3193. [PMID: 35676840 DOI: 10.2174/1381612828666220608130056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 01/28/2023]
Abstract
Diabetes has become a serious threat to human health, causing death and pain to numerous patients. Transdermal insulin delivery is a substitute for traditional insulin injection to avoid pain from the injection. Transdermal methods include non-invasive and invasive methods. As the non-invasive methods could hardly get through the stratum corneum, minimally invasive devices, especially microneedles, could enhance the transappendageal route in transcutaneous insulin delivery, and could act as connectors between the tissue and outer environment or devices. Microneedle patches have been in quick development in recent years and with different types, materials and functions. In those patches, the smart microneedle patch could perform as a sensor and reactor responding to glucose to regulate the blood level. In the smart microneedles field, the phenylboronic acid system and the glucose oxidase system have been successfully applied on the microneedle platform. Insulin transdermal delivery strategy, microneedles technology and smart microneedles' development would be discussed in this review.
Collapse
Affiliation(s)
- Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Xiang Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Yudi Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Shuning Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
27
|
Cepero A, Luque C, Cabeza L, Perazzoli G, Quiñonero F, Mesas C, Melguizo C, Prados J. Antibody-Functionalized Nanoformulations for Targeted Therapy of Colorectal Cancer: A Systematic Review. Int J Nanomedicine 2022; 17:5065-5080. [PMID: 36345508 PMCID: PMC9635983 DOI: 10.2147/ijn.s368814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/21/2022] [Indexed: 11/06/2022] Open
Abstract
The failure of chemotherapeutic treatment in colorectal cancer (CRC), the second most mortal cancer worldwide, is associated with several drug limitations, such as non-selective distribution, short half-life, and development of multiple resistances. One of the most promising strategies in CRC therapy is the development of delivery systems based on nanomaterials that can transport antitumor agents to the tumor site more efficiently, increasing accumulation within the tumor and thus the antitumor effect. In addition to taking advantage of the increased permeability and retention effect (EPR) of solid tumors, these nanoformulations can be conjugated with monoclonal antibodies that recognize molecular markers that are specifically over-expressed on CRC cells. Active targeting of nanoformulations reduces the adverse effects associated with the cytotoxic activity of drugs in healthy tissues, which will be of interest for improving the quality of life of cancer patients in the future. This review focuses on in vitro and in vivo studies of drug delivery nanoformulations functionalized with monoclonal antibodies for targeted therapy of CRC.
Collapse
Affiliation(s)
- Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain,Correspondence: Consolación Melguizo, Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain, Tel +34-958-249833, Email
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| |
Collapse
|
28
|
Liposomes Loaded with Amaranth Unsaponifiable Matter and Soybean Lunasin Prevented Melanoma Tumor Development Overexpressing Caspase-3 in an In Vivo Model. Pharmaceutics 2022; 14:pharmaceutics14102214. [PMID: 36297649 PMCID: PMC9609684 DOI: 10.3390/pharmaceutics14102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to assess the effectiveness of liposomes loaded with soybean lunasin and amaranth unsaponifiable matter (UM + LunLip) as a source of squalene in the prevention of melanoma skin cancer in an allograft mice model. Tumors were induced by transplanting melanoma B16-F10 cells into the mice. The most effective treatments were those including UM + LunLip, with no difference between the lunasin concentrations (15 or 30 mg/kg body weight); however, these treatments were statistically different from the tumor-bearing untreated control (G3) (p < 0.05). The groups treated with topical application showed significant inhibition (68%, p < 0.05) compared to G3. The groups treated with subcutaneous injections showed significant inhibition (up to 99%, p < 0.05) in G3. During tumor development, UM + LunLip treatments under-expressed Ki-67 (0.2-fold compared to G3), glycogen synthase kinase-3β (0.1-fold compared to G3), and overexpressed caspase-3 (30-fold compared to G3). In addition, larger tumors showed larger necrotic areas (38% with respect to the total tumor) (p < 0.0001). In conclusion, the UM + LunLip treatment was effective when applied either subcutaneously or topically in the melanoma tumor-developing groups, as it slowed down cell proliferation and activated apoptosis.
Collapse
|
29
|
Min JWS, Saeed N, Coene A, Adriaens M, Ceelen W. Electromotive Enhanced Drug Administration in Oncology: Principles, Evidence, Current and Emerging Applications. Cancers (Basel) 2022; 14:4980. [PMID: 36291762 PMCID: PMC9599758 DOI: 10.3390/cancers14204980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 08/30/2023] Open
Abstract
Local-regional administration of cytotoxic drugs is an important adjunct to systemic chemotherapy amongst cancer patients. It allows for targeted delivery of agents at high concentration to target sites while minimizing systemic side effects. Despite the pharmacokinetic advantages of the local-regional approach, drug transport into tumor nodules remains limited due to the biophysical properties of these tissues. Electromotive enhanced drug administration (EMDA) represents a potential solution to overcome challenges in local drug transport by applying electric currents. Through electrokinetic phenomena of electromigration, electroosmosis and electroporation, electric currents have been shown to improve drug penetration and distribution in a wide variety of clinical applications. Amongst patients with non-muscular invasive bladder cancer (NMIBC) and basal and squamous cell skin cancers, EMDA has been successfully adopted and proven efficacious in several pre-clinical and clinical studies. Its application in ophthalmological and other conditions has also been explored. This review provides an overview of the underlying principles and factors that govern EMDA and discusses its application in cancer patients. We also discuss novel EMDA approaches in pre-clinical studies and explore future opportunities of developments in this field.
Collapse
Affiliation(s)
- Jolene Wong Si Min
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Nidda Saeed
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Annelies Coene
- Department of Electromechanical, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Mieke Adriaens
- Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| |
Collapse
|
30
|
Liposomes- A promising strategy for drug delivery in anticancer applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
31
|
Crisóstomo LCCF, Carvalho GSG, Leal LKAM, de Araújo TG, Nogueira KAB, da Silva DA, de Oliveira Silva Ribeiro F, Petrilli R, Eloy JO. Sorbitan Monolaurate-Containing Liposomes Enhance Skin Cancer Cell Cytotoxicity and in Association with Microneedling Increase the Skin Penetration of 5-Fluorouracil. AAPS PharmSciTech 2022; 23:212. [PMID: 35918472 DOI: 10.1208/s12249-022-02356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Squamous cell carcinoma (SCC) represents 20% of cases of non-melanoma skin cancer, and the most common treatment is the removal of the tumor, which can leave large scars. 5-Fluorouracil (5FU) is a drug used in the treatment of SCC, but it is highly hydrophilic, resulting in poor skin penetration in topical treatment. Some strategies can be used to increase the cutaneous penetration of the drug, such as the combination of liposomes containing penetration enhancers, for instance, surfactants, associated with the use of microneedling. Thus, the present work addresses the development of liposomes with penetration enhancers, such as sorbtitan monolaurate, span 20, for topical application of 5-FU and associated or not with the use of microneedling for skin delivery. Liposomes were developed using the lipid film hydration, resulting in particle size, polydispersity index, zeta potential, and 5-FU encapsulation efficiency of 88.08 nm, 0.169, -12.3 mV, and 50.20%, respectively. The presence of span 20 in liposomes potentiated the in vitro release of 5-FU. MTT assay was employed for cytotoxicity evaluation and the IC50 values were 0.62, 30.52, and 24.65 μM for liposomes with and without span 20 and 5-FU solution, respectively after 72-h treatment. Flow cytometry and confocal microscopy analysis evidenced high cell uptake for the formulations. In skin penetration studies, a higher concentration of 5-FU was observed in the epidermis + dermis, corresponding to 1997.71, 1842.20, and 2585.49 ng/cm2 in the passive penetration and 3214.07, 2342.84, and 5018.05 ng/cm2 after pretreatment with microneedles, for solution, liposome without and with span 20, respectively. Therefore, herein, we developed a nanoformulation for 5-FU delivery, with suitable physicochemical characteristics, potent skin cancer cytotoxicity, and cellular uptake. Span 20-based liposomes increased the skin penetration of 5-FU in association of microneedling. Altogether, the results shown herein evidenced the potential of the liposome containing span 20 for topical delivery of 5-FU.
Collapse
Affiliation(s)
| | | | | | - Tamara Gonçalves de Araújo
- Faculty of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Fortaleza Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, Parnaíba, PI, Brazil
| | | | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony- UNILAB, Redenção, CE, Brazil
| | - Josimar O Eloy
- Faculty of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Fortaleza Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
32
|
Kumari S, Choudhary PK, Shukla R, Sahebkar A, Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1435-1468. [PMID: 35294334 DOI: 10.1080/09205063.2022.2054399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Skin-cancer (SC) is more common than all other cancers affecting large percentage of the population in the world and is increasing in terms of morbidity and mortality. In the United States, 3million people are affected by SC annually whereas millions of people are affected globally. Melanoma is fifth most common cancer in the United States. SC is commonly occurred in white people as per WHO. SC is divided into two groups, i.e. melanoma and non-melanoma. In the previous two decades, management of cancer remains to be a tough and a challenging task for many scholars. Presently, the treatment protocols are mostly based on surgery and chemo-radiation therapy, which sooner or later harm the unaffected cells too. To reduce these limitations, nano scaled materials and its extensive range may be recognized as the probable carriers for the selective drug delivery in response to cancerous cells. Recently, the nanocarriers based drugs and their combinations were found to be a new and interesting approach of study for the management of skin carcinoma to enhance the effectiveness, to lessen the dose-dependent side effects and to avoid the drug resistance. This review may emphasize on the wide-range of information on nanotechnology-based drugs and their combination with physical techniques.
Collapse
Affiliation(s)
- Shweta Kumari
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
33
|
Cabral AMTDPV, Fernandes ACG, Joaquim NAM, Veiga F, Sofio SPC, Paiva I, Esteso MA, Rodrigo MM, Valente AJM, Ribeiro ACF. Complexation of 5-Fluorouracil with β-Cyclodextrin and Sodium Dodecyl Sulfate: A Useful Tool for Encapsulating and Removing This Polluting Drug. TOXICS 2022; 10:toxics10060300. [PMID: 35736908 PMCID: PMC9228719 DOI: 10.3390/toxics10060300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
The formation of complexes of the drug 5-fluorouracil (5-FU) with β-cyclodextrin (β-CD) and sodium dodecyl sulphate (SDS) was studied through experimental measurements of the ternary mutual diffusion coefficients (D11, D22, D12, and D21) for the systems {5-FU (component 1) + β-CD (component 2) + water} and {5-FU (component 1) + SDS (component 2) + water} at 298.15 K and at concentrations up to 0.05 mol dm−3 by using the Taylor dispersion method, with the objective of removing this polluting drug from the residual systems in which it was present. The results found showed that a coupled diffusion of 5-FU occurred with both β-CD and SDS, as indicated by the nonzero values of the cross-diffusion coefficients, D12 and D21, as a consequence of the complex formation between 5-FU and the β-CD or SDS species. That is, 5-FU was solubilized (encapsulated) by both carriers, although to a greater extent with SDS (K = 20.0 (±0.5) mol−1 dm3) than with β-CD (K = 10.0 (±0.5) mol−1 dm3). Values of 0.107 and 0.190 were determined for the maximum fraction of 5-FU solubilized with β-CD and SDS (at concentrations above its CMC), respectively. This meant that SDS was more efficient at encapsulating and thus removing the 5-FU drug.
Collapse
Affiliation(s)
- Ana M. T. D. P. V. Cabral
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.T.D.P.V.C.); (N.A.M.J.); (F.V.)
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
| | - Ana C. G. Fernandes
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
| | - Neuza A. M. Joaquim
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.T.D.P.V.C.); (N.A.M.J.); (F.V.)
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.T.D.P.V.C.); (N.A.M.J.); (F.V.)
| | - Sara P. C. Sofio
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
| | - Isabel Paiva
- Centre of Geography and Spatial Planning, Department of Geography and Tourism, University of Coimbra, 3004-530 Coimbra, Portugal;
| | - Miguel A. Esteso
- Universidad Católica de Ávila, Calle los Canteros s/n, 05005 Ávila, Spain
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain;
- Correspondence: (M.A.E.); (A.C.F.R.)
| | - M. Melia Rodrigo
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain;
| | - Artur J. M. Valente
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
| | - Ana C. F. Ribeiro
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
- Correspondence: (M.A.E.); (A.C.F.R.)
| |
Collapse
|
34
|
Biomimetic Nanoscale Materials for Skin Cancer Therapy and Detection. J Skin Cancer 2022; 2022:2961996. [PMID: 35433050 PMCID: PMC9010180 DOI: 10.1155/2022/2961996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Skin cancer has developed as one of the most common types of cancer in the world, with a significant impact on public health impact and the economy. Nanotechnology methods for cancer treatment are appealing since they allow for the effective transport of medicines and other biologically active substances to specific tissues while minimizing harmful consequences. It is one of the most significant fields of research for treating skin cancer. Various nanomaterials have been employed in skin cancer therapy. The current review will summarize numerous methods of treating and diagnosing skin cancer in the earliest stages. There are numerous skin cancer indicators available for the prompt diagnosis of this type of disease. Traditional approaches to skin cancer diagnosis are explored, as are their shortcomings. Electrochemical and optical biosensors for skin cancer diagnosis and management were also discussed. Finally, various difficulties concerning the cost and ease of use of innovative methods should be addressed and overcome.
Collapse
|
35
|
Liquid Biopsy and Dielectrophoretic Analysis—Complementary Methods in Skin Cancer Monitoring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The incidence and prevalence of skin cancers is currently increasing worldwide, with early detection, adequate treatment, and prevention of recurrences being topics of great interest for researchers nowadays. Although tumor biopsy remains the gold standard of diagnosis, this technique cannot be performed in a significant proportion of cases, so that the use of alternative methods with high sensitivity and specificity is becoming increasingly desirable. In this context, liquid biopsy appears to be a feasible solution for the study of cellular and molecular markers relevant to different types of skin cancers. Circulating tumor cells are just one of the components of interest obtained from performing liquid biopsy, and their study by complementary methods, such as dielectrophoresis, could bring additional benefits in terms of characterizing skin tumors and subsequently applying personalized therapy. One purpose of this review is to demonstrate the utility of liquid biopsy primarily in monitoring the most common types of skin tumors: basal cell carcinoma, squamous cell carcinoma, and malign melanoma. In addition, the originality of the article is based on the detailed presentation of the dielectrophoretic analysis method of the most important elements obtained from liquid biopsy, with direct impact on the clinical and therapeutic approach of skin tumors.
Collapse
|
36
|
Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022; 10:486. [PMID: 35203695 PMCID: PMC8962385 DOI: 10.3390/biomedicines10020486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. In the available treatments, chemotherapy is one of the most used, but has several associated problems, namely the high toxicity to normal cells and the resistance acquired by cancer cells to the therapeutic agents. The scientific community has been battling against this disease, developing new strategies and new potential chemotherapeutic agents. However, new drugs often exhibit poor solubility in water, which led researchers to develop functionalized nanosystems to carry and, specifically deliver, the drugs to cancer cells, targeting overexpressed receptors, proteins, and organelles. Thus, this review is focused on the recent developments of functionalized nanosystems used to carry poorly water-soluble drugs, with special emphasis on liposomes and albumin-based nanosystems, two major classes of organic nanocarriers with formulations already approved by the U.S. Food and Drug Administration (FDA) for cancer therapeutics.
Collapse
Affiliation(s)
- Sofia Teixeira
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
37
|
Bofinger R, Weitsman G, Evans R, Glaser M, Sander K, Allan H, Hochhauser D, Kalber TL, Årstad E, Hailes HC, Ng T, Tabor AB. Drug delivery, biodistribution and anti-EGFR activity: theragnostic nanoparticles for simultaneous in vivo delivery of tyrosine kinase inhibitors and kinase activity biosensors. NANOSCALE 2021; 13:18520-18535. [PMID: 34730152 PMCID: PMC8601123 DOI: 10.1039/d1nr02770k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/24/2021] [Indexed: 05/03/2023]
Abstract
In vivo delivery of small molecule therapeutics to cancer cells, assessment of the selectivity of administration, and measuring the efficacity of the drug in question at the molecule level, are important ongoing challenges in developing new classes of cancer chemotherapeutics. One approach that has the potential to provide targeted delivery, tracking of biodistribution and readout of efficacy, is to use multimodal theragnostic nanoparticles to deliver the small molecule therapeutic. In this paper, we report the development of targeted theragnostic lipid/peptide/DNA lipopolyplexes. These simultaneously deliver an inhibitor of the EGFR tyrosine kinase, and plasmid DNA coding for a Crk-based biosensor, Picchu-X, which when expressed in the target cells can be used to quantify the inhibition of EGFR in vivo in a mouse colorectal cancer xenograft model. Reversible bioconjugation of a known analogue of the tyrosine kinase inhibitor Mo-IPQA to a cationic peptide, and co-formulation with peptides containing both EGFR-binding and cationic sequences, allowed for good levels of inhibitor encapsulation with targeted delivery to LIM1215 colon cancer cells. Furthermore, high levels of expression of the Picchu-X biosensor in the LIM1215 cells in vivo allowed us to demonstrate, using fluorescence lifetime microscopy (FLIM)-based biosensing, that EGFR activity can be successfully suppressed by the tyrosine kinase inhibitor, released from the lipopolyplexes. Finally, we measured the biodistribution of lipopolyplexes containing 125I-labelled inhibitors and were able to demonstrate that the lipopolyplexes gave significantly higher drug delivery to the tumors compared with free drug.
Collapse
Affiliation(s)
- Robin Bofinger
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Gregory Weitsman
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
| | - Rachel Evans
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Matthias Glaser
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Kerstin Sander
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Helen Allan
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Daniel Hochhauser
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Erik Årstad
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Tony Ng
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
38
|
Site-Specific Vesicular Drug Delivery System for Skin Cancer: A Novel Approach for Targeting. Gels 2021; 7:gels7040218. [PMID: 34842689 PMCID: PMC8628733 DOI: 10.3390/gels7040218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Skin cancer, one of the most prevalent cancers worldwide, has demonstrated an alarming increase in prevalence and mortality. Hence, it is a public health issue and a high burden of disease, contributing to the economic burden in its treatment. There are multiple treatment options available for skin cancer, ranging from chemotherapy to surgery. However, these conventional treatment modalities possess several limitations, urging the need for the development of an effective and safe treatment for skin cancer that could provide targeted drug delivery and site-specific tumor penetration and minimize unwanted systemic toxicity. Therefore, it is vital to understand the critical biological barriers involved in skin cancer therapeutics for the optimal development of the formulations. Various nanocarriers for targeted delivery of chemotherapeutic drugs have been developed and extensively studied to overcome the limitations faced by topical conventional dosage forms. A site-specific vesicular drug delivery system appears to be an attractive strategy in topical drug delivery for the treatment of skin malignancies. In this review, vesicular drug delivery systems, including liposomes, niosomes, ethosomes, and transfersomes in developing novel drug delivery for skin cancer therapeutics, are discussed. Firstly, the prevalence statistics, current treatments, and limitations of convention dosage form for skin cancer treatment are discussed. Then, the common type of nanocarriers involved in the research for skin cancer treatment are summarized. Lastly, the utilization of vesicular drug delivery systems in delivering chemotherapeutics is reviewed and discussed, along with their beneficial aspects over other nanocarriers, safety concerns, and clinical aspects against skin cancer treatment.
Collapse
|
39
|
Liu G, Yang L, Chen G, Xu F, Yang F, Yu H, Li L, Dong X, Han J, Cao C, Qi J, Su J, Xu X, Li X, Li B. A Review on Drug Delivery System for Tumor Therapy. Front Pharmacol 2021; 12:735446. [PMID: 34675807 PMCID: PMC8524443 DOI: 10.3389/fphar.2021.735446] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, with the development of nanomaterials, the research of drug delivery systems has become a new field of cancer therapy. Compared with conventional antitumor drugs, drug delivery systems such as drug nanoparticles (NPs) are expected to have more advantages in antineoplastic effects, including easy preparation, high efficiency, low toxicity, especially active tumor-targeting ability. Drug delivery systems are usually composed of delivery carriers, antitumor drugs, and even target molecules. At present, there are few comprehensive reports on a summary of drug delivery systems applied for tumor therapy. This review introduces the preparation, characteristics, and applications of several common delivery carriers and expounds the antitumor mechanism of different antitumor drugs in delivery carriers in detail which provides a more theoretical basis for clinical application of personalized cancer nanomedicine in the future.
Collapse
Affiliation(s)
- Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huaxin Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lingne Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingjing Han
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingyu Qi
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Junzhe Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.,Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
40
|
Sallam MA, Prakash S, Kumbhojkar N, Shields CW, Mitragotri S. Formulation-based approaches for dermal delivery of vaccines and therapeutic nucleic acids: Recent advances and future perspectives. Bioeng Transl Med 2021; 6:e10215. [PMID: 34589595 PMCID: PMC8459604 DOI: 10.1002/btm2.10215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
A growing variety of biological macromolecules are in development for use as active ingredients in topical therapies and vaccines. Dermal delivery of biomacromolecules offers several advantages compared to other delivery methods, including improved targetability, reduced systemic toxicity, and decreased degradation of drugs. However, this route of delivery is hampered by the barrier function of the skin. Recently, a large body of research has been directed toward improving the delivery of macromolecules to the skin, ranging from nucleic acids (NAs) to antigens, using noninvasive means. In this review, we discuss the latest formulation-based efforts to deliver antigens and NAs for vaccination and treatment of skin diseases. We provide a perspective of their advantages, limitations, and potential for clinical translation. The delivery platforms discussed in this review may provide formulation scientists and clinicians with a better vision of the alternatives for dermal delivery of biomacromolecules, which may facilitate the development of new patient-friendly prophylactic and therapeutic medicines.
Collapse
Affiliation(s)
- Marwa A. Sallam
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
- Present address:
Department of Industrial PharmacyFaculty of Pharmacy, Alexandria UniversityEgypt
| | - Supriya Prakash
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| | - Charles Wyatt Shields
- Department of Chemical & Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
41
|
Baveloni FG, Riccio BVF, Di Filippo LD, Fernandes MA, Meneguin AB, Chorilli M. Nanotechnology-based Drug Delivery Systems as Potential for Skin Application: A Review. Curr Med Chem 2021; 28:3216-3248. [PMID: 32867631 DOI: 10.2174/0929867327666200831125656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/22/2022]
Abstract
Administration of substances through the skin represents a promising alternative, in relation to other drug administration routes, due to its large body surface area, in order to offer ideal and multiple sites for drug administration. In addition, the administration of drugs through the skin avoids the first-pass metabolism, allowing an increase in the bioavailability of drugs, as well as reducing their side effects. However, the stratum corneum (SC) comprises the main barrier of protection against external agents, mainly due to its structure, composition and physicochemical properties, becoming the main limitation for the administration of substances through the skin. In view of the above, pharmaceutical technology has allowed the development of multiple drug delivery systems (DDS), which include liquid crystals (LC), cubosomes, liposomes, polymeric nanoparticles (PNP), nanoemulsions (NE), as well as cyclodextrins (CD) and dendrimers (DND). It appears that the DDS circumvents the problems of drug absorption through the SC layer of the skin, ensuring the release of the drug, as well as optimizing the therapeutic effect locally. This review aims to highlight the DDS that include LC, cubosomes, lipid systems, PNP, as well as CD and DND, to optimize topical skin therapies.
Collapse
Affiliation(s)
- Franciele Garcia Baveloni
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Bruno Vincenzo Fiod Riccio
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Leonardo Delello Di Filippo
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Mariza Aires Fernandes
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| |
Collapse
|
42
|
Abbasi H, Rahbar N, Kouchak M, Khalil Dezfuli P, Handali S. Functionalized liposomes as drug nanocarriers for active targeted cancer therapy: a systematic review. J Liposome Res 2021; 32:195-210. [PMID: 33729077 DOI: 10.1080/08982104.2021.1903035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a broad term used to describe a group of diseases that have more than 270 types. Today, due to the suffering of patients from the side effects of existing methods in the treatment of cancer such as chemotherapy and radiotherapy, the employment of targeted methods in the treatment of this disease has been received much consideration. In recent years, nanoparticles have revolutionized in the treatment of many diseases such as cancer. Among these nanoparticles, liposomes are more considerable. Active targeted liposomes show an important role in the selective action of the drug on cancer cells. Until now, a variety of anti-cancer agents have been reported for targeted delivery to cancer cells using liposomes. The results of in vitro and studies in vivo have been shown that selective action of the targeted liposomes is increased with reduced side effects and toxicity compared with free drugs or non-targeted liposomes. This systematic review expresses the reports of this type of drug delivery system. Search terms were searched through several online databases including PubMed, Scopus, and Science Direct from 1990 to 2019 and the quality evaluation was performed. Out of 11,676 published articles, 196 articles met the inclusion criteria. The current report reviews developments in the liposomes targeted with aptamer, transferrin, folate, and monoclonal antibodies.
Collapse
Affiliation(s)
- Hanieh Abbasi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parna Khalil Dezfuli
- School of Pharmacy Library, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Handali
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Petrilli R, Pinheiro DP, de Cássia Evangelista de Oliveira F, Galvão GF, Marques LGA, Lopez RFV, Pessoa C, Eloy JO. Immunoconjugates for Cancer Targeting: A Review of Antibody-Drug Conjugates and Antibody-Functionalized Nanoparticles. Curr Med Chem 2021; 28:2485-2520. [PMID: 32484100 DOI: 10.2174/0929867327666200525161359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Targeted therapy has been recently highlighted due to the reduction of side effects and improvement in overall efficacy and survival from different types of cancers. Considering the approval of many monoclonal antibodies in the last twenty years, cancer treatment can be accomplished by the combination of monoclonal antibodies and small molecule chemotherapeutics. Thus, strategies to combine both drugs in a single administration system are relevant in the clinic. In this context, two strategies are possible and will be further discussed in this review: antibody-drug conjugates (ADCs) and antibody-functionalized nanoparticles. First, it is important to better understand the possible molecular targets for cancer therapy, addressing different antigens that can selectively bind to antibodies. After selecting the best target, ADCs can be prepared by attaching a cytotoxic drug to an antibody able to target a cancer cell antigen. Briefly, an ADC will be formed by a monoclonal antibody (MAb), a cytotoxic molecule (cytotoxin) and a chemical linker. Usually, surface-exposed lysine or the thiol group of cysteine residues are used as anchor sites for linker-drug molecules. Another strategy that should be considered is antibody-functionalized nanoparticles. Basically, liposomes, polymeric and inorganic nanoparticles can be attached to specific antibodies for targeted therapy. Different conjugation strategies can be used, but nanoparticles coupling between maleimide and thiolated antibodies or activation with the addition of ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/ N-hydroxysuccinimide (NHS) (1:5) and further addition of the antibody are some of the most used strategies. Herein, molecular targets and conjugation strategies will be presented and discussed to better understand the in vitro and in vivo applications presented. Also, the clinical development of ADCs and antibody-conjugated nanoparticles are addressed in the clinical development section. Finally, due to the innovation related to the targeted therapy, it is convenient to analyze the impact on patenting and technology. Information related to the temporal evolution of the number of patents, distribution of patent holders and also the number of patents related to cancer types are presented and discussed. Thus, our aim is to provide an overview of the recent developments in immunoconjugates for cancer targeting and highlight the most important aspects for clinical relevance and innovation.
Collapse
Affiliation(s)
- Raquel Petrilli
- University for International Integration of the Afro-Brazilian Lusophony, Institute of Health Sciences, Ceara, Brazil
| | - Daniel Pascoalino Pinheiro
- Federal University of Ceara, College of Medicine, Department of Physiology and Pharmacology, Fortaleza, Ceara, Brazil
| | | | - Gabriela Fávero Galvão
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, Ribeirao Preto, SP, Brazil
| | - Lana Grasiela Alves Marques
- Institute of Communication and Scientific and Technological Information in Health, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, Brazil
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, Ribeirao Preto, SP, Brazil
| | - Claudia Pessoa
- Federal University of Ceara, College of Medicine, Department of Physiology and Pharmacology, Fortaleza, Ceara, Brazil
| | - Josimar O Eloy
- Federal University of Ceará, College of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Fortaleza, Ceara, Brazil
| |
Collapse
|
44
|
Rosenkranz AA, Slastnikova TA. Epidermal Growth Factor Receptor: Key to Selective Intracellular Delivery. BIOCHEMISTRY (MOSCOW) 2021; 85:967-1092. [PMID: 33050847 DOI: 10.1134/s0006297920090011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an integral surface protein mediating cellular response to a number of growth factors. Its overexpression and increased activation due to mutations is one of the most common traits of many types of cancer. Development and clinical use of the agents, which block EGFR activation, became a prime example of the personalized targeted medicine. However, despite the obvious success in this area, cancer cure remains unattainable in most cases. Because of that, as well as the result of the search for possible ways to overcome the difficulties of treatment, a huge number of new treatment methods relying on the use of EGFR overexpression and its changes to destroy cancer cells. Modern data on the structure, functioning, and intracellular transport of EGFR, its natural ligands, as well as signaling cascades triggered by the EGFR activation, peculiarities of the EGFR expression and activation in oncological disorders, as well as applied therapeutic approaches aimed at blocking EGFR signaling pathway are summarized and analyzed in this review. Approaches to the targeted delivery of various chemotherapeutic agents, radionuclides, immunotoxins, photosensitizers, as well as the prospects for gene therapy aimed at cancer cells with EGFR overexpression are reviewed in detail. It should be noted that increasing attention is being paid nowadays to the development of multifunctional systems, either carrying several different active agents, or possessing several environment-dependent transport functions. Potentials of the systems based on receptor-mediated endocytosis of EGFR and their possible advantages and limitations are discussed.
Collapse
Affiliation(s)
- A A Rosenkranz
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
45
|
Trevizan LNF, Eloy JO, Luiz MT, Petrilli R, Junior SLR, Borges JC, Marchetti JM, Chorilli M. Anti-EGFR liquid crystalline nanodispersions for docetaxel delivery: Formulation, characterization and cytotoxicity in cancer cells. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Abstract
The topical and transdermal routes of drug administration are long known to the field of pharmaceutics. These routes have been explored for the delivery of a wide range of therapeutic agents over centuries. However, the anatomy of the skin and the physicochemical properties of molecules limit their transport via these routes. To overcome these challenges, a nano-phospholipid carrier called liposome was developed in the 1960s. Liposomal delivery of drugs was reported to be limited to the upper layers of skin. This led to the development of self-regulating and self-adaptable vesicles known as transfersomes. This review critically evaluates the barriers in delivery across the skin, recent advancements in liposomes, transfersomes and their impact in the pharmaceutical field.
Collapse
|
47
|
Helmy AM. Overview of recent advancements in the iontophoretic drug delivery to various tissues and organs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Wu K, Ho S, Wu C, Wang HD, Ma D, Leung C. Simultaneous blocking of the pan-RAF and S100B pathways as a synergistic therapeutic strategy against malignant melanoma. J Cell Mol Med 2021; 25:1972-1981. [PMID: 33377602 PMCID: PMC7882986 DOI: 10.1111/jcmm.15994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Melanoma is a very aggressive form of skin cancer. Although BRAF inhibitors have been utilized for melanoma therapy, advanced melanoma patients still face a low five-year survival rate. Recent studies have shown that CRAF can compensate for BRAF depletion via regulating DNA synthesis to remain melanoma proliferation. Hence, targeting CRAF either alone or in combination with other protein pathways is a potential avenue for melanoma therapy. Based on our previously reported CRAF-selective inhibitor for renal cancer therapy, we have herein discovered an analogue (complex 1) from the reported CRAF library suppresses melanoma cell proliferation and melanoma tumour growth in murine models of melanoma via blocking the S100B and RAF pathways. Intriguingly, we discovered that inhibiting BRAF together with S100B exerts a novel synergistic effect to significantly restore p53 transcription activity and inhibit melanoma cell proliferation, whereas blocking BRAF together with CRAF only had an additive effect. We envision that blocking the pan-RAF and S100B/p53 pathways might be a novel synergistic strategy for melanoma therapy and that complex 1 is a potential inhibitor against melanoma via blocking the pan-RAF and S100B pathways.
Collapse
Affiliation(s)
- Ke‐Jia Wu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Shih‐Hsin Ho
- State Key Laboratory of Urban Water Resource and EnvironmentSchool of EnvironmentHarbin Institute of TechnologyHarbinChina
| | - Chun Wu
- Department of ChemistryHong Kong Baptist UniversityKowloon TongHong Kong
| | - Hui‐Min D. Wang
- Graduate Institute of Biomedical Engineering National Chung Hsing UniversityTaichungTaiwan
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical Laboratory Science and BiotechnologyChina Medical UniversityTaichung CityTaiwan
| | - Dik‐Lung Ma
- Department of ChemistryHong Kong Baptist UniversityKowloon TongHong Kong
| | - Chung‐Hang Leung
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
49
|
Ewert de Oliveira B, Junqueira Amorim OH, Lima LL, Rezende RA, Mestnik NC, Bagatin E, Leonardi GR. 5-Fluorouracil, innovative drug delivery systems to enhance bioavailability for topical use. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
EGFR targeting for cancer therapy: Pharmacology and immunoconjugates with drugs and nanoparticles. Int J Pharm 2020; 592:120082. [PMID: 33188892 DOI: 10.1016/j.ijpharm.2020.120082] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the tyrosine kinase receptors family and is present in the epithelial cell membrane. Its endogenous activation occurs through the binding of different endogenous ligands, including the epidermal growth factor (EGF), leading to signaling cascades able to maintain normal cellular functions. Although involved in the development and maintenance of tissues in normal conditions, when EGFR is overexpressed, it stimulates the growth and progression of tumors, resulting in angiogenesis, invasion and metastasis, through some main cascades such as Ras/Raf/MAPK, PIK-3/AKT, PLC-PKC and STAT. Besides, considering the limitations of conventional chemotherapy that result in high toxicity and low tumor specificity, EGFR is currently considered an important target. As a result, several monoclonal antibodies are currently approved for use in cancer treatment, such as cetuximab (CTX), panitumumab, nimotuzumab, necitumumab and others are in clinical trials. Aiming to combine the chemotherapeutic agent toxicity and specific targeting to EGFR overexpressing tumor tissues, two main strategies will be discussed in this review: antibody-drug conjugates (ADCs) and antibody-nanoparticle conjugates (ANCs). Briefly, ADCs consist of antibodies covalently linked through a spacer to the cytotoxic drug. Upon administration, binding to EGFR and endocytosis, ADCs suffer chemical and enzymatic reactions leading to the release and accumulation of the drug. Instead, ANCs consist of nanotechnology-based formulations, such as lipid, polymeric and inorganic nanoparticles able to protect the drug against inactivation, allowing controlled release and also passive accumulation in tumor tissues by the enhanced permeability and retention effect (EPR). Furthermore, ANCs undergo active targeting through EGFR receptor-mediated endocytosis, leading to the formation of lysosomes and drug release into the cytosol. Herein, we will present and discuss some important aspects regarding EGFR structure, its role on internal signaling pathways and downregulation aspects. Then, considering that EGFR is a potential therapeutic target for cancer therapy, the monoclonal antibodies able to target this receptor will be presented and discussed. Finally, ADCs and ANCs state of the art will be reviewed and recent studies and clinical progresses will be highlighted. To the best of our knowledge, this is the first review paper to address specifically the EGFR target and its application on ADCs and ANCs.
Collapse
|