1
|
Chen Y, Dai L, Shi K, Pan M, Yuan L, Qian Z. Cabazitaxel-Loaded Thermosensitive Hydrogel System for Suppressed Orthotopic Colorectal Cancer and Liver Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404800. [PMID: 38934894 PMCID: PMC11434046 DOI: 10.1002/advs.202404800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
The treatment of colorectal cancer is always a major challenge in the field of cancer research. The number of estimated new cases of colorectal cancer worldwide in 2020 is 1 148 515, and the estimated number of deaths is 576 858, revealing that mortality accounted for approximately half of the disease incidence. The development of new drugs and strategies for colorectal cancer treatment is urgently needed. Thermosensitive injectable hydrogel PDLLA-PEG-PDLLA (PLEL) loaded with cabazitaxel (CTX) is used to explore its anti-tumor effect on mice with orthotopic colorectal cancer. CTX/PLEL is characterized by a solution state at room temperature and a hydrogel state at physiologic temperature. The excipients MPEG-PCL and PDLLA-PEG-PDLLA have good biocompatibility and biodegradability. The simple material synthesis and preparation process renders this system cost-effective and more conducive to clinical transformation. An orthotopic colorectal cancer model is established by transplantation subcutaneous tumors onto the cecum of mice. According to the results of experiments in vivo, CTX/PLEL significantly inhibits orthotopic colorectal cancer and liver metastasis in mice. The results indicate that CTX/PLEL nanoparticle preparations have high security and excellent anti-tumor effects, and have great application potential in colorectal cancer therapy.
Collapse
Affiliation(s)
- Yu Chen
- Department of BiotherapyCancer Center and State Key Laboratory of Biotherapy West China HospitalSichuan UniversityChengdu610041China
| | - Liqun Dai
- Department of BiotherapyCancer Center and State Key Laboratory of Biotherapy West China HospitalSichuan UniversityChengdu610041China
| | - Kun Shi
- Department of BiotherapyCancer Center and State Key Laboratory of Biotherapy West China HospitalSichuan UniversityChengdu610041China
| | - Meng Pan
- Department of BiotherapyCancer Center and State Key Laboratory of Biotherapy West China HospitalSichuan UniversityChengdu610041China
| | - Liping Yuan
- Department of BiotherapyCancer Center and State Key Laboratory of Biotherapy West China HospitalSichuan UniversityChengdu610041China
| | - Zhiyong Qian
- Department of BiotherapyCancer Center and State Key Laboratory of Biotherapy West China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
2
|
Lu Q, Gao W, Chen Z, Liu Z, Wang J, Zeng L, Hu X, Zheng E, Zhang Q, Song H. Co-delivery of Paclitaxel/Atovaquone/Quercetin to regulate energy metabolism to reverse multidrug resistance in ovarian cancer by PLGA-PEG nanoparticles. Int J Pharm 2024; 655:124028. [PMID: 38518871 DOI: 10.1016/j.ijpharm.2024.124028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Ovarian cancer is a malignant tumor that seriously endangers the lives of women, with chemotherapy being the primary clinical treatment. However, chemotherapy encounters the problem of generating multidrug resistance (MDR), mainly due to drug efflux induced by P-glycoprotein (P-gp), which decreases intracellular accumulation of chemotherapeutic drugs. The drugs efflux mediated by P-gp requires adenosine triphosphate (ATP) hydrolysis to provide energy. Therefore, modulating energy metabolism pathways and inhibiting ATP production may be a potential strategy to reverse MDR. Herein, we developed a PTX-ATO-QUE nanoparticle (PAQNPs) based on a PLGA-PEG nanoplatform capable of loading the mitochondrial oxidative phosphorylation (OXPHOS) inhibitor atovaquone (ATO), the glycolysis inhibitor quercetin (QUE), and the chemotherapeutic drug paclitaxel (PTX) to reverse MDR by inhibiting energy metabolism through multiple pathways. Mechanistically, PAQNPs could effectively inhibit the OXPHOS and glycolytic pathways of A2780/Taxol cells by suppressing the activities of mitochondrial complex III and hexokinase II (HK II), respectively, ultimately decreasing intracellular ATP levels in tumor cells. Energy depletion can effectively inhibit cell proliferation and reduce P-gp activity, increasing the chemotherapeutic drug PTX accumulation in the cells. Moreover, intracellular reactive oxygen species (ROS) is increased with PTX accumulation and leads to chemotherapy-resistant cell apoptosis. Furthermore, PAQNPs significantly inhibited tumor growth in the A2780/Taxol tumor-bearing NCG mice model. Immunohistochemical (IHC) analysis of tumor tissues revealed that P-gp expression was suppressed, demonstrating that PAQNPs are effective in reversing MDR in tumors by inducing energy depletion. In addition, the safety study results, including blood biochemical indices, major organ weights, and H&E staining images, showed that PAQNPs have a favorable in vivo safety profile. In summary, the results suggest that the combined inhibition of the two energy pathways, OXPHOS and glycolysis, can enhance chemotherapy efficacy and reverse MDR in ovarian cancer.
Collapse
Affiliation(s)
- Qingyu Lu
- School of Pharmacy, Fujian University of Chinese Traditional Medicine, Fuzhou 350122, PR China; Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Wenhao Gao
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China; School of Pharmacy, Fujian Medical University, Fuzhou 350122, PR China
| | - Zhenzhen Chen
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Jie Wang
- School of Nursing, Fujian University of Chinese Traditional Medicine, Fuzhou 350122, PR China
| | - Lingjun Zeng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Xiaomu Hu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Enqin Zheng
- School of Pharmacy, Fujian University of Chinese Traditional Medicine, Fuzhou 350122, PR China
| | - Qian Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, PR China.
| | - Hongtao Song
- School of Pharmacy, Fujian University of Chinese Traditional Medicine, Fuzhou 350122, PR China; Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China.
| |
Collapse
|
3
|
Heydarnia E, Dorostgou Z, Hedayati N, Mousavi V, Yahyazadeh S, Alimohammadi M, Gheibi M, Heidari P, Igder S, Mafi A, Vakili O. Circular RNAs and cervical cancer: friends or foes? A landscape on circRNA-mediated regulation of key signaling pathways involved in the onset and progression of HPV-related cervical neoplasms. Cell Commun Signal 2024; 22:107. [PMID: 38341592 PMCID: PMC10859032 DOI: 10.1186/s12964-024-01494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Cervical cancer (CC) is a common gynecologic malignancy, accounting for a significant proportion of women death worldwide. Human papillomavirus (HPV) infection is one of the major etiological causes leading to CC onset; however, genetic, and epigenetic factors are also responsible for disease expansion. Circular RNAs (circRNAs), which are known as a particular subset of non-coding RNA (ncRNA) superfamily, with covalently closed loop structures, have been reported to be involved in the progression of diverse diseases, especially neoplasms. In this framework, abnormally expressed circRNAs are in strong correlation with CC pathogenesis through regulating substantial signaling pathways. Also, these RNA molecules can be considered as promising biomarkers and therapeutic targets for CC diagnosis/prognosis and treatment, respectively. Herein, we first review key molecular mechanisms, including Wnt/β-catenin, MAPK, and PI3K/Akt/mTOR signaling pathways, as well as angiogenesis and metastasis, by which circRNAs interfere with CC development. Then, diagnostic, prognostic, and therapeutic potentials of these ncRNA molecules will be highlighted in depth.
Collapse
Affiliation(s)
- Emad Heydarnia
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mobina Gheibi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Karami E, Mesbahi Moghaddam M, Kazemi-Lomedasht F. Use of Albumin for Drug Delivery as a Diagnostic and Therapeutic Tool. Curr Pharm Biotechnol 2024; 25:676-693. [PMID: 37550918 DOI: 10.2174/1389201024666230807161200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Abstract
Drug delivery is an important topic that has attracted the attention of researchers in recent years. Albumin nanoparticles play a significant role in drug delivery as a carrier due to their unique characteristics. Albumin is non-toxic, biocompatible, and biodegradable. Its structure is such that it can interact with different drugs, which makes the treatment of the disease faster and also reduces the side effects of the drug. Albumin nanoparticles can be used in the diagnosis and treatment of many diseases, including cancer, diabetes, Alzheimer's, etc. These nanoparticles can connect to some compounds, such as metal nanoparticles, antibodies, folate, etc. and create a powerful nanostructure for drug delivery. In this paper, we aim to investigate albumin nanoparticles in carrier format for drug delivery application. In the beginning, different types of albumin and their preparation methods were discussed, and then albumin nanoparticles were discussed in detail in diagnosing and treating various diseases.
Collapse
Affiliation(s)
- Elmira Karami
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Chen H, Yao H, Chi J, Li C, Liu Y, Yang J, Yu J, Wang J, Ruan Y, Pi J, Xu JF. Engineered exosomes as drug and RNA co-delivery system: new hope for enhanced therapeutics? Front Bioeng Biotechnol 2023; 11:1254356. [PMID: 37823027 PMCID: PMC10562639 DOI: 10.3389/fbioe.2023.1254356] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Chemotherapy often faces some obstacles such as low targeting effects and drug resistance, which introduce the low therapeutic efficiency and strong side effects. Recent advances in nanotechnology allows the use of novel nanosystems for targeted drug delivery, although the chemically synthesized nanomaterials always show unexpected low biocompability. The emergence of exosome research has offered a better understanding of disease treatment and created novel opportunities for developing effective drug delivery systems with high biocompability. Moreover, RNA interference has emerged as a promising strategy for disease treatments by selectively knocking down or over-expressing specific genes, which allows new possibilities to directly control cell signaling events or drug resistance. Recently, more and more interests have been paid to develop optimal delivery nanosystems with high efficiency and high biocompability for drug and functional RNA co-delivery to achieve enhanced chemotherapy. In light of the challenges for developing drug and RNA co-delivery system, exosomes have been found to show very attractive prospects. This review aims to explore current technologies and challenges in the use of exosomes as drug and RNA co-delivery system with a focus on the emerging trends and issues associated with their further applications, which may contribute to the accelerated developments of exosome-based theraputics.
Collapse
Affiliation(s)
- Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Chaowei Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiajun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
6
|
Ogundipe OD, Olajubutu O, Adesina SK. Targeted drug conjugate systems for ovarian cancer chemotherapy. Biomed Pharmacother 2023; 165:115151. [PMID: 37473683 DOI: 10.1016/j.biopha.2023.115151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Ovarian cancer is a highly lethal disease that affects women. Early diagnosis and treatment of women with early-stage disease improve the probability of survival. Unfortunately, the majority of women with ovarian cancer are diagnosed at advanced stages 3 and 4 which makes treatment challenging. While the majority of the patients respond to first-line treatment, i.e. cytoreductive surgery integrated with platinum-based chemotherapy, the rate of disease recurrence is very high and the available treatment options for recurrent disease are not curative. Thus, there is a need for more effective treatment options for ovarian cancer. Targeted drug conjugate systems have emerged as a promising therapeutic strategy for the treatment of ovarian cancer. These systems provide the opportunity to selectively deliver highly potent chemotherapeutic drugs to ovarian cancer, sparing healthy normal cells. Thus, the effectiveness of the drugs is improved and systemic toxicity is greatly reduced. In this review, different targeted drug conjugate systems that have been or are being developed for the treatment of ovarian cancer will be discussed.
Collapse
Affiliation(s)
- Omotola D Ogundipe
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA
| | | | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA.
| |
Collapse
|
7
|
Mi Z, Zhou W, Yang H, Cao L, Li M, Zhou Y. Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane. Phys Chem Chem Phys 2023; 25:22055-22062. [PMID: 37556228 DOI: 10.1039/d3cp01722b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. Here, based on a realistically complex human brain plasma membrane (PM) model, we investigated the dynamic transmembrane behavior of a PTX cluster by shock induced bubble collapse, focusing on the effect of impulse (I), bubble diameter (D) and arrays. The results show that all three factors can control the transport depth (ΔDPM) of PTX. For a fixed D, the ΔDPM grows exponentially with I, ΔDPM ∼ exp (I), and eventually reaches a critical depth. But the depth, ΔDPM, can be adjusted linearly in a wider range of D. This mainly depends on the size of jets from bubble collapse. For bubble arrays, the bubbles in series can transport PTX deeper than a single bubble, while the parallel does the opposite. In addition, only PTX clusters in the range of jet action can be successfully transported. Finally, the absorption of PTX clusters was examined via recovery simulation. Not all PTX clusters across the membrane can be effectively absorbed by cells. The shallow PTX clusters are quickly attracted by the membrane and embedded into it. The critical depth at which PTX clusters can be effectively absorbed is about 20 nm. These molecular-level mechanisms and dynamic processes of PTX clusters crossing the PM membrane may be helpful in optimizing the application of shock-induced bubble collapse for the delivery of PTX to tumor cells.
Collapse
Affiliation(s)
- Zhou Mi
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenyu Zhou
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Hong Yang
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Luoxia Cao
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Ming Li
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| | - Yang Zhou
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
| |
Collapse
|
8
|
Haider M, Jagal J, Bajbouj K, Sharaf BM, Sahnoon L, Okendo J, Semreen MH, Hamda M, Soares NC. Integrated multi-omics analysis reveals unique signatures of paclitaxel-loaded poly(lactide-co-glycolide) nanoparticles treatment of head and neck cancer cells. Proteomics 2023; 23:e2200380. [PMID: 37148169 DOI: 10.1002/pmic.202200380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 05/08/2023]
Abstract
The use of poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as carriers for chemotherapeutic drugs is regarded as an actively targeted nano-therapy for the specific delivery of anti-cancer drugs to target cells. However, the exact mechanism by which PLGA NPs boost anticancer cytotoxicity at the molecular level remains largely unclear. This study employed different molecular approaches to define the response of carcinoma FaDu cells to different types of treatment, specifically: paclitaxel (PTX) alone, drug free PLGA NPs, and PTX-loaded PTX-PLGA NPs. Functional cell assays revealed that PTX-PLGA NPs treated cells had a higher level of apoptosis than PTX alone, whereas the complementary, UHPLC-MS/MS (TIMS-TOF) based multi-omics analyses revealed that PTX-PLGA NPs treatment resulted in increased abundance of proteins associated with tubulin, as well as metabolites such as 5-thymidylic acid, PC(18:1(9Z)/18:1(9Z0), vitamin D, and sphinganine among others. The multi-omics analyses revealed new insights about the molecular mechanisms underlying the action of novel anticancer NP therapies. In particular, PTX-loaded NPs appeared to exacerbate specific changes induced by both PLGA-NPs and PTX as a free drug. Hence, the PTX-PLGA NPs' molecular mode of action, seen in greater detail, depends on this synergy that ultimately accelerates the apoptotic process, resulting in cancer cell death.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
| | - Khuloud Bajbouj
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Basma M Sharaf
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
| | - Lina Sahnoon
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
| | - Javan Okendo
- Systems and Chemical Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mohammad H Semreen
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Mawieh Hamda
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Nelson C Soares
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA School/Faculdade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Pei Q, Jiang B, Hao D, Xie Z. Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics. Acta Pharm Sin B 2023; 13:3252-3276. [PMID: 37655323 PMCID: PMC10465968 DOI: 10.1016/j.apsb.2023.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023] Open
Abstract
Chemotherapy has occupied the critical position in cancer therapy, especially towards the post-operative, advanced, recurrent, and metastatic tumors. Paclitaxel (PTX)-based formulations have been widely used in clinical practice, while the therapeutic effect is far from satisfied due to off-target toxicity and drug resistance. The caseless multi-components make the preparation technology complicated and aggravate the concerns with the excipients-associated toxicity. The self-assembled PTX nanoparticles possess a high drug content and could incorporate various functional molecules for enhancing the therapeutic index. In this work, we summarize the self-assembly strategy for diverse nanodrugs of PTX. Then, the advancement of nanodrugs for tumor therapy, especially emphasis on mono-chemotherapy, combinational therapy, and theranostics, have been outlined. Finally, the challenges and potential improvements have been briefly spotlighted.
Collapse
Affiliation(s)
- Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bowen Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Ali YA, Soliman HA, Abdel-Gabbar M, Ahmed NA, Attia KAA, Shalaby FM, El-Nahass ES, Ahmed OM. Rutin and Hesperidin Revoke the Hepatotoxicity Induced by Paclitaxel in Male Wistar Rats via Their Antioxidant, Anti-Inflammatory, and Antiapoptotic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2738351. [PMID: 37275575 PMCID: PMC10238143 DOI: 10.1155/2023/2738351] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 06/07/2023]
Abstract
Paclitaxel, one of the most effective chemotherapeutic drugs, is used to treat various cancers but it is exceedingly toxic when used long-term and can harm the liver. This study aimed to see if rutin, hesperidin, and their combination could protect male Wistar rats against paclitaxel (Taxol)-induced hepatotoxicity. Adult male Wistar rats were subdivided into 5 groups (each of six rats). The normal group was orally given the equivalent volume of vehicles for 6 weeks. The paclitaxel-administered control group received intraperitoneal injection of paclitaxel at a dose of 2 mg/Kg body weight twice a week for 6 weeks. Treated paclitaxel-administered groups were given paclitaxel similar to the paclitaxel-administered control group together with oral supplementation of rutin, hesperidin, and their combination at a dose of 10 mg/Kg body weight every other day for 6 weeks. The treatment of paclitaxel-administered rats with rutin and hesperidin significantly reduced paclitaxel-induced increases in serum alanine transaminase, aspartate transaminase, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transferase activities as well as total bilirubin level and liver lipid peroxidation. However, the levels of serum albumin, liver glutathione content, and the activities of liver superoxide dismutase and glutathione peroxidase increased. Furthermore, paclitaxel-induced harmful hepatic histological changes (central vein and portal area blood vessel congestion, fatty changes, and moderate necrotic changes with focal nuclear pyknosis, focal mononuclear infiltration, and Kupffer cell proliferation) were remarkably enhanced by rutin and hesperidin treatments. Moreover, the elevated hepatic proapoptotic mediator (caspase-3) and pro-inflammatory cytokine (tumor necrosis factor-α) expressions were decreased by the three treatments in paclitaxel-administered rats. The cotreatment with rutin and hesperidin was the most effective in restoring the majority of liver function and histological integrity. Therefore, rutin, hesperidin, and their combination may exert hepatic protective effects in paclitaxel-administered rats by improving antioxidant defenses and inhibiting inflammation and apoptosis.
Collapse
Affiliation(s)
- Yasmine A. Ali
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Kandil A. A. Attia
- Clinical Nutrition Department, College of Applied Medical Sciences, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Department of Evaluation of Natural Resources, Environmental Studies and Research Institute, El-Sadat City University, El-Sadat City 32897, Egypt
| | - Fatma M. Shalaby
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
11
|
Meng L, Liu F, Du C, Zhu J, Xiong Q, Li J, Sun W. Glucosamine-Modified Reduction-Responsive Polymeric Micelles for Liver Cancer Therapy. Molecules 2023; 28:molecules28093824. [PMID: 37175234 PMCID: PMC10180462 DOI: 10.3390/molecules28093824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
In this work, glucose transporter-1 (GLUT-1) and glutathione (GSH) over-expression in liver cancer was utilized to design a reduction-responsive and active targeting drug delivery system AG-PEG-SS-PCL (APSP) for the delivery of sorafenib (SF). The SF-APSP micelles were prepared using the thin film hydration method and characterized by various techniques. In vitro release experiments showed that the cumulative release of SF-APSP micelles in the simulated tumor microenvironment (pH 7.4 with GSH) reached 94.76 ± 1.78% at 48 h, while it was only 20.32 ± 1.67% in the normal physiological environment (pH 7.4 without GSH). The in vitro study revealed that glucosamine (AG) enhanced the antitumor effects of SF, and SF-APSP micelles inhibited proliferation by targeting HepG2 cells and suppressing cyclin D1 expression. The in vivo antitumor efficacy study further confirmed that the SF-APSP micelles had excellent antitumor effects and better tolerance against nude mouse with HepG2 cells than other treatment groups. All in all, these results indicated that SF-APSP micelles could be a promising drug delivery system for anti-hepatoma treatment.
Collapse
Affiliation(s)
- Lei Meng
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Fangshu Liu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Chenchen Du
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Jiaying Zhu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Qian Xiong
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Jing Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
12
|
Dzhuzha A, Gandalipov E, Korzhikov-Vlakh V, Katernyuk E, Zakharova N, Silonov S, Tennikova T, Korzhikova-Vlakh E. Amphiphilic Polypeptides Obtained by Post-Polymerization Modification of Poly-l-Lysine as Systems for Combined Delivery of Paclitaxel and siRNA. Pharmaceutics 2023; 15:pharmaceutics15041308. [PMID: 37111793 PMCID: PMC10143851 DOI: 10.3390/pharmaceutics15041308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The development of effective anti-cancer therapeutics remains one of the current pharmaceutical challenges. The joint delivery of chemotherapeutic agents and biopharmaceuticals is a cutting-edge approach to creating therapeutic agents of enhanced efficacy. In this study, amphiphilic polypeptide delivery systems capable of loading both hydrophobic drug and small interfering RNA (siRNA) were developed. The synthesis of amphiphilic polypeptides included two steps: (i) synthesis of poly-αl-lysine by ring-opening polymerization and (ii) its post-polymerization modification with hydrophobic l-amino acid and l-arginine/l-histidine. The obtained polymers were used for the preparation of single and dual delivery systems of PTX and short double-stranded nucleic acid. The obtained double component systems were quite compact and had a hydrodynamic diameter in the range of 90-200 nm depending on the polypeptide. The release of PTX from the formulations was studied, and the release profiles were approximated using a number of mathematical dissolution models to establish the most probable release mechanism. A determination of the cytotoxicity in normal (HEK 293T) and cancer (HeLa and A549) cells revealed the higher toxicity of the polypeptide particles to cancer cells. The separate evaluation of the biological activity of PTX and anti-GFP siRNA formulations testified the inhibitory efficiency of PTX formulations based on all polypeptides (IC50 4.5-6.2 ng/mL), while gene silencing was effective only for the Tyr-Arg-containing polypeptide (56-70% GFP knockdown).
Collapse
Affiliation(s)
- Apollinariia Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia
| | - Erik Gandalipov
- International Institute of Solution Chemistry and Advanced Materials Technologies, ITMO University, Lomonosov Street 9, St. Petersburg 191002, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
| | - Elena Katernyuk
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia
| | - Natalia Zakharova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia
| | - Sergey Silonov
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
- Institute of Cytology, Russian Academy of Sciences, Tihkorezky Pr. 4, St. Petersburg 194064, Russia
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia
| |
Collapse
|
13
|
Dzhuzha AY, Tarasenko II, Atanase LI, Lavrentieva A, Korzhikova-Vlakh EG. Amphiphilic Polypeptides Obtained by the Post-Polymerization Modification of Poly(Glutamic Acid) and Their Evaluation as Delivery Systems for Hydrophobic Drugs. Int J Mol Sci 2023; 24:ijms24021049. [PMID: 36674566 PMCID: PMC9864831 DOI: 10.3390/ijms24021049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Synthetic poly(amino acids) are a unique class of macromolecules imitating natural polypeptides and are widely considered as carriers for drug and gene delivery. In this work, we synthesized, characterized and studied the properties of amphiphilic copolymers obtained by the post-polymerization modification of poly(α,L-glutamic acid) with various hydrophobic and basic L-amino acids and D-glucosamine. The resulting glycopolypeptides were capable of forming nanoparticles that exhibited reduced macrophage uptake and were non-toxic to human lung epithelial cells (BEAS-2B). Moreover, the developed nanoparticles were suitable for loading hydrophobic cargo. In particular, paclitaxel nanoformulations had a size of 170-330 nm and demonstrated a high cytostatic efficacy against human lung adenocarcinoma (A549). In general, the obtained nanoparticles were comparable in terms of their characteristics and properties to those based on amphiphilic (glyco)polypeptides obtained by copolymerization methods.
Collapse
Affiliation(s)
- Apollinariia Yu. Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, 198504 St. Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Irina I. Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | | | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University, 30167 Hannover, Germany
| | - Evgenia G. Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
14
|
CircNRIP1: An emerging star in multiple cancers. Pathol Res Pract 2023; 241:154281. [PMID: 36586310 DOI: 10.1016/j.prp.2022.154281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) are a new class of non-coding RNAs (ncRNAs) with a closed-loop structure that is highly stable and widely present in the eukaryotic cytoplasm. In recent years, circRNA has played a non-negligible role in the occurrence and development of a variety of diseases, which has attracted the research attention of many scholars. Circular RNA nuclear receptor interacting protein 1 (circNRIP1), a newly discovered circRNA, has been confirmed to be closely associated with cervical carcinoma (CC), colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC), gastric cancer (GC), nasopharyngeal carcinoma (NPC), non-small cell lung cancer (NSCLC), osteosarcoma (OS), ovarian cancer (OC) and papillary thyroid carcinoma (PTC). CircNRIP1 can regulate the activity of ERK1/2, PI3K/AKT, and AKT/mTOR signaling pathways. In this review, the author summarizes the biological functions and target molecular mechanisms in carcinogenesis, to point out the potential clinical values and applications of circNRIP1 in diagnosing and treating cancer.
Collapse
|
15
|
Li B, Tan T, Chu W, Zhang Y, Ye Y, Wang S, Qin Y, Tang J, Cao X. Co-delivery of paclitaxel (PTX) and docosahexaenoic acid (DHA) by targeting lipid nanoemulsions for cancer therapy. Drug Deliv 2022; 29:75-88. [PMID: 34964421 PMCID: PMC8735879 DOI: 10.1080/10717544.2021.2018523] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 10/26/2022] Open
Abstract
Breast cancer is one of the most common types of cancer in female patients with high morbidity and mortality. Multi-drug chemotherapy has significant advantages in the treatment of malignant tumors, especially in reducing drug toxicity, increasing drug sensitivity and reducing drug resistance. The objective of this research is to fabricate lipid nanoemulsions (LNs) for the co-delivery of PTX and docosahexaenoic acid (DHA) with folic acid (FA) decorating (PTX/DHA-FA-LNs), and investigate the anti-tumor activity of the PTX/DHA-FA-LNs against breast cancer both in vitro and in vivo. PTX/DHA-FA-LNs showed a steady release of PTX and DHA from the drug delivery system (DDS) without any burst effect. Furthermore, the PTX/DHA-FA-LNs exhibited a dose-dependent cytotoxicity and a higher rate of apoptosis as compared with the other groups in MCF-7 cells. The cellular uptake study revealed that this LNs were more readily uptaken by MCF-7 cells and M2 macrophages in vitro. Additionally, the targeted effect of PTX/DHA-FA-LNs was aided by FA receptor-mediated endocytosis, and its cytotoxicity was proportional to the cellular uptake efficiency. The anti-tumor efficiency results showed that PTX/DHA-FA-LNs significant inhibited tumor volume growth, prolonged survival time, and reduced toxicity when compared with the other groups. These results indicated that DHA increases the sensitivity of tumor cells and tumor-associated macrophages (ATM2) to PTX, and synergistic effects of folate modification in breast cancer treatment, thus PTX/DHA-FA-LNs may be a promising nanocarrier for breast cancer treatment.
Collapse
Affiliation(s)
- Bo Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Tingfei Tan
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Weiwei Chu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Ying Zhang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanzi Ye
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shanshan Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Yan Qin
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jihui Tang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
16
|
Yang Y, Zhao T, Chen Q, Li Y, Xiao Z, Xiang Y, Wang B, Qiu Y, Tu S, Jiang Y, Nan Y, Huang Q, Ai K. Nanomedicine Strategies for Heating "Cold" Ovarian Cancer (OC): Next Evolution in Immunotherapy of OC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202797. [PMID: 35869032 PMCID: PMC9534959 DOI: 10.1002/advs.202202797] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Indexed: 05/08/2023]
Abstract
Immunotherapy has revolutionized cancer treatment, dramatically improving survival rates of melanoma and lung cancer patients. Nevertheless, immunotherapy is almost ineffective against ovarian cancer (OC) due to its cold tumor immune microenvironment (TIM). Many traditional medications aimed at remodeling TIM are often associated with severe systemic toxicity, require frequent dosing, and show only modest clinical efficacy. In recent years, emerging nanomedicines have demonstrated extraordinary immunotherapeutic effects for OC by reversing the TIM because the physical and biochemical features of nanomedicines can all be harnessed to obtain optimal and expected tissue distribution and cellular uptake. However, nanomedicines are far from being widely explored in the field of OC immunotherapy due to the lack of appreciation for the professional barriers of nanomedicine and pathology, limiting the horizons of biomedical researchers and materials scientists. Herein, a typical cold tumor-OC is adopted as a paradigm to introduce the classification of TIM, the TIM characteristics of OC, and the advantages of nanomedicines for immunotherapy. Subsequently, current nanomedicines are comprehensively summarized through five general strategies to substantially enhance the efficacy of immunotherapy by heating the cold OC. Finally, the challenges and perspectives of this expanding field for improved development of clinical applications are also discussed.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yumei Li
- Department of Assisted ReproductionXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Boyu Wang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yige Qiu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Shiqi Tu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yayun Nan
- Geriatric Medical CenterPeople's Hospital of Ningxia Hui Autonomous RegionYinchuanNingxia750002P. R. China
| | - Qiong Huang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| |
Collapse
|
17
|
Ye W, Zhu F, Cai Y, Wang L, Zhang G, Zhao G, Chu X, Shuai Q, Yan Y. Improved paclitaxel delivery with PEG-b-PLA/zein nanoparticles prepared via flash nanoprecipitation. Int J Biol Macromol 2022; 221:486-495. [PMID: 36087755 DOI: 10.1016/j.ijbiomac.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Polymeric micelle is a promising vehicle to improve the bioavailability and clinical outcomes of paclitaxel (PTX) which has been proven effective in the treatment of a wide range of cancers. However, conventional PTX formulation with the amphiphilic PEG-b-PLA usually suffers from insufficient PTX loading, low stability of PTX-micelles, and rapid PTX release due to low compatibility between PTX and PLA, limiting its clinical application. In this study, a novel nanoparticle platform was developed to improve the stability of PTX-loaded nanoparticles (NPs) and the delivery efficacy of PTX by integrating the flash nanoprecipitation (FNP) technique and a combination of amphiphilic PEG-PLA and super hydrophobic zein. The incorporation of zein led to the formation of distinct hydrophobic interiors of NPs which enhanced the interaction between PTX and NPs, therefore improving the encapsulation efficiency of PTX and sustained drug release compared with PEG-PLA micelles without zein. In addition, FNP allowed facile fabrication of PTX-NPs with smaller sizes and higher stability. These PTX-NPs showed superior sustained release of PTX and good cancer cell-killing in vitro. Among them, PTX-5k-16k-1Z NPs exhibited excellent biosafety and anti-tumor efficacy in a xenograft tumor model in mice, suggesting great potential in the delivery of hydrophobic drugs for cancer therapy.
Collapse
Affiliation(s)
- Wenbo Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fangtao Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Longyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guangliang Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guangkuo Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
18
|
Khalifa AM, Nakamura T, Sato Y, Sato T, Hyodo M, Hayakawa Y, Harashima H. Interval- and cycle-dependent combined effect of STING agonist loaded lipid nanoparticles and a PD-1 antibody. Int J Pharm 2022; 624:122034. [PMID: 35863595 DOI: 10.1016/j.ijpharm.2022.122034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
Programmed cell death 1 (PD-1) blockade combination to other drugs have attracted the interest of scientists for treating tumors resistant to PD-1 blockade. In this study, the impact of the interval, order of administration, and number of cycles of immunotherapeutic combination of stimulator of interferon genes (STING) pathway agonist loaded lipid nanoparticle (STING-LNP) and PD-1 antibody for inducing the optimal combined antitumor activity against a melanoma lung metastasis is reported. One cycle had no effect, but two and three cycles resulted in a combinedantitumor effect. The interval between the administration was found to influence the induction of the combined effect. The second and third doses increased the gene expression of the NK cell activation marker, interferon γ (IFN-γ), PD-1 and a ligand of PD-1 (PD-L1), whereas the first dose failed. NK cells in the lung showed an increase in the expression of the activation markers and PD-1 after the second dose. The combined antitumor effect of this combination therapy against melanoma lung metastasis model could be dependent on the interval as well as the number of doses of STING-LNP.These findings suggest the importance of the protocol setting when combining a nano system loaded with an immune adjuvant and PD-1 antibody.
Collapse
Affiliation(s)
- Alaa M Khalifa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan.
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Takanori Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Mamoru Hyodo
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho Toyota, Aichi 470-0392, Japan
| | - Yoshihiro Hayakawa
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho Toyota, Aichi 470-0392, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan.
| |
Collapse
|
19
|
Zhou M, Wen L, Wang C, Lei Q, Li Y, Yi X. Recent Advances in Stimuli-Sensitive Amphiphilic Polymer-Paclitaxel Prodrugs. Front Bioeng Biotechnol 2022; 10:875034. [PMID: 35464718 PMCID: PMC9019707 DOI: 10.3389/fbioe.2022.875034] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Paclitaxel (PTX) is a broad-spectrum chemotherapy drug employed in the treatment of a variety of tumors. However, the clinical applications of PTX are limited by its poor water solubility. Adjuvants are widely used to overcome this issue. However, these adjuvants often have side effects and poor biodistribution. The smart drug delivery system is a promising strategy for the improvement of solubility, permeability, and stability of drugs, and can promote sustained controlled release, increasing therapeutic efficacy and reducing side effects. Polymeric prodrugs show great advantages for drug delivery due to their high drug loading and stability. There has been some groundbreaking work in the development of PTX-based stimulus-sensitive polymeric prodrug micelles, which is summarized in this study. We consider these in terms of the four main types of stimulus (pH, reduction, enzyme, and reactive oxygen species (ROS)). The design, synthesis, and biomedical applications of stimulus-responsive polymeric prodrugs of PTX are reviewed, and the current research results and future directions of the field are summarized.
Collapse
Affiliation(s)
- Man Zhou
- College of Chemistry, Nanchang University, Nanchang, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Lijuan Wen
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Cui Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Qiao Lei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Qiao Lei, ; Yongxiu Li, ; Xiaoqing Yi,
| | - Yongxiu Li
- College of Chemistry, Nanchang University, Nanchang, China
- *Correspondence: Qiao Lei, ; Yongxiu Li, ; Xiaoqing Yi,
| | - Xiaoqing Yi
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- *Correspondence: Qiao Lei, ; Yongxiu Li, ; Xiaoqing Yi,
| |
Collapse
|
20
|
Particle Engineering of Innovative Nanoemulsion Designs to Modify the Accumulation in Female Sex Organs by Particle Size and Surface Charge. Pharmaceutics 2022; 14:pharmaceutics14020301. [PMID: 35214035 PMCID: PMC8877295 DOI: 10.3390/pharmaceutics14020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Particle engineering of nanosized drug delivery systems (DDS) can be used as a strategic tool to influence their pharmacokinetics after intravenous (i.v.) application by the targeted adaptation of their particle properties according to the needs at their site of action. This study aimed to investigate particle properties depending on patterns in the biodistribution profile to modify the accumulation in the female sex organs using tailor-made nanoemulsion designs and thereby to either increase therapeutic efficiency for ovarian dysfunctions and diseases or to decrease the side effects caused by unintended accumulation. Through the incorporation of the anionic phospholipid phosphatidylglycerol (PG) into the stabilizing macrogol 15 hydroxystearate (MHS) layer of the nanoemulsions droplets, it was possible to produce tailor-made nanoparticles with tunable particle size between 25 to 150 nm in diameter as well as tunable surface charges between −2 to nearly −30 mV zeta potential using a phase inversion-based process. Three chosen negatively surface-charged nanoemulsions of 50, 100, and 150 nm in diameter showed very low cellular toxicities on 3T3 and NHDF fibroblasts and merely interacted with the blood cells, but instead stayed inert in the plasma. In vivo and ex vivo fluorescence imaging of adult female mice i.v. injected with the negatively surface-charged nanoemulsions revealed a high accumulation depending on their particle size in the reticuloendothelial system (RES), being found in the liver and spleen with a mean portion of the average radiant efficiency (PARE) between 42–52%, or 8–10%, respectively. With increasing particle size, an accumulation in the heart was detected with a mean PARE up to 8%. These three negatively surface-charged nanoemulsions overcame the particle size-dependent accumulation in the female sex organs and accumulated equally with a small mean PARE of 5%, suitable to reduce the side effects caused by unintended accumulation while maintaining different biodistribution profiles. In contrast, previously investigated neutral surface-charged nanoemulsions accumulated with a mean PARE up to 10%, strongly dependent on their particle sizes, which is useful to improve the therapeutic efficacy for ovarian dysfunctions and diseases.
Collapse
|
21
|
Zou GP, Yu CX, Shi SL, Li QG, Wang XH, Qu XH, Yang ZJ, Yao WR, Yan DD, Jiang LP, Wan YY, Han XJ. Mitochondrial Dynamics Mediated by DRP1 and MFN2 Contributes to Cisplatin Chemoresistance in Human Ovarian Cancer SKOV3 cells. J Cancer 2022; 12:7358-7373. [PMID: 35003356 PMCID: PMC8734405 DOI: 10.7150/jca.61379] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023] Open
Abstract
Cisplatin (DDP) is the first-line chemotherapeutic agent for ovarian cancer. However, the development of DDP resistance seriously influences the chemotherapeutic effect and prognosis of ovarian cancer. It was reported that DDP can directly impinge on the mitochondria and activate the intrinsic apoptotic pathway. Herein, the role of mitochondrial dynamics in DDP chemoresistance in human ovarian cancer SKOV3 cells was investigated. In DDP-resistant SKOV3/DDP cells, mitochondrial fission protein DRP1 was down-regulated, while mitochondrial fusion protein MFN2 was up-regulated. In accordance with the expression of DRP1 and MFN2, the average mitochondrial length was significantly increased in SKOV3/DDP cells. In DDP-sensitive parental SKOV3 cells, downregulation of DRP1 and upregulation of mitochondrial fusion proteins including MFN1,2 and OPA1 occurred at day 2~6 under cisplatin stress. Knockdown of DRP1 or overexpression of MFN2 promoted the resistance of SKOV3 cells to cisplatin. Intriguingly, weaker migration capability and lower ATP level were detected in SKOV3/DDP cells. Respective knockdown of DRP1 in parental SKOV3 cells or MFN2 in SKOV3/DDP cells using siRNA efficiently reversed mitochondrial dynamics, migration capability and ATP level. Moreover, MFN2 siRNA significantly aggravated the DDP-induced ROS production, mitochondrial membrane potential disruption, expression of pro-apoptotic protein BAX and Cleaved Caspase-3/9 in SKOV3/DDP cells. In contrast, DRP1 siRNA alleviated DDP-induced ROS production, mitochondrial membrane potential disruption, expression of pro-apoptotic protein BAX and Cleaved Caspase-3/9 in SKOV3 cells. Thus, these results indicate that mitochondrial dynamics mediated by DRP1 and MFN2 contributes to the development of DDP resistance in ovarian cancer cells, and will also provide a new strategy to prevent chemoresistance in ovarian cancer by targeting mitochondrial dynamics.
Collapse
Affiliation(s)
- Guang-Ping Zou
- Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chun-Xia Yu
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Sheng-Lan Shi
- Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiu-Gen Li
- Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Hua Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin-Hui Qu
- Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhang-Jian Yang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei-Rong Yao
- Department of Oncology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dan-Dan Yan
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Ping Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu-Ying Wan
- Department of Intra-hospital Infection Management, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
22
|
Singla P, Garg S, McClements J, Jamieson O, Peeters M, Mahajan RK. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv Colloid Interface Sci 2022; 299:102563. [PMID: 34826745 DOI: 10.1016/j.cis.2021.102563] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022]
Abstract
Pluronic (PEO-PPO-PEO) block copolymers can form nano-sized micelles with a structure composed of a hydrophobic PPO core and hydrophilic PEO shell layer. Pluronics are U.S. Food and Drug Administration approved polymers, which are widely used for solubilization of drugs and their delivery, gene/therapeutic delivery, diagnostics, and tissue engineering applications due to their non-ionic properties, non-toxicity, micelle forming ability, excellent biocompatibility and biodegradability. Although Pluronics have been employed as drug carrier systems for several decades, numerous issues such as rapid dissolution, shorter residence time in biological media, fast clearance and weak mechanical strength have hindered their efficacy. Pluronics have been functionalized with pH-sensitive, biological-responsive moieties, antibodies, aptamers, folic acid, drugs, different nanoparticles, and photo/thermo-responsive hydrogels. These functionalization strategies enable Pluronics to act as stimuli responsive and targeted drug delivery vehicles. Moreover, Pluronics have emerged in nano-emulsion formulations and have been utilized to improve the properties of cubosomes, dendrimers and nano-sheets, including their biocompatibility and aqueous solubility. Functionalization of Pluronics results in the significant improvement of target specificity, loading capacity, biocompatibility of nanoparticles and stimuli responsive hydrogels for the promising delivery of a range of drugs. Therefore, this review presents an overview of all advancements (from the last 15 years) in functionalized Pluronics, providing a valuable tool for industry and academia in order to optimize their use in drug or therapeutic delivery, in addition to several other biomedical applications.
Collapse
Affiliation(s)
- Pankaj Singla
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Saweta Garg
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Jake McClements
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Oliver Jamieson
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Marloes Peeters
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| | - Rakesh Kumar Mahajan
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
23
|
Winter SJ, Miller HA, Steinbach-Rankins JM. Multicellular Ovarian Cancer Model for Evaluation of Nanovector Delivery in Ascites and Metastatic Environments. Pharmaceutics 2021; 13:1891. [PMID: 34834307 PMCID: PMC8625169 DOI: 10.3390/pharmaceutics13111891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
A novel multicellular model composed of epithelial ovarian cancer and fibroblast cells was developed as an in vitro platform to evaluate nanovector delivery and ultimately aid the development of targeted therapies. We hypothesized that the inclusion of peptide-based scaffold (PuraMatrix) in the spheroid matrix, to represent in vivo tumor microenvironment alterations along with metastatic site conditions, would enhance spheroid cell growth and migration and alter nanovector transport. The model was evaluated by comparing the growth and migration of ovarian cancer cells exposed to stromal cell activation and tissue hypoxia. Fibroblast activation was achieved via the TGF-β1 mediated pathway and tissue hypoxia via 3D spheroids incubated in hypoxia. Surface-modified nanovector transport was assessed via fluorescence and confocal microscopy. Consistent with previous in vivo observations in ascites and at distal metastases, spheroids exposed to activated stromal microenvironment were denser, more contractile and with more migratory cells than nonactivated counterparts. The hypoxic conditions resulted in negative radial spheroid growth over 5 d compared to a radial increase in normoxia. Nanovector penetration attenuated in PuraMatrix regardless of surface modification due to a denser environment. This platform may serve to evaluate nanovector transport based on ovarian ascites and metastatic environments, and longer term, it provide a means to evaluate nanotherapeutic efficacy.
Collapse
Affiliation(s)
- Stephen J. Winter
- School of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Hunter A. Miller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Jill M. Steinbach-Rankins
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
24
|
Elsheikh MA, Rizk SA, Elnaggar YSR, Abdallah OY. Nanoemulsomes for Enhanced Oral Bioavailability of the Anticancer Phytochemical Andrographolide: Characterization and Pharmacokinetics. AAPS PharmSciTech 2021; 22:246. [PMID: 34617166 DOI: 10.1208/s12249-021-02112-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/02/2021] [Indexed: 01/12/2023] Open
Abstract
Andrographolide (AG) is an antitumor phytochemical that acts against non-Hodgkin's lymphoma. However, AG shows low oral bioavailability due to extensive first-pass metabolism and P-glycoprotein efflux. Novel biocompatible lipoprotein-simulating nanosystems, emulsomes (EMLs), have gained significant attention due to their composition of natural components, in addition to being lymphotropic. Loading AG on EMLs is believed to mitigate the disadvantage of AG and enhance its lymphatic transport. This study developed a chylomicron-simulating system (EMLs) as a novel tool to overcome the AG oral delivery obstacles. Optimized EML-AG had a promising vesicular size of 281.62 ± 1.73 nm, a zeta potential of - 22.73 ± 0.06 mV, and a high entrapment efficiency of 96.55% ± 0.25%, which favors lymphatic targeting. In vivo pharmacokinetic studies of EML-AG showed significant enhancement (> sixfold increase) in the rate and extent of AG absorption compared with free AG. However, intraperitoneal injection of a cycloheximide inhibitor caused a significant decrease in AG absorption (~ 52%), confirming the lymphatic targeting potential of EMLs. Therefore, EMLs can be a promising novel nanoplatform for circumventing AG oral delivery obstacles and provide targeted delivery to the lymphatic system at a lower dose with fewer side effects.
Collapse
|
25
|
Miao Z, Wang Y, Li S, Zhang M, Xu M. One-pot synthesis chlorin e6 nano-precipitation for colorectal cancer treatment Ce6 NPs for colorectal cancer treatment. IET Nanobiotechnol 2021; 15:680-685. [PMID: 34694720 PMCID: PMC8675780 DOI: 10.1049/nbt2.12065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
The drug nanoparticles free of additional carriers hold great promise in drug delivery and are suitable for the therapy of cancers. Herein, we developed a one-pot method to prepare chlorin e6 (Ce6) nano-precipitations (Ce6 NPs) for effective photodynamic therapy of colorectal cancer. The drug loading of Ce6 NPs was around 81% and showed acceptable stability, high biocompatibility as well as effective reactive oxygen species (ROS) generation capability. As a result, the Ce6 NPs can produce significantly elevated ROS upon laser irradiations and achieved better anticancer benefits than free Ce6.
Collapse
Affiliation(s)
- Zhongxing Miao
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Yujie Wang
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Shengjie Li
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Min Zhang
- Department of Department of Anorectal SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Meng Xu
- Department of Department of Anorectal SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| |
Collapse
|
26
|
Faria RS, de Lima LI, Bonadio RS, Longo JPF, Roque MC, de Matos Neto JN, Moya SE, de Oliveira MC, Azevedo RB. Liposomal paclitaxel induces apoptosis, cell death, inhibition of migration capacity and antitumoral activity in ovarian cancer. Biomed Pharmacother 2021; 142:112000. [PMID: 34426249 DOI: 10.1016/j.biopha.2021.112000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
The main goal of this study is to evaluate the efficacy of the paclitaxel (PTX) drug formulated with a liposomal nanosystem (L-PTX) in a peritoneal carcinomatosis derived from ovarian cancer. In vitro cell viability studies with the human ovarian cancer line A2780 showed a 50% decrease in the inhibitory concentration for L-PTX compared to free PTX. A2780 cells treated with the L-PTX formulation demonstrated a reduced capacity to form colonies in comparison to those treated with PTX. Cell death following L-PTX administration hinted at apoptosis, with most cells undergoing initial apoptosis. A2780 cells exhibited an inhibitory migration profile when analyzed by Wound Healing and real-time cell analysis (xCELLigence) methods after L-PTX administration. This inhibition was related to decreased expression of the zinc finger E-box-binding homeobox 1 (ZEB1) and transforming growth factor 2 (TGF-β2) genes. In vivoL-PTX administration strongly inhibited tumor cell proliferation in ovarian peritoneal carcinomatosis derived from ovarian cancer, indicating higher antitumor activity than PTX. L-PTX formulation did not show toxicity in the mice model. This study demonstrated that liposomal paclitaxel formulations are less toxic to normal tissues than free paclitaxel and are more effective in inhibiting tumor cell proliferation/migration and inducing ZEB1/TGF-β2 gene expression.
Collapse
Affiliation(s)
- Raquel Santos Faria
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Luiza Ianny de Lima
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Raphael Severino Bonadio
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil
| | - João Paulo Figueiró Longo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Marjorie Coimbra Roque
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - João Nunes de Matos Neto
- Cettro - Centro de Câncer de Brasília e Instituto Unity de Ensino e Pesquisa, Edifício de Clínicas - SMH/N Quadra 02, 12º Andar - Asa Norte, Brasília, DF 70710-904, Brasília, DF, Brazil
| | - Sergio Enrique Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, San Sebastian, Guipúzcoa, Spain
| | - Mônica Cristina de Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ricardo Bentes Azevedo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
27
|
Zhou Z, Du C, Zhang Q, Yu G, Zhang F, Chen X. Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Co-assembly with Camptothecin Prodrug. Angew Chem Int Ed Engl 2021; 60:21033-21039. [PMID: 34278702 DOI: 10.1002/anie.202108658] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/10/2022]
Abstract
We report that the self-assembly of drug amphiphiles, Evans blue conjugated camptothecin prodrug (EB-CPT), can be modulated by another anticancer drug paclitaxel (PTX), resulting in ultrahigh quality of nanovesicles (NVs) with uniform shape and diameters of around 80 nm with the EB-CPT:PTX weight ratio of 1:1, 1:2, and 1:3, denoted as ECX NVs. Significantly, the co-assembly of EB-CPT and PTX without adding other excipients has nearly 100 % drug loading efficiency (DLE) and ultrahigh drug loading content (DLC) of PTX alone of up to 72.3±1.7 wt % which, to our best knowledge, is among the highest level reported in literature. Moreover, the ECX NVs with the EB-CPT:PTX weight ratio of 1:2 showed remarkable combination index of 0.59 at a level of 50 % efficacy against HCT116 cells in vitro and greatly improved tumor inhibition effect in vivo compared with two clinically approved CPT- and PTX-based anticancer nanomedicines (Onivyde and Abraxane) individually and their combinations.
Collapse
Affiliation(s)
- Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Chao Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Qianyu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Guocan Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Miami, FL, 33146, USA
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
28
|
Zhou Z, Du C, Zhang Q, Yu G, Zhang F, Chen X. Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Co‐assembly with Camptothecin Prodrug. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 P. R. China
| | - Chao Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 P. R. China
| | - Qianyu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 P. R. China
| | - Guocan Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Fuwu Zhang
- Department of Chemistry University of Miami Miami FL 33146 USA
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 117597 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
29
|
Liu W, Xiong Y, Wan R, Shan R, Li J, Wen W. The Roles of circMTO1 in Cancer. Front Cell Dev Biol 2021; 9:656258. [PMID: 34277605 PMCID: PMC8277961 DOI: 10.3389/fcell.2021.656258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/07/2021] [Indexed: 01/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a recently discovered type of covalently-closed circular non-coding RNAs, mainly formed by non-sequential back-splicing of precursor mRNAs (pre-mRNAs). Recent studies have demonstrated that circRNAs can have either oncogenic or tumor-suppressor roles depending on the cellular context. CircRNA mitochondrial tRNA translation optimization 1 (circMTO1), a recently reported circular RNA originating from exons of MTO1 located on chromosome 6q13, was proved to be abnormally expressed in many malignant tumors, such as hepatocellular carcinoma, gastric carcinoma and colorectal cancer, resulting in tumor initiation and progression. However, there are no reviews focusing on the roles of circMTO1 in cancer. Here, we first summarize the main biological characteristics of circMTO1, and then focus on its biological functions and the possible underlying molecular mechanisms. Finally, we summarize the roles of circMTO1 in cancer and discuss future prospects in this area of research.
Collapse
Affiliation(s)
- Wei Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuanyuan Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Han Y, Pan J, Liang N, Gong X, Sun S. A pH-Sensitive Polymeric Micellar System Based on Chitosan Derivative for Efficient Delivery of Paclitaxel. Int J Mol Sci 2021; 22:ijms22136659. [PMID: 34206347 PMCID: PMC8268857 DOI: 10.3390/ijms22136659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, an amphiphilic conjugate based on mPEG and cholesterol-modified chitosan with hydrazone bonds in the molecules (mPEG-CS-Hz-CH) was successfully synthesized. Using the polymer as the carrier, the paclitaxel (PTX)-loaded mPEG-CS-Hz-CH micelles were prepared by an ultrasonic probe method. The mean particle size and zeta potential of the optimized PTX-loaded micelles were 146 ± 4 nm and +21.7 ± 0.7 mV, respectively. An in vitro drug release study indicated that the PTX-loaded mPEG-CS-Hz-CH micelles were stable under normal physiological conditions (pH 7.4), whereas rapid drug release was observed in the simulated tumor intracellular microenvironment (pH 5.0). An in vitro cytotoxicity study demonstrated the non-toxicity of the polymer itself, and the PTX-loaded micelles exhibited superior cytotoxicity and significant selectivity on tumor cells. An in vivo antitumor efficacy study further confirmed that the PTX-loaded micelles could improve the therapeutic efficacy of PTX and reduce the side effects. All these results suggested that the mPEG-CS-Hz-CH micelles might be promising pH-sensitive nanocarriers for PTX delivery.
Collapse
Affiliation(s)
- Yang Han
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; (Y.H.); (J.P.)
- Department of Pharmaceutical Engineering, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China;
| | - Jieyi Pan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; (Y.H.); (J.P.)
| | - Na Liang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; (Y.H.); (J.P.)
- Correspondence: (N.L.); (S.S.); Tel.: +86-451-8806-0570 (N.L.); +86-451-8660-8616 (S.S.)
| | - Xianfeng Gong
- Department of Pharmaceutical Engineering, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China;
| | - Shaoping Sun
- Department of Pharmaceutical Engineering, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China;
- Correspondence: (N.L.); (S.S.); Tel.: +86-451-8806-0570 (N.L.); +86-451-8660-8616 (S.S.)
| |
Collapse
|
31
|
Jiang G, Wang X, Zhou Y, Zou C, Wang L, Wang W, Zhang D, Xu H, Li J, Li F, Luo D, Ma X, Ma D, Tan S, Wei R, Xi L. TMTP1-Modified, Tumor Microenvironment Responsive Nanoparticles Co-Deliver Cisplatin and Paclitaxel Prodrugs for Effective Cervical Cancer Therapy. Int J Nanomedicine 2021; 16:4087-4104. [PMID: 34163161 PMCID: PMC8214535 DOI: 10.2147/ijn.s298252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose Cisplatin-paclitaxel (TP) combination chemotherapy as the first-line therapy for numerous cancers is hindered by its inadequate accumulation in tumors and severe side effects resulting from non-specific distribution. The aim of this study is to explore whether TMTP1-modified, cisplatin and paclitaxel prodrugs co-loaded nanodrug could improve cervical cancer chemotherapy and relieve its side effects through active and passive tumor targeting accumulation and controlled drug release. Methods TDNP, with capacities of active targeting for tumors and controlled drug release, was prepared to co-deliver cisplatin and paclitaxel prodrugs. The characteristics were investigated, including the diameter, surface zeta potential, stability and tumor microenvironment (TME) dependent drug release profiles. Cellular uptake, cytotoxicity, drug accumulation in tumors, antitumor effects and safety analysis were evaluated in vitro and in vivo. Results The oxidized cisplatin and the paclitaxel linked to the polymer achieved a high loading effciency of over 80% and TME-dependent sustained drug release. Moreover, TMTP1 modification enhanced cellular uptake of TDNP and further improved the cytotoxicity of TDNP in vitro. In vivo, TDNP showed an extended blood circulation and increased accumulation in SiHa xenograft models with the aid of TMTP1. More importantly, TDNP controlled tumor growth without life-threatening side effects. Conclusion Our study provided a novel TP co-delivery platform for targeted chemotherapy of cervical cancer, which was promising to improve the therapeutic effcacy of TP and may also have application in other tumors.
Collapse
Affiliation(s)
- Guiying Jiang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xueqian Wang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ying Zhou
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Chenming Zou
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ling Wang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Wei Wang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Danya Zhang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Hanjie Xu
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Jie Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Fei Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Danfeng Luo
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xiangyi Ma
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ding Ma
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Rui Wei
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ling Xi
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
32
|
Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Du J, Shao Y, Hu Y, Chen Y, Cang J, Chen X, Pei W, Miao F, Shen Y, Muddassir M, Zhang Y, Zhang J, Teng G. Multifunctional Liposomes Enable Active Targeting and Twinfilin 1 Silencing to Reverse Paclitaxel Resistance in Brain Metastatic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23396-23409. [PMID: 33982563 DOI: 10.1021/acsami.1c02822] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Paclitaxel (PTX) is a first-line chemotherapeutic drug for breast cancer, but PTX resistance often occurs in metastatic breast cancer. In addition, due to the poor targeting of chemotherapeutic drugs and the presence of the blood-brain barrier (BBB), it is hard to effectively treat brain metastatic breast cancer using paclitaxel. Thus, it is urgent to develop an effective drug delivery system for the treatment of brain metastatic breast cancer. The current study found that TWF1 gene, an epithelial-mesenchymal transition-associated gene, was overexpressed in brain metastatic breast cancer (231-BR) cells and was associated with the PTX resistance of 231-BR cells. Knockdown of TWF1 by small interference RNA (siRNA) in 231-BR cells could effectively increase the sensitivity of brain metastatic breast cancer cells to paclitaxel. Then, a liposome-based drug delivery system was developed for PTX delivery across BBB, enhancing PTX sensitivity and brain metastases targeting via BRBP1 peptide modification. The results showed that BRBP1-modified liposomes could effectively cross the BBB, specifically accumulate in brain metastases, and effectively interfere TWF1 gene expression in vitro and in vivo, and thus they enhanced proliferation inhibition, cell cycle arrest, and apoptosis induction, thereby inhibiting the formation and growth of brain metastases. In summary, our results indicated that BRBP1-modified and PTX- and TWF1 siRNA-loaded liposomes have the potential for the treatment of brain metastatic breast cancer, which lays the foundation for the development of a new targeted drug delivery system.
Collapse
Affiliation(s)
- Jiawei Du
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Yue Hu
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Yiwen Chen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Jiehui Cang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Xin Chen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Wenqin Pei
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Fengqin Miao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, KSA
| | - Ying Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| |
Collapse
|
34
|
Chen Y, Pan Y, Hu D, Peng J, Hao Y, Pan M, Yuan L, Yu Y, Qian Z. Recent progress in nanoformulations of cabazitaxel. Biomed Mater 2021; 16:032002. [PMID: 33545700 DOI: 10.1088/1748-605x/abe396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The antitumor efficacy of various paclitaxel (PTX) and docetaxel (DTX) formulations in clinical applications is seriously affected by drug resistance. Cabazitaxel, a second-generation taxane, exhibits greater anticancer activity than paclitaxel and docetaxel and has low affinity for the P-glycoprotein (P-gp) efflux pump because of its structure. Therefore, cabazitaxel has the potential to overcome taxane resistance. However, owing to the high systemic toxicity and hydrophobicity of cabazitaxel and the instability of its commercial preparation, Jevtana®, the clinical use of cabazitaxel is restricted to patients with metastatic castration-resistant prostate cancer (mCRPC) who show progression after docetaxel-based chemotherapy. Nanomedicine is expected to overcome the limitations associated with cabazitaxel application and surmount taxane resistance. This review outlines the drug delivery systems of cabazitaxel published in recent years, summarizes the challenges faced in the development of cabazitaxel nanoformulations, and proposes strategies to overcome these challenges.
Collapse
Affiliation(s)
- Yu Chen
- Sichuan University West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, CHINA
| | - Yue Pan
- Sichuan University West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, CHINA
| | - Danrong Hu
- Sichuan University West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, CHINA
| | - Jinrong Peng
- Sichuan University West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, CHINA
| | - Ying Hao
- Sichuan University West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, CHINA
| | - Meng Pan
- Sichuan University West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, CHINA
| | - Liping Yuan
- Sichuan University, Sichuan University, Chengdu, 610065, CHINA
| | - Yongyang Yu
- Department of Gastrointestinal Surgery, Sichuan University West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, CHINA
| | - Zhiyong Qian
- West China Hospital West China Medical School, Sichuan University, Sichuan University, Chengdu, 610041, CHINA
| |
Collapse
|
35
|
Synthesis of boron carbonitride nanosheets using for delivering paclitaxel and their antitumor activity. Colloids Surf B Biointerfaces 2021; 198:111479. [DOI: 10.1016/j.colsurfb.2020.111479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 02/05/2023]
|
36
|
Ding X, Jiang W, Dong L, Hong C, Luo Z, Hu Y, Cai K. Redox-responsive magnetic nanovectors self-assembled from amphiphilic polymer and iron oxide nanoparticles for a remotely targeted delivery of paclitaxel. J Mater Chem B 2021; 9:6037-6043. [PMID: 34259307 DOI: 10.1039/d1tb00991e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To reduce the side effect of paclitaxel and enhance accumulation at the tumor site, a novel redox-responsive nanovector with excellent biocompatibility based on disulfide-linked amphiphilic polymer and magnetic nanoparticle was prepared. The system would realize PTX release due to breakage of the disulfide bond when being targeted to the tumor site by the external magnetic field. The nanovector significantly improved endocytosis and enhanced accumulation at the tumor site, with an effective inhibition of tumor cells in vitro and in vivo.
Collapse
Affiliation(s)
- Xingwei Ding
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing 400044, China. and The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Wenyan Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Lina Dong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Can Hong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
37
|
Ojha SK, Pattnaik R, Singh PK, Dixit S, Mishra S, Pal S, Kumar S. Virus as nanocarrier for drug delivery redefining medical therapeutics - A status report. Comb Chem High Throughput Screen 2020; 25:1619-1629. [PMID: 33342404 DOI: 10.2174/1386207323666201218115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022]
Abstract
Over the last two decades, drug delivery systems have evolved at a tremendous rate. Synthetic nanoparticles have played an important role in the design of vaccine and their delivery as many of them have shown improved safety and efficacy over conventional formulations. Nanocarriers formulated by natural, biological building blocks have become an important tool in the field biomedicine. A successful nanocarrier must have certain properties like evading the host immune system, target specificity, cellular entry, escape from endosomes, and ability to release material into the cytoplasm. Some or all of these functions can be performed by viruses making them a suitable candidate for naturally occurring nanocarriers. Moreover, viruses can be made non-infectious and non-replicative without compromising their ability to penetrate cells thus making them useful for a vast spectrum of applications. Currently, various carrier molecules are under different stages of development to become bio-nano capsules. This review covers the advances made in the field of viruses as potential nanocarriers and discusses the related technologies and strategies to target specific cells by using virus inspired nanocarriers. In future, these virus-based nano-formulations will be able to provide solutions towards pressing and emerging infectious diseases.
Collapse
Affiliation(s)
- Sanjay Kumar Ojha
- Pandorum Technologies Pvt. Ltd., Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City Phase 1, Bengaluru - 560 100. India
| | - Ritesh Pattnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| | - Puneet Kumar Singh
- Bioenergy Lab and BDTC, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar 751 024. India
| | - Shubha Dixit
- School of Pharmacy, Lloyd Institute of Management and Technology, PlotNo.11, Knowledge Park II Greater Noida- 201310. India
| | - Snehasish Mishra
- Bioenergy Lab and BDTC, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar 751 024. India
| | - Sreyasi Pal
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| | - Subrat Kumar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| |
Collapse
|
38
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
39
|
Nanoparticles in precision medicine for ovarian cancer: From chemotherapy to immunotherapy. Int J Pharm 2020; 591:119986. [DOI: 10.1016/j.ijpharm.2020.119986] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022]
|
40
|
Design of Non-Haemolytic Nanoemulsions for Intravenous Administration of Hydrophobic APIs. Pharmaceutics 2020; 12:pharmaceutics12121141. [PMID: 33255606 PMCID: PMC7760703 DOI: 10.3390/pharmaceutics12121141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Among advanced formulation strategies, nanoemulsions are considered useful drug-delivery systems allowing to improve the solubility and the bioavailability of lipophilic drugs. To select safe excipients for nanoemulsion formulation and to discard any haemolytic potential, an in vitro miniaturized test was performed on human whole blood. From haemolysis results obtained on eighteen of the most commonly used excipients, a medium chain triglyceride, a surfactant, and a solubilizer were selected for formulation assays. Based on a design of experiments and a ternary diagram, the feasibility of nanoemulsions was determined. The composition was defined to produce monodisperse nanodroplets with a diameter of either 50 or 120 nm, and their physicochemical properties were optimized to be suitable for intravenous administration. These nanoemulsions, stable over 21 days in storage conditions, were shown to be able to encapsulate with high encapsulation efficiency and high drug loading, up to 16% (w/w), two water practically insoluble drug models: ibuprofen and fenofibrate. Both drugs may be released according to a modulable profile in sink conditions. Such nanoemulsions appear as a very promising and attractive strategy for the efficient early preclinical development of hydrophobic drugs.
Collapse
|
41
|
Liu F, Liu J, Zhang J, Shi J, Gui L, Xu G. Expression of STAT1 is positively correlated with PD-L1 in human ovarian cancer. Cancer Biol Ther 2020; 21:963-971. [PMID: 33043814 DOI: 10.1080/15384047.2020.1824479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) is related to the immune microenvironment of tumorigenesis. The programmed cell death 1 (PD-1) and its ligand (PD-L1) have been reported to be important in immunotherapy by mediating tumor immune evasion. Blocking the PD-1/PD-L1 pathway can restore the endogenous anti-tumor immune response. This study aimed to examine the expression of STAT1, PD-1, and PD-L1 and the correlation between selected markers in human epithelial ovarian cancer (EOC). The results showed that malignant tumors contained more STAT1, PD-1, and PD-L1 positive cells. The expression of STAT1 and PD-L1 was associated with age, whereas PD-1 and PD-L1 associated with histopathological type, in patients with ovarian tumors. Moreover, the expression of STAT1 was found to be associated with disease stages and the grade of serous carcinoma. STAT1 expression was higher in OC cells than normal ovarian surface epithelial cells and was positively correlated with PD-L1 expression. The knockdown of STAT1 decreased PD-L1 expression, whereas overexpression of STAT1 increased PD-L1 expression. Furthermore, the expression of STAT1, PD-1, and PD-L1 was lower in paclitaxel-resistant cells than sensitive cells. Finally, STAT1 affected the overall survival and progression-free survival of patients with EOC. These findings suggest that STAT1, PD-1, and PD-L1 are the tissue markers of EOC and imply the possibility that the high level of STAT1, PD-1, and PD-L1 may favor the checkpoint immunotherapy in patients with EOC, but may have a limit in paclitaxel-resistant patients because of the low expression of STAT1, PD-1, and PD-L1 in paclitaxel-resistant cells.
Collapse
Affiliation(s)
- Fangran Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University , Shanghai, P.R. China.,Department of Pathology, Jinshan Hospital, Fudan University , Shanghai, China
| | - Jiao Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University , Shanghai, P.R. China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University , Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University , Shanghai, China
| | - Jimin Shi
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University , Shanghai, P.R. China
| | - Lu Gui
- Department of Pathology, Jinshan Hospital, Fudan University , Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University , Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University , Shanghai, China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University , Shanghai, China
| |
Collapse
|
42
|
A multicomponent-based microemulsion for boosting ovarian cancer therapy through dual modification with transferrin and SA-R 6H 4. Drug Deliv Transl Res 2020; 11:1969-1982. [PMID: 33006741 DOI: 10.1007/s13346-020-00859-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Balancing the antitumor activity and systemic toxicity of tripterine still faces a big challenge due to the narrow therapeutic window. To address this issue, we report a microemulsion system based on tripterine, brucea oil, and glycyrrhizin, and dual modified with both transferrin and cell-penetrating peptide SA-R6H4 (Tf/SA-R6H4-TBG-MEs) for combinational and tumor-targeted cancer therapy. Such a microemulsion exhibited a spherical shape with a size of ~50 nm and a mildly-negative charge. The half-maximal inhibitory concentration (IC50) of Tf/SA-R6H4-TBG-MEs against ovarian cancer SKOV3 cells was 0.27 ± 0.43 μg tripterine/mL, which was 5.85 times lower than that of free tripterine. The cellular uptake of tripterine after treatment with Tf/SA-R6H4-TBG-MEs was 1.56 times higher than that of TBG-MEs (non-modified microemulsion). In pharmacokinetics studies, the area under the curve of Tf/SA-R6H4-TBG-MEs increased by 1.97 times compared with that of the physical mixture group. The tumoral accumulation of tripterine was significantly improved in Tf/SA-R6H4-TBG-MEs group than TBG-MEs-treated group. In antitumor efficacy in vivo, Tf/SA-R6H4-TBG-MEs exhibited the strongest inhibition of tumor growth and the longest survival period among all the groups, which is associated with the rational combination, microemulsion system, and dual modification with tumor-targeted ligands. Importantly, Tf/SA-R6H4-TBG-MEs significantly reduced the toxicity of tripterine against the liver and kidney. Our design provides a new approach for efficient and safe ovarian cancer therapy based on a multicomponent combination.
Collapse
|
43
|
Liquid chromatography tandem mass spectrometry method for determination of fulvestrant in rat plasma and its application to pharmacokinetic studies of a novel fulvestrant microcrystal. Biomed Chromatogr 2020; 34:e4912. [DOI: 10.1002/bmc.4912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 11/07/2022]
|
44
|
Li M, Cai J, Han X, Ren Y. Downregulation of circNRIP1 Suppresses the Paclitaxel Resistance of Ovarian Cancer via Regulating the miR-211-5p/HOXC8 Axis. Cancer Manag Res 2020; 12:9159-9171. [PMID: 33061608 PMCID: PMC7532313 DOI: 10.2147/cmar.s268872] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/14/2020] [Indexed: 01/05/2023] Open
Abstract
Background Circular RNA (circRNA) has an essential regulatory role in the chemotherapy resistance of cancers. Nevertheless, the role of circRNA nuclear receptor-interacting protein 1 (circNRIP1) in the paclitaxel (PTX) resistance of ovarian cancer (OC) remains unclear. Material and Methods The circNRIP1, miR-211-5p and homeobox C8 (HOXC8) expression levels were assessed using qRT-PCR. The PTX resistance of cells was measured by 3-(4, 5-dimethylthiazolyl-2-yl)-2-5 diphenyl tetrazolium bromide (MTT) assay. Furthermore, cell proliferation, apoptosis, migration and invasion were detected by colony formation assay, flow cytometry and transwell assay, respectively. Moreover, the protein levels of proliferation, apoptosis, metastasis-related markers and HOXC8 were determined by Western blot (WB) analysis. Tumor xenograft models were constructed to explore the influence of circNRIP1 on OC tumor growth. The interaction between miR-211-5p and circNRIP1 or HOXC8 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results CircNRIP1 was highly expressed in PTX-resistant OC tissues and cells. Silencing of circNRIP1 repressed the PTX resistance of OC cells in vitro and OC tumor in vivo. Furthermore, circNRIP1 sponged miR-211-5p, and miR-211-5p inhibitor could reverse the inhibitory effect of circNRIP1 knockdown on the PTX resistance of OC cells. In addition, miR-211-5p targeted HOXC8, and HOXC8 overexpression could reverse the suppression effect of miR-211-5p on the PTX resistance of OC cells. Additionally, the expression of HOXC8 was regulated by circNRIP1 and miR-211-5p. Conclusion CircNRIP1 silencing could inhibit the PTX resistance of OC via regulating the miR-211-5p/HOXC8 axis, showing that circNRIP1 might be a potential target for OC resistance treatment.
Collapse
Affiliation(s)
- Meng Li
- Department of Gynaecology, Xingtai People's Hospital, Xingtai, Hebei 054000, People's Republic of China
| | - Junna Cai
- Department of Gynaecology, Xingtai People's Hospital, Xingtai, Hebei 054000, People's Republic of China
| | - Xiaorui Han
- Department of Obstetrics and Gynecology, Xingtai People's Hospital, Xingtai, Hebei 054000, People's Republic of China
| | - Yue Ren
- Department of Gynaecology, Xingtai People's Hospital, Xingtai, Hebei 054000, People's Republic of China
| |
Collapse
|
45
|
Haider M, Elsherbeny A, Jagal J, Hubatová-Vacková A, Saad Ahmed I. Optimization and Evaluation of Poly(lactide- co-glycolide) Nanoparticles for Enhanced Cellular Uptake and Efficacy of Paclitaxel in the Treatment of Head and Neck Cancer. Pharmaceutics 2020; 12:E828. [PMID: 32872639 PMCID: PMC7559439 DOI: 10.3390/pharmaceutics12090828] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
The particle size (PS) and encapsulation efficiency (EE%) of drug-loaded nanoparticles (NPs) may inhibit their cellular uptake and lead to possible leakage of the drug into the systemic circulation at the tumor site. In this work, ultra-high paclitaxel-loaded poly(lactide-co-glycolide) NPs (PTX-PLGA-NPs) with ultra-small sizes were prepared and optimized by adopting the principles of quality by design (QbD) approach. The optimized PTX-PLGA-NPs showed ultra-small spherical particles of about 53 nm with EE% exceeding 90%, a relatively low polydispersity index (PDI) of 0.221, an effective surface charge of -10.1 mV, and a 10-fold increase in the in vitro drug release over 72 h relative to free drug. The cellular viability of pharynx carcinoma cells decreased by almost 50% in 24 h following treatment with optimized PTX-PLGA-NPs, compared to only 20% from the free drug. The intracellular uptake of PTX-PLGA-NPs was highly favored, and the antitumor activity of PTX was remarkably improved with a reduction in its half maximal inhibitory concentration (IC50), by almost 50% relative to free drug solution. These results suggest that the optimal critical formulation parameters, guided by QbD principles, could produce PLGA-NPs with remarkably high EE% and ultra-small PS, resulting in enhanced cellular uptake and efficacy of PTX.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; (A.E.); (I.S.A.)
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Elsherbeny
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; (A.E.); (I.S.A.)
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE;
| | - Anna Hubatová-Vacková
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628 Prague, Czech Republic;
| | - Iman Saad Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; (A.E.); (I.S.A.)
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE;
| |
Collapse
|
46
|
Li Y, Ge YZ, Xu L, Jia R. Circular RNA ITCH: A novel tumor suppressor in multiple cancers. Life Sci 2020; 254:117176. [DOI: 10.1016/j.lfs.2019.117176] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
|
47
|
Van de Sande L, Rahimi‐Gorji M, Giordano S, Davoli E, Matteo C, Detlefsen S, D'Herde K, Braet H, Shariati M, Remaut K, Xie F, Debbaut C, Ghorbaniasl G, Cosyns S, Willaert W, Ceelen W. Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation. Adv Healthc Mater 2020; 9:e2000655. [PMID: 32548967 DOI: 10.1002/adhm.202000655] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Indexed: 12/21/2022]
Abstract
There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an electrical force to aerosol particles, exerted by an electrostatic field, can improve spatial aerosol homogeneity and enhance tissue penetration. A computational fluid dynamics model shows that electrostatic precipitation (EP) results in a significantly improved aerosol distribution. Fluorescent nanoparticles (NPs) remain stable after nebulization in vitro, while EP significantly improves spatial homogeneity of NP distribution. Next, pressurized intraperitoneal chemotherapy with and without EP using NP albumin bound paclitaxel (Nab-PTX) in a novel rat model is examined. EP does not worsen the effects of CO2 insufflation and intraperitoneal Nab-PTX on mesothelial structural integrity or the severity of peritoneal inflammation. Importantly, EP significantly enhances tissue penetration of Nab-PTX in the anatomical regions not facing the nozzle of the nebulizer. Also, the addition of EP leads to more homogenous peritoneal tissue concentrations of Nab-PTX, in parallel with higher plasma concentrations. In conclusion, EP enhances spatial homogeneity and tissue uptake after intraperitoneal nebulization of anticancer NPs.
Collapse
Affiliation(s)
- Leen Van de Sande
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| | - Mohammad Rahimi‐Gorji
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- IBiTech – bioMMedaGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| | - Silvia Giordano
- Mass Spectrometry LaboratoryIstituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2 Milan 20156 Italy
| | - Enrico Davoli
- Mass Spectrometry LaboratoryIstituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2 Milan 20156 Italy
| | - Cristina Matteo
- Cancer Pharmacology LaboratoryIstituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2 Milan 20156 Italy
| | - Sönke Detlefsen
- Department of PathologyOdense University Hospital J.B. Winsløws Vej 4 Odense 5000 Denmark
- Department of Clinical ResearchUniversity of Southern Denmark Winsløwsparken 19 Odense 5000 Denmark
| | - Katharina D'Herde
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| | - Helena Braet
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Laboratory of General Biochemistry and Physical PharmacyFaculty of Pharmaceutical SciencesGhent University Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Molood Shariati
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Laboratory of General Biochemistry and Physical PharmacyFaculty of Pharmaceutical SciencesGhent University Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Katrien Remaut
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Laboratory of General Biochemistry and Physical PharmacyFaculty of Pharmaceutical SciencesGhent University Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Feifan Xie
- Laboratory of Medical Biochemistry and Clinical AnalysisFaculty of Pharmaceutical SciencesGhent University Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Charlotte Debbaut
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- IBiTech – bioMMedaGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| | - Ghader Ghorbaniasl
- Department of Mechanical EngineeringVrije Universiteit Brussel (VUB) Pleinlaan 2 Brussels 1050 Belgium
| | - Sarah Cosyns
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| | - Wouter Willaert
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| | - Wim Ceelen
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| |
Collapse
|
48
|
Li S, Zhao W, Liang N, Xu Y, Kawashima Y, Sun S. Multifunctional micelles self-assembled from hyaluronic acid conjugate for enhancing anti-tumor effect of paclitaxel. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Yang X, Shi X, Zhang Y, Xu J, Ji J, Ye L, Yi F, Zhai G. Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy. J Control Release 2020; 323:333-349. [PMID: 32325174 DOI: 10.1016/j.jconrel.2020.04.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
To improve the anti-cancer therapeutic effect of nanosystems for chemo-photodynamic therapy, there remain several hurdles to be addressed, e.g., limited co-loading efficiency, insufficient stimulus-responsiveness and lack of synergetic effect. This work reported novel reactive‑oxygen-species (ROS)-responsive chlorin e6 (Ce6) and paclitaxel (PTX) co-encapsulated chondroitin sulfate-g-poly (propylene sulfide) nanoparticles (CP/ChS-g-PPS NPs), wherein the drug loading efficiencies of Ce6 and PTX were as high as 14.93% and 24.31%, respectively. To enlarge the ROS signal at tumor sites thus enhancing the ROS-responsiveness of ChS-g-PPS NPs, near-infrared (NIR) light was utilized to induce Ce6 to produce more ROS to destruct the NPs. Our data showed that the photo-triggered self-destructive property of NPs helped drugs to spread deeper in tumors upon laser irradiation, making the NPs promising to thoroughly remove tumor cells. CP/ChS-g-PPS NPs exhibited a synergetic chemo-photodynamic therapy effect in vitro, which was suggested by the combination indexes of PTX and Ce6 lower than 1 when 20-80% inhibition rates of MCF-7 cells were achieved. As for the in vivo antitumor activity, the tumor inhibition rates of CP/ChS-g-PPS NPs (with laser irradiation) were as high as 92.76% and 88.57% in 4T1 bearing BALB/c mice and MCF-7 bearing BALB/c nude mice, respectively, which were significantly higher than those of other treatment groups. This work provided a simple yet effective strategy to develop photo-triggered ROS-responsive NPs for synergetic chemo-photodynamic therapy with quick ROS-responsive self-destruction, spatiotemporally controllability, reduced off-target toxicity, and desirable therapeutic effect.
Collapse
Affiliation(s)
- Xiaoye Yang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanan Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
50
|
Etman SM, Abdallah OY, Mehanna RA, Elnaggar YS. Lactoferrin/Hyaluronic acid double-coated lignosulfonate nanoparticles of quinacrine as a controlled release biodegradable nanomedicine targeting pancreatic cancer. Int J Pharm 2020. [DOI: https://doi.org/10.1016/j.ijpharm.2020.119097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|