1
|
Keshavarz Shahbaz S, Koushki K, Keshavarz Hedayati S, McCloskey AP, Kesharwani P, Naderi Y, Sahebkar A. Polymer nanotherapeutics: A promising approach toward microglial inhibition in neurodegenerative diseases. Med Res Rev 2024; 44:2793-2824. [PMID: 39031446 DOI: 10.1002/med.22064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/30/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
Nanoparticles (NPs) that target multiple transport mechanisms facilitate targeted delivery of active therapeutic agents to the central nervous system (CNS) and improve therapeutic transport and efficacy across the blood-brain barrier (BBB). CNS nanotherapeutics mostly target neurons and endothelial cells, however, microglial immune cells are the first line of defense against neuronal damage and brain infections. Through triggering release of inflammatory cytokines, chemokines and proteases, microglia can however precipitate neurological damage-a significant factor in neurodegenerative diseases. Thus, microglial inhibitory agents are attracting much attention among those researching and developing novel treatments for neurodegenerative disorders. The most established inhibitors of microglia investigated to date are resveratrol, curcumin, quercetin, and minocycline. Thus, there is great interest in developing novel agents that can bypass or easily cross the BBB. One such approach is the use of modified-nanocarriers as, or for, delivery of, therapeutic agents to the brain and wider CNS. For microglial inhibition, polymeric NPs are the preferred vehicles for choice. Here, we summarize the immunologic and neuroinflammatory role of microglia, established microglia inhibitor agents, challenges of CNS drug delivery, and the nanotherapeutics explored for microglia inhibition to date. We also discuss applications of the currently considered "most useful" polymeric NPs for microglial-inhibitor drug delivery in CNS-related diseases.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadije Koushki
- Department of Neurosurgery, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Yazdan Naderi
- Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Wang J, Jia R, Wan W, Han H, Wang G, Li Z, Li J. Drug Delivery Targeting Neuroinflammation to Treat Brain Diseases. Bioconjug Chem 2024. [PMID: 39377704 DOI: 10.1021/acs.bioconjchem.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Inflammation within the brain is a hallmark of a wide range of brain diseases. The complex role of inflammatory processes in these conditions suggests that neuroinflammation could be a valuable therapeutic target. While several promising anti-inflammatory agents have been identified, their clinical application in brain diseases is often hampered by the inability to cross the blood-brain barrier (BBB) and reach therapeutically effective concentrations at the pathological sites. This limitation highlights the urgent need for effective BBB-penetrating drug delivery systems designed to target brain inflammation. This review critically examines the recent advances over the past five years in drug delivery strategies aimed at mitigating brain inflammation in Alzheimer's disease and ischemic stroke─two of the leading causes of death and disability worldwide. Additionally, we address the key challenges in this field, offering insights into future directions for targeting neuroinflammation in the treatment of brain diseases.
Collapse
Affiliation(s)
- Juntao Wang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruiqin Jia
- School of Pharmacy, Henan University, Kaifeng, 475001, China
| | - Wubo Wan
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Haijun Han
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Guoying Wang
- Macquarie Medical School, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Zhen Li
- Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Jia Li
- Macquarie Medical School, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
3
|
Sierri G, Patrucco M, Ferrario D, Renda A, Comi S, Ciprandi M, Fontanini V, Sica FS, Sesana S, Costa Verdugo M, Kravicz M, Salassa L, Busnelli M, Re F. Targeting specific brain districts for advanced nanotherapies: A review from the perspective of precision nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1991. [PMID: 39251878 DOI: 10.1002/wnan.1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Numerous studies are focused on nanoparticle penetration into the brain functionalizing them with ligands useful to cross the blood-brain barrier. However, cell targeting is also crucial, given that cerebral pathologies frequently affect specific brain cells or areas. Functionalize nanoparticles with the most appropriate targeting elements, tailor their physical parameters, and consider the brain's complex anatomy are essential aspects for precise therapy and diagnosis. In this review, we addressed the state of the art on targeted nanoparticles for drug delivery in diseased brain regions, outlining progress, limitations, and ongoing challenges. We also provide a summary and overview of general design principles that can be applied to nanotherapies, considering the areas and cell types affected by the most common brain disorders. We then emphasize lingering uncertainties that hinder the translational possibilities of nanotherapies for clinical use. Finally, we offer suggestions for continuing preclinical investigations to enhance the overall effectiveness of precision nanomedicine in addressing neurological conditions. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Giulia Sierri
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Michela Patrucco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Davide Ferrario
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Antonio Renda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Susanna Comi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Matilde Ciprandi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | | - Silvia Sesana
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Marcelo Kravicz
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luca Salassa
- Donostia International Physics Center (DIPC), Donostia, Euskadi, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain
- Basque Foundation for Science, Ikerbasque, Bilbao, Spain
| | - Marta Busnelli
- Institute of Neuroscience, National Research Council, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
4
|
Shi S, Zhang Y, Huang J, Wang Z, Lv W, Li X, Wang Y, Huang C, Liu H. Drug delivery particles for targeted imaging-guided photothermal/chemotherapy synergy cancer therapy. Heliyon 2024; 10:e33788. [PMID: 39040345 PMCID: PMC11261848 DOI: 10.1016/j.heliyon.2024.e33788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The early stage of pancreatic cancer is asymptomatic and the treatment effect is not ideal. The progression to the advanced stage leads to a close relationship between mortality and morbidity. Therefore, there is an urgent need to develop precise and efficient therapeutic strategies to combat pancreatic cancer. In this study, we introduce a near-infrared (NIR) targeted drug delivery nanoparticle for ultrasound (US) imaging to guide magnetothermal/chemotherapy synergistic treatment of pancreatic cancer. Carboxylated polylactic acid (PLGA-PEG-COOH) serves as the structure of the nanoparticles, specifically binding the RGD cyclic peptide for pancreatic cancer targeting activity and promoting tumor aggregation of the nanoparticles. NIR-induced superparamagnetic iron oxide (SPIO) nanoparticles convert near-infrared light into thermal energy, triggering vaporization of perfluoropentane (PFH) droplets to generate PFH bubbles that enhance US imaging and help load doxorubicin (DOX), which are released from nanoparticles. SPIO can also be used for thermal ablation of tumors to improve therapeutic effect in treating pancreatic cancer. The results show that the targeted particles mediated by NIR have the characteristics of targeted drug delivery imaging. The microspheres exhibit strong acoustic and near-infrared responsiveness. Cell proliferation experiments showed that IR-mediated PFH-DOX@PLGA/SPIO-RGD NPs (RNPs) had a higher inhibitory effect on cell proliferation. Animal experiments have shown that RNPS can accumulate highly in the tumor area and show good therapeutic effect. In conclusion, this nanotherapeutic particle is a very promising targeted image-guided photothermal/chemotherapeutic synergistic tumor therapy strategy.
Collapse
Affiliation(s)
- Shenglong Shi
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, China
| | - Yingying Zhang
- Qiqihar Medical University, Qiqihar, China
- MinKang Hospital of Qiqihar, Qiqihar, China
| | - Jian Huang
- Qiqihar Medical University, Qiqihar, China
- West Coast Second Hospital of Qingdao University Medical Group
| | | | - Weiyang Lv
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, China
| | - Xing Li
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, China
| | - Ying Wang
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, China
| | - Chunxin Huang
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, China
| | - Huilin Liu
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, China
| |
Collapse
|
5
|
Branco F, Cunha J, Mendes M, Vitorino C, Sousa JJ. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS NANO 2024; 18:16359-16394. [PMID: 38861272 PMCID: PMC11223498 DOI: 10.1021/acsnano.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Cunha
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - João J. Sousa
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
6
|
Wehn AC, Krestel E, Harapan BN, Klymchenko A, Plesnila N, Khalin I. To see or not to see: In vivo nanocarrier detection methods in the brain and their challenges. J Control Release 2024; 371:216-236. [PMID: 38810705 DOI: 10.1016/j.jconrel.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution. This review aims to provide a comprehensive summary of the current knowledge on detection systems for tracking nanoparticles across the blood-brain barrier and within the brain. We discuss commonly employed in vivo and ex vivo nanoparticle identification and quantification methods, as well as various imaging modalities able to detect nanoparticles in the brain. Advantages and weaknesses of these modalities as well as the biological factors that must be considered when interpreting results obtained through nanotechnologies are summarized. Finally, we critically evaluate the prevailing limitations of existing technologies and explore potential solutions.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany.
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin - CS 60024, 67401 Illkirch Cedex, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14 074 Bd Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
7
|
Mazahir F, Alam MI, Yadav AK. Development of nanomedicines for the treatment of Alzheimer's disease: Raison d'être, strategies, challenges and regulatory aspects. Ageing Res Rev 2024; 98:102318. [PMID: 38705362 DOI: 10.1016/j.arr.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive loss of memory. Presently, AD is challenging to treat with current drug therapy as their delivery to the brain is restricted by the presence of the blood-brain barrier. Nanomedicines, due to their size, high surface volume ratio, and ease of tailoring drug release characteristics, showed their potential to treat AD. The nanotechnology-based formulations for brain targeting are expected to enter the market in the near future. So, regulatory frameworks are required to ensure the quality, safety, and effectiveness of the nanomedicines to treat AD. In this review, we discuss different strategies, in-vitro blood-brain permeation models, in-vivo permeation assessment, and regulatory aspects for the development of nanomedicine to treat AD.
Collapse
Affiliation(s)
- Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Md Imtiyaz Alam
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Awesh Kumar Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| |
Collapse
|
8
|
Moreira R, Nóbrega C, de Almeida LP, Mendonça L. Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands. J Nanobiotechnology 2024; 22:260. [PMID: 38760847 PMCID: PMC11100082 DOI: 10.1186/s12951-024-02511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.
Collapse
Grants
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, 8005-139, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Liliana Mendonça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal.
| |
Collapse
|
9
|
Wang G, Li Z, Wang G, Sun Q, Lin P, Wang Q, Zhang H, Wang Y, Zhang T, Cui F, Zhong Z. Advances in Engineered Nanoparticles for the Treatment of Ischemic Stroke by Enhancing Angiogenesis. Int J Nanomedicine 2024; 19:4377-4409. [PMID: 38774029 PMCID: PMC11108071 DOI: 10.2147/ijn.s463333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.
Collapse
Affiliation(s)
- Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Gongchen Wang
- Department of Vascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Qixu Sun
- Department of Gastroenterology, Penglai People’s Hospital, Yantai, Shandong, 265600, People’s Republic of China
| | - Peng Lin
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Huishu Zhang
- Teaching Center of Biotechnology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tongshuai Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Feiyun Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhaohua Zhong
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
10
|
Zhong Z, Deng W, Wu J, Shang H, Tong Y, He Y, Huang Q, Ba X, Chen Z, Tang K. Cell membrane coated nanoparticles as a biomimetic drug delivery platform for enhancing cancer immunotherapy. NANOSCALE 2024; 16:8708-8738. [PMID: 38634521 DOI: 10.1039/d4nr00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Cancer immunotherapy, a burgeoning modality for cancer treatment, operates by activating the autoimmune system to impede the growth of malignant cells. Although numerous immunotherapy strategies have been employed in clinical cancer therapy, the resistance of cancer cells to immunotherapeutic medications and other apprehensions impede the attainment of sustained advantages for most patients. Recent advancements in nanotechnology for drug delivery hold promise in augmenting the efficacy of immunotherapy. However, the efficacy is currently constrained by the inadequate specificity of delivery, low rate of response, and the intricate immunosuppressive tumor microenvironment. In this context, the investigation of cell membrane coated nanoparticles (CMNPs) has revealed their ability to perform targeted delivery, immune evasion, controlled release, and immunomodulation. By combining the advantageous features of natural cell membranes and nanoparticles, CMNPs have demonstrated their unique potential in the realm of cancer immunotherapy. This review aims to emphasize recent research progress and elucidate the underlying mechanisms of CMNPs as an innovative drug delivery platform for enhancing cancer immunotherapy. Additionally, it provides a comprehensive overview of the current immunotherapeutic strategies involving different cell membrane types of CMNPs, with the intention of further exploration and optimization.
Collapse
Affiliation(s)
- Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
11
|
Baudis S, Roch T, Balk M, Wischke C, Lendlein A, Behl M. Multivariate Analysis of Cellular Uptake Characteristics for a (Co)polymer Particle Library. ACS Biomater Sci Eng 2024; 10:1481-1493. [PMID: 38374768 PMCID: PMC10934412 DOI: 10.1021/acsbiomaterials.3c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Controlling cellular responses to nanoparticles so far is predominantly empirical, typically requiring multiple rounds of optimization of particulate carriers. In this study, a systematic model-assisted approach should lead to the identification of key parameters that account for particle properties and their cellular recognition. A copolymer particle library was synthesized by a combinatorial approach in soap free emulsion copolymerization of styrene and methyl methacrylate, leading to a broad compositional as well as constitutional spectrum. The proposed structure-property relationships could be elucidated by multivariate analysis of the obtained experimental data, including physicochemical characteristics such as molar composition, molecular weight, particle diameter, and particle charge as well as the cellular uptake pattern of nanoparticles. It was found that the main contributors for particle size were the polymers' molecular weight and the zeta potential, while particle uptake is mainly directed by the particles' composition. This knowledge and the reported model-assisted procedure to identify relevant parameters affecting particle engulfment of particulate carriers by nonphagocytic and phagocytic cells can be of high relevance for the rational design of pharmaceutical nanocarriers and assessment of biodistribution and nanotoxicity, respectively.
Collapse
Affiliation(s)
- Stefan Baudis
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Toralf Roch
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Maria Balk
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Christian Wischke
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Andreas Lendlein
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
- Institute
of Biochemistry and Biology, University
of Potsdam, Karl-Liebknecht-Str.
24-25, 14476 Potsdam-Golm, Germany
| | - Marc Behl
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| |
Collapse
|
12
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
13
|
Song X, Zhang Y, Tang Z, Du L. Advantages of nanocarriers for basic research in the field of traumatic brain injury. Neural Regen Res 2024; 19:237-245. [PMID: 37488872 PMCID: PMC10503611 DOI: 10.4103/1673-5374.379041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/01/2023] [Accepted: 05/06/2023] [Indexed: 07/26/2023] Open
Abstract
A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue. To overcome this problem, researchers have begun to focus on nanocarriers and other brain-targeting drug delivery systems. In this review, we summarize the epidemiology, basic pathophysiology, current clinical treatment, the establishment of models, and the evaluation indicators that are commonly used for traumatic brain injury. We also report the current status of traumatic brain injury when treated with nanocarriers such as liposomes and vesicles. Nanocarriers can overcome a variety of key biological barriers, improve drug bioavailability, increase intracellular penetration and retention time, achieve drug enrichment, control drug release, and achieve brain-targeting drug delivery. However, the application of nanocarriers remains in the basic research stage and has yet to be fully translated to the clinic.
Collapse
Affiliation(s)
- Xingshuang Song
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yizhi Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ziyan Tang
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lina Du
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
14
|
Halder T, Saha B, Dhas N, Acharya S, Acharya N. Development and evaluation of multi-functionalized sialic acid conjugated asiatic acid nanoconstruct to mitigate cognitive deficits in Alzheimer's disease. Drug Dev Res 2024; 85:e22146. [PMID: 38349270 DOI: 10.1002/ddr.22146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024]
Abstract
Sialic acid (SA) serves a critical role in neuronal repair and cognitive functions. SA is a nine-carbon carboxylated sugar with a glycoconjugate cap that acts as a ligand and surface decoration with SA facilitates delivery to the target site. The present research aimed to develop SA surface modified AA nanostructured lipid carrier (NLCs) with carbodiimide conjugation method. Sterylamine, poloxamer 188 and tween 80 were used as surfactants and several characterization studies including, differential scanning calorimetry, fourier transform infrared spectroscopy and x-ray photon spectroscopy were analyzed. Further, in vitro, neuroprotective efficiency was evaluated in SH-SY5Y cells and hCMEC/D3 cells and found significant potential effects with the treatments of developed NLCs. Pharmacodynamics studies were also assessed in beta-amyloid-injected rats following quantification of Alzheimer's disease (AD) hallmarks like, Aβ(1-42), tau-protein, glycogen synthase kinase-3β levels, interleukin-6 and tumor necrosis factor-α for neuroinflammatory responses. Characterization studies revealed the conjugation on developed NLCs. The in vitro and in vivo results showed significant effects of SA decorated NLCs in reversing the damage by toxicant which was further characterized by the levels of neurotransmitters like acetylcholinesterase, butyrylcholinesterase. The results revealed significant (p < .05) refurbishment of cholinergic functions after 28 days of treatment of developed NLCs. These preclinical findings support the use of SA as a ligand to deliver the AA at targeted site as well as to mitigate the cognitive deficits in AD.
Collapse
Affiliation(s)
- Tripti Halder
- Department of Pharmacognosy, Nirma University, Ahmedabad, Gujarat, India
- Faculty of Pharmacy, School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Bijit Saha
- Department of Research and Development, Jodas Expoim Pvt Ltd, Kukatpally, Hyderabad, Telangana, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sanjeev Acharya
- Faculty of Pharmacy, Institute of Pharmacy, Ganpat University, Kherva, Gujarat, India
| | - Niyati Acharya
- Department of Pharmacognosy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
15
|
Singh V, Vihal S, Rana R, Rathore C. Nanocarriers for Cannabinoid Delivery: Enhancing Therapeutic Potential. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:247-261. [PMID: 39356097 DOI: 10.2174/0126673878300347240718100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 10/03/2024]
Abstract
Medical cannabis has potential therapeutic benefits in managing pain, anxiety, depression, and neurological and movement disorders. Phytocannabinoids derived from the cannabis plant are responsible for their pharmacological and therapeutic properties. However, the complexity of cannabis components, especially cannabinoids, poses a challenge to effective medicinal administration. Even with the increasing acceptance of cannabis-based medicines, achieving consistent bioavailability and targeted distribution remains difficult. Conventional administration methods are plagued by solubility and absorption problems requiring innovative solutions. After conducting a thorough review of research papers and patents, it has become evident that nanotechnology holds great promise as a solution. The comprehensive review of 36 research papers has yielded valuable insights, with 7 papers reporting enhanced bioavailability, while others have focused on improvements in release, solubility, and stability. Additionally, 19 patents have been analyzed, of which 7 specifically claim enhanced bioavailability, while the remaining patents describe various formulation methods. These patents outline effective techniques for encapsulating cannabis using nanocarriers, effectively addressing solubility and controlled release. Studies on the delivery of cannabis using nanocarriers focus on improving bioavailability, prolonging release, and targeting specific areas. This synthesis highlights the potential of nanotechnology to enhance cannabis therapies and pave the way for innovative interventions and precision medicine.
Collapse
Affiliation(s)
- Varun Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Samar Vihal
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, 160036, India
| |
Collapse
|
16
|
Han W, Shen Z, Zou J, Ye Q, Ge C, Zhao Y, Wang T, Chen Y. Therapeutic Approaches of Dual-targeted Nanomedicines for Tumor Multidrug Resistance. Curr Drug Deliv 2024; 21:155-167. [PMID: 37143266 DOI: 10.2174/1567201820666230504145614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Currently, the main cause of cancer chemotherapy failure is multi-drug resistance (MDR), which involves a variety of complex mechanisms. Compared with traditional small-molecule chemotherapy, targeted nanomedicines offer promising alternative strategies as an emerging form of therapy, especially active targeted nanomedicines. However, although single-targeted nanomedicines have made some progress in tumor therapy, the complexity of tumor microenvironment and tumor heterogeneity limits their efficacy. Dual-targeted nanomedicines can simultaneously target two tumor-specific factors that cause tumor MDR, which have the potential in overcoming tumor MDR superior to single-targeted nanomedicines by further enhancing cell uptake and cytotoxicity in new forms, as well as the effectiveness of tumor-targeted delivery. This review discusses tumor MDR mechanisms and the latest achievements applied to dual-targeted nanomedicines in tumor MDR.
Collapse
Affiliation(s)
- Weili Han
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Zhenglin Shen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Jie Zou
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Qiufang Ye
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Cheng Ge
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Yuqin Zhao
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Ting Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Yafang Chen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| |
Collapse
|
17
|
Zhang W. Blood-Brain Barrier (BBB)-Crossing Strategies for Improved Treatment of CNS Disorders. Handb Exp Pharmacol 2024; 284:213-230. [PMID: 37528323 DOI: 10.1007/164_2023_689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Blood-brain barrier (BBB) is a special biological property of the brain neurovascular unit (including brain microvessels and capillaries), which facilitates the transport of nutrients into the central nervous system (CNS) and exchanges metabolites but restricts passage of blood-borne neurotoxic substances and drugs/xenobiotics into CNS. BBB plays a crucial role in maintaining the homeostasis and normal physiological functions of CNS but severely impedes the delivery of drugs and biotherapeutics into CNS for treatment of neurological disorders. A variety of technologies have been developed in the past decade for brain drug delivery. Most of these technologies are still in preclinical stage and some are undergoing clinical studies. Only a few have been approved by regulatory agencies for clinical applications. This chapter will overview the strategies and technologies/approaches for brain drug delivery and discuss some of the recent advances in the field.
Collapse
Affiliation(s)
- Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Zhang L, Wang Z, Zhang R, Yang H, Wang WJ, Zhao Y, He W, Qiu Z, Wang D, Xiong Y, Zhao Z, Tang BZ. Multi-Stimuli-Responsive and Cell Membrane Camouflaged Aggregation-Induced Emission Nanogels for Precise Chemo-photothermal Synergistic Therapy of Tumors. ACS NANO 2023; 17:25205-25221. [PMID: 38091262 DOI: 10.1021/acsnano.3c08409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Targeted and controllable drug release at lesion sites with the aid of visual navigation in real-time is of great significance for precise theranostics of cancers. Benefiting from the marvelous features (e.g., bright emission and phototheranostic effects in aggregates) of aggregation-induced emission (AIE) materials, constructing AIE-based multifunctional nanocarriers that act as all-arounders to integrate multimodalities for precise theranostics is highly desirable. Here, an intelligent nanoplatform (P-TN-Dox@CM) with homologous targeting, controllable drug release, and in vivo dual-modal imaging for precise chemo-photothermal synergistic therapy is proposed. AIE photothermic agent (TN) and anticancer drug (Dox) are encapsulated in thermo-/pH-responsive nanogels (PNA), and the tumor cell membranes are camouflaged onto the surface of nanogels. Active targeting can be realized through homologous effects derived from source tumor cell membranes, which advantageously elevates the specific drug delivery to tumor sites. After being engulfed into tumor cells, the nanogels exhibit a burst drug release at low pH. The near-infrared (NIR) photoinduced local hyperthermia can activate severe cytotoxicity and further accelerate drug release, thus generating enhanced synergistic chemo-photothermal therapy to thoroughly eradicate tumors. Moreover, P-TN-Dox@CM nanogels could achieve NIR-fluorescence/photothermal dual-modal imaging to monitor the dynamic distribution of therapeutics in real-time. This work highlights the great potential of smart P-TN-Dox@CM nanogels as a versatile nanoplatform to integrate multimodalities for precise chemo-photothermal synergistic therapy in combating cancers.
Collapse
Affiliation(s)
- Liping Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Zaiyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Rongyuan Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Han Yang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Wen-Jin Wang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Yun Zhao
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Wei He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Zijie Qiu
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zheng Zhao
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
- HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen, Guangdong 518057, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
19
|
Grosso C, Silva A, Delerue-Matos C, Barroso MF. Single and Multitarget Systems for Drug Delivery and Detection: Up-to-Date Strategies for Brain Disorders. Pharmaceuticals (Basel) 2023; 16:1721. [PMID: 38139848 PMCID: PMC10747932 DOI: 10.3390/ph16121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
This review summarizes the recent findings on the development of different types of single and multitarget nanoparticles for disease detection and drug delivery to the brain, focusing on promising active principles encapsulated and nanoparticle surface modification and functionalization. Functionalized nanoparticles have emerged as promising tools for the diagnosis and treatment of brain disorders, offering a novel approach to addressing complex neurological challenges. They can act as drug delivery vehicles, transporting one or multiple therapeutic agents across the blood-brain barrier and precisely releasing them at the site of action. In diagnostics, functionalized nanoparticles can serve as highly sensitive contrast agents for imaging techniques such as magnetic resonance imaging and computed tomography scans. By attaching targeting ligands to the nanoparticles, they can selectively accumulate in the affected areas of the brain, enhancing the accuracy of disease detection. This enables early diagnosis and monitoring of conditions like Alzheimer's or Parkinson's diseases. While the field is still evolving, functionalized nanoparticles represent a promising path for advancing our ability to diagnose and treat brain disorders with greater precision, reduced invasiveness, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
| | - Aurora Silva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidad de Vigo, E-32004 Ourense, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
| | - Maria Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
| |
Collapse
|
20
|
Zhang Y, Sun M, Zhao H, Wang Z, Shi Y, Dong J, Wang K, Wang X, Li X, Qi H, Zhao X. Neuroprotective Effects and Therapeutic Potential of Dichloroacetate: Targeting Metabolic Disorders in Nervous System Diseases. Int J Nanomedicine 2023; 18:7559-7581. [PMID: 38106446 PMCID: PMC10725694 DOI: 10.2147/ijn.s439728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Dichloroacetate (DCA) is an investigational drug used to treat lactic acidosis and malignant tumours. It works by inhibiting pyruvate dehydrogenase kinase and increasing the rate of glucose oxidation. Some studies have documented the neuroprotective benefits of DCA. By reviewing these studies, this paper shows that DCA has multiple pharmacological activities, including regulating metabolism, ameliorating oxidative stress, attenuating neuroinflammation, inhibiting apoptosis, decreasing autophagy, protecting the blood‒brain barrier, improving the function of endothelial progenitor cells, improving mitochondrial dynamics, and decreasing amyloid β-protein. In addition, DCA inhibits the enzyme that metabolizes it, which leads to peripheral neurotoxicity due to drug accumulation that may be solved by individualized drug delivery and nanovesicle delivery. In summary, in this review, we analyse the mechanisms of neuroprotection by DCA in different diseases and discuss the causes of and solutions to its adverse effects.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Meiyan Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Hongxiang Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Zhengyan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Yanan Shi
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Jianxin Dong
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Kaifang Wang
- Department of Anesthesia, Tangdu Hospital, Fourth Military Medical University, Xian, Shanxi Province, People’s Republic of China
| | - Xi Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xingyue Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Haiyan Qi
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Xiaoyong Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
21
|
Sisubalan N, Shalini R, Ramya S, Sivamaruthi BS, Chaiyasut C. Recent advances in nanomaterials for neural applications: opportunities and challenges. Nanomedicine (Lond) 2023; 18:1979-1994. [PMID: 38078433 DOI: 10.2217/nnm-2023-0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Nanomedicines are promising for delivering drugs to the central nervous system, though their precision is still being improved. Fortifying nanoparticles with vital molecules can interact with the blood-brain barrier, enabling access to brain tissue. This study summarizes recent advances in nanomedicine to treat neurological complications. The integration of nanotechnology into cell biology aids in the study of brain cells' interactions. Magnetic microhydrogels have exhibited superior neuron activation compared with superparamagnetic iron oxide nanoparticles and hold promise for neuropsychiatric disorders. Nanomaterials have shown notable results, such as tackling neurodegenerative diseases by hindering harmful protein buildup and regulating cellular processes. However, further studies of the safety and effectiveness of nanoparticles in managing neurological diseases and disorders are still required.
Collapse
Affiliation(s)
- Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ramadoss Shalini
- Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Sakthivel Ramya
- Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
22
|
Coats JP, Cochereau R, Dinu IA, Messmer D, Sciortino F, Palivan CG. Trends in the Synthesis of Polymer Nano- and Microscale Materials for Bio-Related Applications. Macromol Biosci 2023; 23:e2200474. [PMID: 36949011 DOI: 10.1002/mabi.202200474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Polymeric nano- and microscale materials bear significant potential in manifold applications related to biomedicine. This is owed not only to the large chemical diversity of the constituent polymers, but also to the various morphologies these materials can achieve, ranging from simple particles to intricate self-assembled structures. Modern synthetic polymer chemistry permits the tuning of many physicochemical parameters affecting the behavior of polymeric nano- and microscale materials in the biological context. In this Perspective, an overview of the synthetic principles underlying the modern preparation of these materials is provided, aiming to demonstrate how advances in and ingenious implementations of polymer chemistry fuel a range of applications, both present and prospective.
Collapse
Affiliation(s)
- John Peter Coats
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Rémy Cochereau
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Daniel Messmer
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Flavien Sciortino
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
- National Centre for Competence in Research - Molecular Systems Engineering, Mattenstrasse 24a, Basel, CH-4058, Switzerland
- Swiss Nanoscience Institute, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| |
Collapse
|
23
|
Adjei-Sowah E, Benoit DSW, Loiselle AE. Drug Delivery Approaches to Improve Tendon Healing. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:369-386. [PMID: 36888543 PMCID: PMC10442691 DOI: 10.1089/ten.teb.2022.0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 03/09/2023]
Abstract
Tendon injuries disrupt the transmission of forces from muscle to bone, leading to chronic pain, disability, and a large socioeconomic burden. Tendon injuries are prevalent; there are over 300,000 tendon repair procedures a year in the United States to address acute trauma or chronic tendinopathy. Successful restoration of function after tendon injury remains challenging clinically. Despite improvements in surgical and physical therapy techniques, the high complication rate of tendon repair procedures motivates the use of therapeutic interventions to augment healing. While many biological and tissue engineering approaches have attempted to promote scarless tendon healing, there is currently no standard clinical treatment to improve tendon healing. Moreover, the limited efficacy of systemic delivery of several promising therapeutic candidates highlights the need for tendon-specific drug delivery approaches to facilitate translation. This review article will synthesize the current state-of-the-art methods that have been used for tendon-targeted delivery through both systemic and local treatments, highlight emerging technologies used for tissue-specific drug delivery in other tissue systems, and outline future challenges and opportunities to enhance tendon healing through targeted drug delivery.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Cell Biology of Disease Program, University of Rochester, Rochester, New York, USA
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Materials Science Program, University of Rochester, Rochester, New York, USA
- Knight Campus Department of Bioengineering, University of Oregon, Eugene, Oregan, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Cell Biology of Disease Program, University of Rochester, Rochester, New York, USA
| |
Collapse
|
24
|
Zhang Q, Yang L, Zheng Y, Wu X, Chen X, Fei F, Gong Y, Tan B, Chen Q, Wang Y, Wu D, Chen Z. Electro-responsive micelle-based universal drug delivery system for on-demand therapy in epilepsy. J Control Release 2023; 360:759-771. [PMID: 37460011 DOI: 10.1016/j.jconrel.2023.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
A universal drug delivery system (DDS) with brain-targeted ability is demanded to enhance antiepileptic therapeutic efficacy and reduce side effects in multiple types of epileptic seizures. In this study, we reported a micelle-based DDS possessing the brain-targeted ability and electro-responsive feature for universal delivery of antiepileptic drugs (AEDs). The system is fabricated by ferrocene (Fc)-conjugated D-a-tocopherol polyethylene glycol succinate and amphiphilic block copolymer, which improve the drug encapsulation of different AEDs. Interestingly, the intrinsic nature of TPGS-Fc including transferrin receptor-mediated transcytosis and efflux pump inhibition endows the system with high permeability across the blood-brain barrier. Based on the hydrophobic-hydrophilic transition of Fc, the micelles can respond to epileptiform discharges and thus release the loaded AEDs. Improved antiepileptic efficacy of the micelles has been demonstrated in acute, continuous, and chronic epilepsy models. In summary, we have developed a universal micelle-based DDS for various AEDs delivery, which provides a promising approach to on-demand therapy of different epileptic seizures.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xueqing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
25
|
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. Emerging nanotechnology for Alzheimer's disease: From detection to treatment. J Control Release 2023; 360:392-417. [PMID: 37414222 DOI: 10.1016/j.jconrel.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD), one of the most common chronic neurodegenerative diseases, is characterized by memory impairment, synaptic dysfunction, and character mutations. The pathological features of AD are Aβ accumulation, tau protein enrichment, oxidative stress, and immune inflammation. Since the pathogenesis of AD is complicated and ambiguous, it is still challenging to achieve early detection and timely treatment of AD. Due to the unique physical, electrical, magnetic, and optical properties of nanoparticles (NPs), nanotechnology has shown great potential for detecting and treating AD. This review provides an overview of the latest developments in AD detection via nanotechnology based on NPs with electrochemical sensing, optical sensing, and imaging techniques. Meanwhile, we highlight the important advances in nanotechnology-based AD treatment through targeting disease biomarkers, stem-cell therapy and immunotherapy. Furthermore, we summarize the current challenges and present a promising prospect for nanotechnology-based AD diagnosis and intervention.
Collapse
Affiliation(s)
- Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian Meng
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
26
|
Mobasheri K, Zaefizadeh M, Ghobeh M, Eidi A. Synthesis of Novel Magnetic Quercetin-Neuropeptide Nanocomposite as a Smart Nano-Drug Shuttle System: Investigation of Its Effect on Behavior, Histopathological Characteristics, and Expression of MAPT and APP Genes in Alzheimer's Disease Rats. J Alzheimers Dis 2023:JAD221095. [PMID: 37393494 DOI: 10.3233/jad-221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The drugs introduced for this disease have many side effects and limitations in use, so the production of a suitable herbal medicine to cure AD patients is essential. OBJECTIVE The aim of this research is to make a magnetic neuropeptide nano shuttle as a targeted carrier for the transfer of quercetin to the brains of AD model rats. METHODS In this work, a magnetic quercetin-neuropeptide nanocomposite (MQNPN) was fabricated and administered to the rat's brain by the shuttle drug of the Margatoxin scorpion venom neuropeptide, and will be a prospect for targeted drug delivery in AD. The MQNPN has been characterized by FTIR, spectroscopy, FE-SEM, XRD, and VSM. Investigations into the efficacy of MQNPN, MTT, and real Time PCR for MAPT and APP genes expression were performed. After 7 days treatment with Fe3O4 (Ctr) and MQNPN treatment in AD rat, superoxide dismutase activity and quercetin in blood serum and brain was detected. Hematoxylin-Eosin staining was applied for histopathological analysis. RESULTS Analysis of data showed that MQNPN increased the activity of superoxide dismutase. The histopathology results of the hippocampal region of AD rats also confirmed their improvement after treatment with MQNPN. MQNPN treatment caused a significant decrease in the relative expression of MAPT and APP genes. CONCLUSION MQNPN is a suitable carrier for the transfer of quercetin to the rat hippocampus, and has a significant effect in reducing AD symptoms in terms of histopathology, behavioral testing, and changing the expression of AD-related genes.
Collapse
Affiliation(s)
- Kamelia Mobasheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Zaefizadeh
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Wang H, Guan Y, Li C, Chen J, Yue S, Qian J, Dai B, Jiang C, Wen C, Wen L, Liang C, Zhang Y, Zhang L. PEGylated Manganese-Zinc Ferrite Nanocrystals Combined with Intratumoral Implantation of Micromagnets Enabled Synergetic Prostate Cancer Therapy via Ferroptotic and Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207077. [PMID: 36861297 DOI: 10.1002/smll.202207077] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Indexed: 06/02/2023]
Abstract
Therapeutic efficacy for prostate cancer is highly restricted by insufficient drug accumulation and the resistance to apoptosis and immunogenic cell death (ICD). Although enhanced permeability and retention (EPR) effect of magnetic nanomaterials could benefit from external magnetic field, it falls off rapidly with increased distance from magnet surface. Considering the deep location of prostate in pelvis, the improvement of EPR effect by external magnetic field is limited. In addition, apoptosis resistance and cGAS-STING pathway inhibition-related immunotherapy resistance are major obstacles to conventional therapy. Herein, the magnetic PEGylated manganese-zinc ferrite nanocrystals (PMZFNs) are designed. Instead of providing external magnet, micromagnets into tumor tissues are intratumorally implanted to actively attract and retain intravenously-injected PMZFNs. As a result, PMZFNs accumulate in prostate cancer with high efficacy, depending on the established internal magnetic field, which subsequently elicit potent ferroptosis and the activation of cGAS-STING pathway. Ferroptosis not only directly suppresses prostate cancer but also triggers burst release of cancer-associated antigens and consequently initiates ICD against prostate cancer, where activated cGAS-STING pathway further amplifies the efficacy of ICD by generating interferon-β. Collectively, the intratumorally implanted micromagnets confer a durable EPR effect of PMZFNs, which eventually achieve the synergetic tumoricidal efficacy with negligible systemic toxicity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Chun Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Jia Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Shaoyu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Jieying Qian
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Bangshun Dai
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Changqin Jiang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Chenghao Wen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Longping Wen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Yunjiao Zhang
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| |
Collapse
|
28
|
Na Y, Zhang N, Zhong X, Gu J, Yan C, Yin S, Lei X, Zhao J, Geng F. Polylactic-co-glycolic acid-based nanoparticles modified with peptides and other linkers cross the blood-brain barrier for targeted drug delivery. Nanomedicine (Lond) 2023; 18:125-143. [PMID: 36916394 DOI: 10.2217/nnm-2022-0287] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Because of the blood-brain barrier, only a limited fraction of drugs can penetrate the brain. As a result, there is a need to take larger doses of the drug, which may result in numerous undesirable side effects. Over the past few decades, a plethora of research has been conducted to address this issue. In recent years, the field of nanomedicine research has reported promising findings. Currently, numerous types of polylactic-co-glycolic acid-based drug-delivery systems are being studied, and great progress has been made in the modification of their surfaces with a variety of ligands. In this review, the authors highlight the preparation of polylactic-co-glycolic acid-based nanoparticles and single- and dual-targeted peptide modifications for site-specific drug delivery into the brain.
Collapse
Affiliation(s)
- Yue Na
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.,Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, 214071, China
| | - Xinyu Zhong
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Jinlian Gu
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Chang Yan
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Shun Yin
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Xia Lei
- Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, 214071, China
| | - Jihui Zhao
- College of Pharmacy, Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Fang Geng
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| |
Collapse
|
29
|
Almeida Furquim de Camargo B, Fonseca-Santos B, Gonçalves Carvalho S, Corrêa Carvalho G, Delello Di Filippo L, Sousa Araújo VH, Lobato Duarte J, Polli Silvestre AL, Bauab TM, Chorilli M. Functionalized lipid-based drug delivery nanosystems for the treatment of human infectious diseases. Crit Rev Microbiol 2023; 49:214-230. [PMID: 35634703 DOI: 10.1080/1040841x.2022.2047007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases are still public health problems. Microorganisms such as fungi, bacteria, viruses, and parasites are the main causing agents related to these diseases. In this context, the search for new effective strategies in prevention and/or treatment is considered essential, since current drugs often have side effects or end up, causing microbial resistance, making it a serious health problem. As an alternative to these limitations, nanotechnology has been widely used. The use of lipid-based drug delivery nanosystems (DDNs) has some advantages, such as biocompatibility, low toxicity, controlled release, the ability to carry both hydrophilic and lipophilic drugs, in addition to be easel scalable. Besides, as an improvement, studies involving the conjugation of signalling molecules on the surfaces of these nanocarriers can allow the target of certain tissues or cells. Thus, this review summarizes the performance of functionalized lipid-based DDNs for the treatment of infectious diseases caused by viruses, including SARS-CoV-2, bacteria, fungi, and parasites.
Collapse
Affiliation(s)
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, Campinas State University (UNICAMP), Campinas, Brazil
| | | | | | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
30
|
Parenteral Lipid-Based Nanoparticles for CNS Disorders: Integrating Various Facets of Preclinical Evaluation towards More Effective Clinical Translation. Pharmaceutics 2023; 15:pharmaceutics15020443. [PMID: 36839768 PMCID: PMC9966342 DOI: 10.3390/pharmaceutics15020443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Contemporary trends in combinatorial chemistry and the design of pharmaceuticals targeting brain disorders have favored the development of drug candidates with increased lipophilicity and poorer water solubility, with the expected improvement in delivery across the blood-brain barrier (BBB). The growing availability of innovative excipients/ligands allowing improved brain targeting and controlled drug release makes the lipid nanocarriers a reasonable choice to overcome the factors impeding drug delivery through the BBB. However, a wide variety of methods, study designs and experimental conditions utilized in the literature hinder their systematic comparison, and thus slows the advances in brain-targeting by lipid-based nanoparticles. This review provides an overview of the methods most commonly utilized during the preclinical testing of liposomes, nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers intended for the treatment of various CNS disorders via the parenteral route. In order to fully elucidate the structure, stability, safety profiles, biodistribution, metabolism, pharmacokinetics and immunological effects of such lipid-based nanoparticles, a transdisciplinary approach to preclinical characterization is mandatory, covering a comprehensive set of physical, chemical, in vitro and in vivo biological testing.
Collapse
|
31
|
Exploring the Potential of Cannabinoid Nanodelivery Systems for CNS Disorders. Pharmaceutics 2023; 15:pharmaceutics15010204. [PMID: 36678832 PMCID: PMC9863859 DOI: 10.3390/pharmaceutics15010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Cannabinoids have a major therapeutic value in a variety of disorders. The concepts of cannabinoids are difficult to develop, but they can be used and are advantageous for a number of diseases that are not sufficiently managed by existing treatments. Nanoconjugation and encapsulation techniques have been shown to be effective in improving the delivery and the therapeutic effectiveness of drugs that are poorly soluble in water. Because the bioavailability of cannabinoids is low, the challenge is to explore different administration methods to improve their effectiveness. Because cannabinoids cross the blood-brain-barrier (BBB), they modify the negative effects of inflammatory processes on the BBB and may be a key factor in the improvement of BBB function after ischemic disease or other conditions. This review discusses various types of cannabinoid administration, as well as nanotechnologies used to improve the bioavailability of these compounds in CNS diseases.
Collapse
|
32
|
Mishra G, Awasthi R, Singh AK, Singh S, Mishra SK, Singh SK, Nandi MK. Intranasally Co-administered Berberine and Curcumin Loaded in Transfersomal Vesicles Improved Inhibition of Amyloid Formation and BACE-1. ACS OMEGA 2022; 7:43290-43305. [PMID: 36467923 PMCID: PMC9713875 DOI: 10.1021/acsomega.2c06215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Selective permeability of the blood-brain barrier restricts the treatment efficacy of neurologic diseases. Berberine (BBR) and curcumin (CUR)-loaded transferosomes (TRANS) were prepared for the effective management of Alzheimer's disease (AD). The study involved the syntheses of BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS by the film hydration method. Vesicles were characterized to ensure the formation of drug-loaded vesicles and their in vivo performance. The particle sizes of BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS were 139.2 ± 7, 143.4 ± 8, and 165.3 ± 6.5 nm, respectively. The presence of diffused rings in the SED image indicates the crystalline nature of the payload. Low surface roughness in an AFM image could be associated with the presence of a surface lipid. BBR-CUR-TRANS showed 41.03 ± 1.22 and 47.79 ± 3.67% release of BBR and 19.22 ± 1.47 and 24.67 ± 1.94% release of CUR, respectively, in phosphate buffer saline (pH 7.4) and acetate buffer (pH 4.0). Formulations showed sustained release of both loaded drugs. BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS exhibited a lower percentage of hemolysis than pure BBR and CUR, indicating the safety of the payload from delivery vesicles. Lower percentages of binding were recorded from BBR-CUR-TRANS than BBR-TRANS and CUR-TRANS. Acetylcholinesterase inhibition activity of the prepared transferosomes was greater than that of pure drugs, which are thought to have good cellular penetration. The spatial memory was improved in treated mice models. The level of malondialdehyde decreased in AD animals treated with BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS, respectively, as compared to the scopolamine-induced AD animals. BBR-CUR-TRANS-treated animals showed the highest decrease in the NO level. The catalase level was significantly restored in scopolamine-intoxicated animals treated with BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS. The immunohistochemistry result suggested that the BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS have significantly decreased the regulation of expression of BACE-1 through antioxidant activity. In conclusion, the study highlights the utility of formulated transferosomes as promising carriers for the co-delivery of drugs to the brain.
Collapse
Affiliation(s)
- Gaurav Mishra
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| | - Rajendra Awasthi
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, Bidholi, Via-Prem
Nagar, Dehradun, Uttarakhand248 007, India
| | - Anurag Kumar Singh
- Cancer
Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, Alabama36101-0271, United States
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| | - Snigdha Singh
- Mahatma
Gandhi Kashi Vidyapith, Varanasi, Uttar Pradesh221 002, India
| | - Sunil Kumar Mishra
- Department
of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh221 005, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| | - Manmath K. Nandi
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| |
Collapse
|
33
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
34
|
Aram E, Moeni M, Abedizadeh R, Sabour D, Sadeghi-Abandansari H, Gardy J, Hassanpour A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203567. [PMID: 36296756 PMCID: PMC9611246 DOI: 10.3390/nano12203567] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Iron oxide nanoparticle (IONPs) have become a subject of interest in various biomedical fields due to their magnetism and biocompatibility. They can be utilized as heat mediators in magnetic hyperthermia (MHT) or as contrast media in magnetic resonance imaging (MRI), and ultrasound (US). In addition, their high drug-loading capacity enabled them to be therapeutic agent transporters for malignancy treatment. Hence, smartening them allows for an intelligent controlled drug release (CDR) and targeted drug delivery (TDD). Smart magnetic nanoparticles (SMNPs) can overcome the impediments faced by classical chemo-treatment strategies, since they can be navigated and release drug via external or internal stimuli. Recently, they have been synchronized with other modalities, e.g., MRI, MHT, US, and for dual/multimodal theranostic applications in a single platform. Herein, we provide an overview of the attributes of MNPs for cancer theranostic application, fabrication procedures, surface coatings, targeting approaches, and recent advancement of SMNPs. Even though MNPs feature numerous privileges over chemotherapy agents, obstacles remain in clinical usage. This review in particular covers the clinical predicaments faced by SMNPs and future research scopes in the field of SMNPs for cancer theranostics.
Collapse
Affiliation(s)
- Elham Aram
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan 49188-88369, Iran
| | - Masome Moeni
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Roya Abedizadeh
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Hamid Sadeghi-Abandansari
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Jabbar Gardy
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| | - Ali Hassanpour
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| |
Collapse
|
35
|
Pandey N, Anastasiadis P, Carney CP, Kanvinde PP, Woodworth GF, Winkles JA, Kim AJ. Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114415. [PMID: 35787387 PMCID: PMC10947564 DOI: 10.1016/j.addr.2022.114415] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States.
| |
Collapse
|
36
|
Fe3O4/Graphene-Based Nanotheranostics for Bimodal Magnetic Resonance/Fluorescence Imaging and Cancer Therapy. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Mohi-Ud-Din R, Mir RH, Mir PA, Banday N, Shah AJ, Sawhney G, Bhat MM, Batiha GE, Pottoo FH, Pottoo FH. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Curr Drug Metab 2022; 23:735-756. [PMID: 35980054 DOI: 10.2174/1389200223666220817115003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023]
Abstract
Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu & Kashmir, 190011, India.,Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Landran, Punjab-140301, India.,Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Nazia Banday
- Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Mudasir Maqbool Bhat
- Department of Pharmaceutical Sciences, Pharmacy Practice Division, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
39
|
Qian K, Bao X, Li Y, Wang P, Guo Q, Yang P, Xu S, Yu F, Meng R, Cheng Y, Sheng D, Cao J, Xu M, Wu J, Wang T, Wang Y, Xie Q, Lu W, Zhang Q. Cholinergic Neuron Targeting Nanosystem Delivering Hybrid Peptide for Combinatorial Mitochondrial Therapy in Alzheimer's Disease. ACS NANO 2022; 16:11455-11472. [PMID: 35839463 DOI: 10.1021/acsnano.2c05795] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mitochondrial dysfunction in neurons has recently become a promising therapeutic target for Alzheimer's disease (AD). Regulation of dysfunctional mitochondria through multiple pathways rather than antioxidation monotherapy indicates synergistic therapeutic effects. Therefore, we developed a multifunctional hybrid peptide HNSS composed of antioxidant peptide SS31 and neuroprotective peptide S14G-Humanin. However, suitable peptide delivery systems with excellent loading capacity and effective at-site delivery are still absent. Herein, the nanoparticles made of citraconylation-modified poly(ethylene glycol)-poly(trimethylene carbonate) polymer (PEG-PTMC(Cit)) exhibited desirable loading of HNSS peptide through electrostatic interactions. Meanwhile, based on fibroblast growth factor receptor 1(FGFR1) overexpression in both the blood-brain barrier and cholinergic neuron, an FGFR1 ligand-FGL peptide was modified on the nanosystem (FGL-NP(Cit)/HNSS) to achieve 4.8-fold enhanced accumulation in brain with preferred distribution into cholinergic neurons in the diseased region. The acid-sensitive property of the nanosystem facilitated lysosomal escape and intracellular drug release by charge switching, resulting in HNSS enrichment in mitochondria through directing of the SS31 part. FGL-NP(Cit)/HNSS effectively rescued mitochondria dysfunction via the PGC-1α and STAT3 pathways, inhibited Aβ deposition and tau hyperphosphorylation, and ameliorated memory defects and cholinergic neuronal damage in 3xTg-AD mice. The work provides a potential platform for targeted cationic peptide delivery, harboring utility for peptide therapy in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Xiaoyan Bao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Pengzhen Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Qian Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Peng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Shuting Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Fazhi Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ran Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Dongyu Sheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Jinxu Cao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Jing Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Tianying Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| |
Collapse
|
40
|
Duskey JT, Rinaldi A, Ottonelli I, Caraffi R, De Benedictis CA, Sauer AK, Tosi G, Vandelli MA, Ruozi B, Grabrucker AM. Glioblastoma Multiforme Selective Nanomedicines for Improved Anti-Cancer Treatments. Pharmaceutics 2022; 14:1450. [PMID: 35890345 PMCID: PMC9325049 DOI: 10.3390/pharmaceutics14071450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is a devastating disease with a low survival rate and few efficacious treatment options. The fast growth, late diagnostics, and off-target toxicity of currently used drugs represent major barriers that need to be overcome to provide a viable cure. Nanomedicines (NMeds) offer a way to overcome these pitfalls by protecting and loading drugs, increasing blood half-life, and being targetable with specific ligands on their surface. In this study, the FDA-approved polymer poly (lactic-co-glycolic) acid was used to optimise NMeds that were surface modified with a series of potential GBM-specific ligands. The NMeds were fully characterised for their physical and chemical properties, and then in vitro testing was performed to evaluate cell uptake and GBM cell specificity. While all targeted NMeds showed improved uptake, only those decorated with the-cell surface vimentin antibody M08 showed specificity for GBM over healthy cells. Finally, the most promising targeted NMed candidate was loaded with the well-known chemotherapeutic, paclitaxel, to confirm targeting and therapeutic effects in C6 GBM cells. These results demonstrate the importance of using well-optimised NMeds targeted with novel ligands to advance delivery and pharmaceutical effects against diseased cells while minimising the risk for nearby healthy cells.
Collapse
Affiliation(s)
- Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Arianna Rinaldi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | | | - Ann Katrin Sauer
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Andreas Martin Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
41
|
Rawal SU, Patel BM, Patel MM. New Drug Delivery Systems Developed for Brain Targeting. Drugs 2022; 82:749-792. [PMID: 35596879 DOI: 10.1007/s40265-022-01717-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSF) are two of the most complex and sophisticated concierges that defend the central nervous system (CNS) by numerous mechanisms. While they maintain the neuro-ecological homeostasis through the regulated entry of essential biomolecules, their conservative nature challenges the entry of most of the drugs intended for CNS delivery. Targeted delivery challenges for a diverse spectrum of therapeutic agents/drugs (non-small molecules, small molecules, gene-based therapeutics, protein and peptides, antibodies) are diverse and demand specialized delivery and disease-targeting strategies. This review aims to capture the trends that have shaped the current brain targeting research scenario. This review discusses the physiological, neuropharmacological, and etiological factors that participate in the transportation of various drug delivery cargoes across the BBB/BCSF and influence their therapeutic intracranial concentrations. Recent research works spanning various invasive, minimally invasive, and non-invasive brain- targeting approaches are discussed. While the pre-clinical outcomes from many of these approaches seem promising, further research is warranted to overcome the translational glitches that prevent their clinical use. Non-invasive approaches like intranasal administration, P-glycoprotein (P-gp) inhibition, pro-drugs, and carrier/targeted nanocarrier-aided delivery systems (alone or often in combination) hold positive clinical prospects for brain targeting if explored further in the right direction.
Collapse
Affiliation(s)
- Shruti U Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, Sarkhej-Sanand Circle Off. S.G. Road, Ahmedabad, Gujarat, 382210, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
42
|
dos Santos Macêdo DC, Cavalcanti IDL, de Fátima Ramos dos Santos Medeiros SM, de Souza JB, de Britto Lira Nogueira MC, Cavalcanti IMF. Nanotechnology and tuberculosis: An old disease with new treatment strategies. Tuberculosis (Edinb) 2022; 135:102208. [DOI: 10.1016/j.tube.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022]
|
43
|
Zashikhina N, Levit M, Dobrodumov A, Gladnev S, Lavrentieva A, Tennikova T, Korzhikova-Vlakh E. Biocompatible Nanoparticles Based on Amphiphilic Random Polypeptides and Glycopolymers as Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14091677. [PMID: 35566847 PMCID: PMC9104652 DOI: 10.3390/polym14091677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
In this research, the development and investigation of novel nanoobjects based on biodegradable random polypeptides and synthetic non-degradable glycopolymer poly(2-deoxy-2-methacrylamido-d-glucose) were proposed as drug delivery systems. Two different approaches have been applied for preparation of such nanomaterials. The first one includes the synthesis of block-random copolymers consisting of polypeptide and glycopolymer and capable of self-assembly into polymer particles. The synthesis of copolymers was performed using sequential reversible addition-fragmentation chain transfer (RAFT) and ring-opening polymerization (ROP) techniques. Amphiphilic poly(2-deoxy-2-methacrylamido-d-glucose)-b-poly(l-lysine-co-l-phenylalanine) (PMAG-b-P(Lys-co-Phe)) copolymers were then used for preparation of self-assembled nanoparticles. Another approach for the formation of polypeptide-glycopolymer particles was based on the post-modification of preformed polypeptide particles with an oxidized glycopolymer. The conjugation of the polysaccharide on the surface of the particles was achieved by the interaction of the aldehyde groups of the oxidized glycopolymer with the amino groups of the polymer on particle surface, followed by the reduction of the formed Schiff base with sodium borohydride. A comparative study of polymer nanoparticles developed with its cationic analogues based on random P(Lys-co-d-Phe), as well as an anionic one—P(Lys-co-d-Phe) covered with heparin––was carried out. In vitro antitumor activity of novel paclitaxel-loaded PMAG-b-P(Lys-co-Phe)-based particles towards A549 (human lung carcinoma) and MCF-7 (human breast adenocarcinoma) cells was comparable to the commercially available Paclitaxel-LANS.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Mariia Levit
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Anatoliy Dobrodumov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Sergey Gladnev
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia; (S.G.); (T.T.)
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University of Hannover, 30167 Hannover, Germany;
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia; (S.G.); (T.T.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
- Correspondence:
| |
Collapse
|
44
|
Cheng G, Liu Y, Ma R, Cheng G, Guan Y, Chen X, Wu Z, Chen T. Anti-Parkinsonian Therapy: Strategies for Crossing the Blood-Brain Barrier and Nano-Biological Effects of Nanomaterials. NANO-MICRO LETTERS 2022; 14:105. [PMID: 35426525 PMCID: PMC9012800 DOI: 10.1007/s40820-022-00847-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD), a neurodegenerative disease that shows a high incidence in older individuals, is becoming increasingly prevalent. Unfortunately, there is no clinical cure for PD, and novel anti-PD drugs are therefore urgently required. However, the selective permeability of the blood-brain barrier (BBB) poses a huge challenge in the development of such drugs. Fortunately, through strategies based on the physiological characteristics of the BBB and other modifications, including enhancement of BBB permeability, nanotechnology can offer a solution to this problem and facilitate drug delivery across the BBB. Although nanomaterials are often used as carriers for PD treatment, their biological activity is ignored. Several studies in recent years have shown that nanomaterials can improve PD symptoms via their own nano-bio effects. In this review, we first summarize the physiological features of the BBB and then discuss the design of appropriate brain-targeted delivery nanoplatforms for PD treatment. Subsequently, we highlight the emerging strategies for crossing the BBB and the development of novel nanomaterials with anti-PD nano-biological effects. Finally, we discuss the current challenges in nanomaterial-based PD treatment and the future trends in this field. Our review emphasizes the clinical value of nanotechnology in PD treatment based on recent patents and could guide researchers working in this area in the future.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Rui Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Yucheng Guan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, People's Republic of China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
45
|
Khan N, Ruchika, Kumar Dhritlahre R, Saneja A. Recent advances in dual-ligand targeted nanocarriers for cancer therapy. Drug Discov Today 2022; 27:2288-2299. [DOI: 10.1016/j.drudis.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Accepted: 04/11/2022] [Indexed: 12/30/2022]
|
46
|
Zhao Y, Peng Y, Yang Z, Lu J, Li R, Shi Y, Du Y, Zhao Z, Hai L, Wu Y. pH-redox responsive cascade-targeted liposomes to intelligently deliver doxorubicin prodrugs and lonidamine for glioma. Eur J Med Chem 2022; 235:114281. [PMID: 35344903 DOI: 10.1016/j.ejmech.2022.114281] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
Abstract
To synergistically treat glioma with a combination chemotherapy, we design and prepare novel cascade-targeted liposomes (Lip-TPGS) using glucose and triphenylphosphonium (TPP) as targeting moieties, which could intelligently deliver redox-sensitive doxorubicin (DOX) prodrugs (SDOX) and chemotherapeutic sensitizer lonidamine (LND). The pH-responsive ligand Chol-TPG modified by PEGylated glucose can overcome the blood-brain barrier and reach tumor cells. Combined with the modification of mitochondria targeting ligand (Chol-TPP), Lip-TPGS are endowed with pH-responsive charge regulation function and multi-stage targeting abilities. After triggered by the excessive glutathione in tumor cells, Lip-TPGS could sufficiently release the parent drugs DOX, which would significantly reduce side effects without compromising anti-glioma efficacy. Therefore, Lip-TPGS possess these characteristics: good pharmacokinetic behavior, superior brain targeting ability, specific tumor recognition and internalization capability, and strong endo/lysosome escaping and mitochondria targeting potential. Furthermore, Lip-TPGS exhibit significant advantages on anti-glioma by inhibiting proliferation, promoting apoptosis, inducing mitochondria dysfunction, inhibiting migration and invasion, prolonging the survival time, narrowing tumor areas, limiting lung metastasis, and reducing toxicity to normal organs. In summary, Lip-TPGS, with cascade targeting abilities from tissue/cell to organelle levels and highly controlled drug release properties, would become a promising drug delivery system for glioma treatment.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yao Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhongzhen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiaqi Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ru Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yuesen Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yaxin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ze Zhao
- Department of Orthopedics, The First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), Jiaozuo, 454001, China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
47
|
Rabies virus glycoprotein- and transferrin-functionalized liposomes to elevate epigallocatechin gallate and FK506 activity and mediate MAPK against neuronal apoptosis in Parkinson's disease. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
A P, Agrawal M, Dethe MR, Ahmed H, Yadav A, Gupta U, Alexander A. Nose-to-brain drug delivery for the treatment of Alzheimer's Disease: Current advancements and challenges. Expert Opin Drug Deliv 2022; 19:87-102. [PMID: 35040728 DOI: 10.1080/17425247.2022.2029845] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The irreversible destruction of neurons, progressive loss of memory and cognitive behavior, high cost of therapy, and impact on society desire a better, effective, and affordable treatment of AD. The nose-to-brain drug delivery approach holds a great potential to access the brain without any hindrance of BBB and result in higher bioavailability thus better therapeutic efficacy of anti-AD drugs. AREAS COVERED The present review article highlighted the current facts and worldwide statistics of AD and its detailed etiology. Followed by barriers to brain delivery, nose-to-brain delivery, their limitations, and amalgamation with various novel carrier systems. We have emphasized recent advancements in nose-to-brain delivery using mucoadhesive, stimuli-responsive carriers, polymeric nanoparticles, lipid nanoparticles, protein/peptide delivery for treatment of AD. EXPERT OPINION The available therapies are symptomatic, mitigate the symptoms of AD at the initial stages. In this lieu, nose-to-brain delivery has the ability to overcome these limitations and increase drug bioavailability in the brain. Various novel strategies including stimuli-responsive systems, nanoparticles, etc. enhance the nasal drug permeation, protects the drug, and enhance its therapeutic potency. Although, successful preclinical data does not assure the clinical success of the therapy and hence exhaustive clinical investigations are needed to make the therapy available for patients.
Collapse
Affiliation(s)
- Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, India, 509301
| | - Mithun Rajendra Dethe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Hafiz Ahmed
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Awesh Yadav
- National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India, 226002
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India, 305817
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| |
Collapse
|
49
|
Multiple targeted doxorubicin-lonidamine liposomes modified with p-hydroxybenzoic acid and triphenylphosphonium to synergistically treat glioma. Eur J Med Chem 2021; 230:114093. [PMID: 35007860 DOI: 10.1016/j.ejmech.2021.114093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 12/30/2022]
Abstract
A type of pH-sensitive multi-targeted brain tumor site-specific liposomes (Lip-CTPP) co-modified with p-hydroxybenzoic acid (p-HA) and triphenylphosphonium (TPP) were designed and prepared to co-load doxorubicin (DOX) and lonidamine (LND). Lip-CTPP are promising potential carriers to exert the anti-glioma effect of DOX and LND collaboratively given the following features: 1) Lip-CTPP have a good pharmacokinetic behavior; 2) Lip-CTPP can cross the blood-brain barrier (BBB) and recognize tumor cells through the affinity of p-HA and dopamine/sigma receptors; 3) Lip-CTPP are highly positive charged once the acid-sensitive amide bonds are cleaved in endo/lysosomes to expose TPP and protonate amine groups; 4) the positive charged Lip-CTPP escape from endo/lysosomes and accumulate in mitochondria through electrostatic adsorption; 5) DOX and LND are released and synergistically increase anti-tumor efficacy. Our in vitro and in vivo results confirmed that Lip-CTPP could greatly elevate the inhibition rate of tumor cell proliferation, migration and invasion, promote apoptosis and necrosis, and interfere with mitochondrial function. In addition, Lip-CTPP could significantly prolong the survival time of glioma bearing mice, narrow the tumor region and inhibit the infiltration and metastasis capability of glioma cells. Collectively, Lip-CTPP are promising nano formulations to enhance the synergistic effect of DOX and LND in glioma treatment.
Collapse
|
50
|
Hu J, Tan X, Wang D, Li Y, Liang H, Peng J, Li F, Zhou Q, Geng P, Wang S, Yu Y, Liu J. A stepwise-targeting strategy for the treatment of cerebral ischemic stroke. J Nanobiotechnology 2021; 19:371. [PMID: 34789285 PMCID: PMC8600695 DOI: 10.1186/s12951-021-01118-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Background Effective amelioration of neuronal damages in the case of cerebral ischemic stroke (CIS) is essential for the protection of brain tissues and their functional recovery. However, most drugs can not penetrate the blood–brain barrier (BBB), resulting in the poor therapeutic outcomes. Results In this study, the derivatization and dual targeted delivery technologies were used to actively transport antioxidant melatonin (MLT) into the mitochondria of oxidative stress-damaged cells in brain tissues. A mitochondrial targeting molecule triphenylphosphine (TPP) was conjugated to melatonin (TPP-MLT) to increase the distribution of melatonin in intracellular mitochondria with the push of mitochondrial transmembrane potential. Then, TPP-MLT was encapsulated in dual targeted micelles mediated by TGN peptide (TGNYKALHPHNG) with high affinity for BBB and SHp peptide (CLEVSRKNG) for the glutamate receptor of oxidative stress-damaged neural cells.TGN/SHp/TPP-MLT micelles could effectively scavenge the overproduced ROS to protect neuronal cells from oxidative stress injury during CIS occurrence, as reflected by the improved infarct volume and neurological deficit in CIS model animals. Conclusions These promising results showed this stepwise-targeting drug-loaded micelles potentially represent a significant advancement in the precise treatment of CIS. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01118-6.
Collapse
Affiliation(s)
- Jingbo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Xueying Tan
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Dongwei Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yixuan Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Hongze Liang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Fengyan Li
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Quan Zhou
- Department of Neurosurgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Peiwu Geng
- Department of Neurosurgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Shuanghu Wang
- Department of Neurosurgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yue Yu
- Department of Pharmacy, Ningbo Women and Children's Hospital, Ningbo, 315012, China
| | - Jin Liu
- Department of Neurosurgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|