1
|
Wei S, Zhai Z, Kong X, Wu C, Zhu B, Zhao Z, Zhang X. The review of nasal drug delivery system: The strategies to enhance the efficiency of intranasal drug delivery by improving drug absorption. Int J Pharm 2025; 676:125584. [PMID: 40216038 DOI: 10.1016/j.ijpharm.2025.125584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Nasal drug administration constitutes an efficient and non-invasive modality of drug delivery, and its distinctive physiological structure offers potentialities for treating a variety of diseases. To elevate the drug absorption and delivery efficiency, it is of paramount importance to delineate the transport routes and their enhancement mechanisms. Nevertheless, drug absorption pathways vary depending on the disease target, these variations present opportunities for targeted delivery and challenges for achieving precision. Hence, this review outlines the anatomical structure of the nasal cavity, and subsequently elaborates on the drug transport pathways within the nasal cavity and their influencing factors. Based on the distinct sites of drug action, diseases suitable for nasal drug administration are categorized into three types: systemic diseases, local nasal diseases, and central nervous system diseases. Grounded on multiple transport routes and their influencing factors, this review proposes strategies like optimizing formulation viscosity, using penetration enhancers, adding mucosal adhesives and improving delivery device, offering insights into future advancements in nasal drug delivery systems.
Collapse
Affiliation(s)
- Shuhua Wei
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China
| | - Zizhao Zhai
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China
| | - Xi Kong
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China
| | - Bing Zhu
- Respirent Pharmaceuticals Co. Ltd., Chongqing 40070, PR China.
| | - Ziyu Zhao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 511443, PR China.
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
2
|
Liu B, Dai L, Lin J, Cao W, Lv M, Jiang Y, Wang Q, Guo Y, Yao Z, Shen S, Lai C, Shi J, Duan Y, Li J. Supramolecular gel with enhanced immunomodulatory effects presents a minimally invasive treatment strategy for eosinophilic chronic rhinosinusitis. J Control Release 2025; 378:503-516. [PMID: 39709072 DOI: 10.1016/j.jconrel.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is an inflammatory disease characterized by persistent immune dysregulation, which presents considerable limitations in current medical therapy. OBJECTS This study investigates a supramolecular gel (PSPD), which aims to minimize systemic adverse effects through local injection, provide long-lasting anti-inflammatory effects, and modulate the mucosal immune microenvironment. METHODS The properties of PSPD were evaluated using rheological experiments. Biocompatibility assessments were conducted through CCK-8 and serum biochemical analyses. The balance between TH17 and Treg was determined using immunofluorescence (IF) and flow cytometry (FC). Additionally, sinus computed tomography (CT), and endoscopy were employed to evaluate mucosal swelling. RESULTS Rheological assessments revealed that PSPD possesses excellent self-healing and slow-release properties. CCK-8 and serum biochemical assays indicated that PSPD demonstrated superior biocompatibility. In nasal polyps, PSPD significantly inhibited IL17 expression. In an Eosinophilic Chronic Rhinosinusitis (ECRS) rat model, treatment with PSPD led to significant alleviation of nasal mucosal congestion. Furthermore, PSPD modulated the proliferation of TH17 and Treg as well as the expression of cytokines, ultimately reversing the TH17/Treg immune imbalance. CONCLUSION This multifunctional gel effectively sustains the modulation of TH17/Treg homeostasis, improving long-term disease management and representing a promising new therapeutic strategy for CRS, particularly in cases of ECRS.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Li Dai
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Wanxin Cao
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Minchao Lv
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yongquan Jiang
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Quan Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yanan Guo
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhuowei Yao
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Silin Shen
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chenxing Lai
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiali Shi
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| | - Jiping Li
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
3
|
Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik DD, Pramanik A. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharm 2024; 21:4827-4848. [PMID: 39290162 PMCID: PMC11462506 DOI: 10.1021/acs.molpharmaceut.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Hydrogels, composed of hydrophilic polymer networks, have emerged as versatile materials in biomedical applications due to their high water content, biocompatibility, and tunable properties. They mimic natural tissue environments, enhancing cell viability and function. Hydrogels' tunable physical properties allow for tailored antibacterial biomaterial, wound dressings, cancer treatment, and tissue engineering scaffolds. Their ability to respond to physiological stimuli enables the controlled release of therapeutics, while their porous structure supports nutrient diffusion and waste removal, fostering tissue regeneration and repair. In wound healing, hydrogels provide a moist environment, promote cell migration, and deliver bioactive agents and antibiotics, enhancing the healing process. For cancer therapy, they offer localized drug delivery systems that target tumors, minimizing systemic toxicity and improving therapeutic efficacy. Ocular therapy benefits from hydrogels' capacity to form contact lenses and drug delivery systems that maintain prolonged contact with the eye surface, improving treatment outcomes for various eye diseases. In mucosal delivery, hydrogels facilitate the administration of therapeutics across mucosal barriers, ensuring sustained release and the improved bioavailability of drugs. Tissue regeneration sees hydrogels as scaffolds that mimic the extracellular matrix, supporting cell growth and differentiation for repairing damaged tissues. Similarly, in bone regeneration, hydrogels loaded with growth factors and stem cells promote osteogenesis and accelerate bone healing. This article highlights some of the recent advances in the use of hydrogels for various biomedical applications, driven by their ability to be engineered for specific therapeutic needs and their interactive properties with biological tissues.
Collapse
Affiliation(s)
- Harpreet Kaur
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Bishmita Gogoi
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ira Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281 406, India
| | - Mohd Ashif Azad
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | | | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
4
|
Chen H, Xu J, Sun J, Jiang Y, Zheng W, Hu W, Qian H. Recent advances on thermosensitive hydrogels-mediated precision therapy. Asian J Pharm Sci 2024; 19:100911. [PMID: 38948400 PMCID: PMC11214189 DOI: 10.1016/j.ajps.2024.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/20/2024] [Accepted: 02/03/2024] [Indexed: 07/02/2024] Open
Abstract
Precision therapy has become the preferred choice attributed to the optimal drug concentration in target sites, increased therapeutic efficacy, and reduced adverse effects. Over the past few years, sprayable or injectable thermosensitive hydrogels have exhibited high therapeutic potential. These can be applied as cell-growing scaffolds or drug-releasing reservoirs by simply mixing in a free-flowing sol phase at room temperature. Inspired by their unique properties, thermosensitive hydrogels have been widely applied as drug delivery and treatment platforms for precision medicine. In this review, the state-of-the-art developments in thermosensitive hydrogels for precision therapy are investigated, which covers from the thermo-gelling mechanisms and main components to biomedical applications, including wound healing, anti-tumor activity, osteogenesis, and periodontal, sinonasal and ophthalmic diseases. The most promising applications and trends of thermosensitive hydrogels for precision therapy are also discussed in light of their unique features.
Collapse
Affiliation(s)
- Hao Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Jiangmei Xu
- Department of Dermatology and Rheumatology Immunology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiangwei Sun
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| | - Yongxin Jiang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
5
|
Omidian H, Wilson RL. Long-Acting Gel Formulations: Advancing Drug Delivery across Diverse Therapeutic Areas. Pharmaceuticals (Basel) 2024; 17:493. [PMID: 38675454 PMCID: PMC11053897 DOI: 10.3390/ph17040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This multifaceted landscape of long-acting gels in diverse medical fields, aims to enhance therapeutic outcomes through localized treatment and controlled drug release. The objective involves advancements spanning cancer treatment, immunotherapy, diabetes management, neuroendocrine disorders, ophthalmic applications, contraception, HIV/AIDS treatment, chronic diseases, wound care, and antimicrobial treatments. It explores the potential of long-acting gels to offer sustained and extended drug release, targeted therapy, and innovative administration routes while addressing limitations such as scalability challenges and regulatory hurdles. Future directions focus on personalized therapies, biodegradability, combination therapies, interdisciplinary innovation, regulatory considerations, and patient-centric development. This comprehensive review highlights the pivotal role of long-acting gels in transforming therapeutic approaches and improving patient outcomes across various medical conditions.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
6
|
Yu H, Gao R, Liu Y, Fu L, Zhou J, Li L. Stimulus-Responsive Hydrogels as Drug Delivery Systems for Inflammation Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306152. [PMID: 37985923 PMCID: PMC10767459 DOI: 10.1002/advs.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Deregulated inflammations induced by various factors are one of the most common diseases in people's daily life, while severe inflammation can even lead to death. Thus, the efficient treatment of inflammation has always been the hot topic in the research of medicine. In the past decades, as a potential biomaterial, stimuli-responsive hydrogels have been a focus of attention for the inflammation treatment due to their excellent biocompatibility and design flexibility. Recently, thanks to the rapid development of nanotechnology and material science, more and more efforts have been made to develop safer, more personal and more effective hydrogels for the therapy of some frequent but tough inflammations such as sepsis, rheumatoid arthritis, osteoarthritis, periodontitis, and ulcerative colitis. Herein, from recent studies and articles, the conventional and emerging hydrogels in the delivery of anti-inflammatory drugs and the therapy for various inflammations are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Haoyu Yu
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| | - Rongyao Gao
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Yuxin Liu
- Department of Biomolecular SystemsMax‐Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Limin Fu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Jing Zhou
- Department of ChemistryCapital Normal UniversityBeijing100048P. R. China
| | - Luoyuan Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| |
Collapse
|
7
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
8
|
Bakshi S, Pandey P, Mohammed Y, Wang J, Sailor MJ, Popat A, Parekh HS, Kumeria T. Porous silicon embedded in a thermoresponsive hydrogel for intranasal delivery of lipophilic drugs to treat rhinosinusitis. J Control Release 2023; 363:452-463. [PMID: 37769816 PMCID: PMC11484479 DOI: 10.1016/j.jconrel.2023.09.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Intranasal delivery is the most preferred route of drug administration for treatment of a range of nasal conditions including chronic rhinosinusitis (CRS), caused by an infection and inflammation of the nasal mucosa. However, localised delivery of lipophilic drugs for persistent nasal inflammation is a challenge especially with traditional topical nasal sprays. In this study, a composite thermoresponsive hydrogel is developed and tuned to obtain desired rheological and physiochemical properties suitable for intranasal administration of lipophilic drugs. The composite is comprised of drug-loaded porous silicon (pSi) particles embedded in a poloxamer 407 (P407) hydrogel matrix. Mometasone Furoate (MF), a lipophilic corticosteroid (log P of 4.11), is used as the drug, which is loaded onto pSi particles at a loading capacity of 28 wt%. The MF-loaded pSi particles (MF@pSi) are incorporated into the P407-based thermoresponsive hydrogel (HG) matrix to form the composite hydrogel (MF@pSi-HG) with a final drug content ranging between 0.1 wt% to 0.5 wt%. Rheomechanical studies indicate that the MF@pSi component exerts a minimal impact on gelation temperature or strength of the hydrogel host. The in-vitro release of the MF payload from MF@pSi-HG shows a pronounced increase in the amount of drug released over 8 h (4.5 to 21-fold) in comparison to controls consisting of pure MF incorporated in hydrogel (MF@HG), indicating an improvement in kinetic solubility of MF upon loading into pSi. Ex-vivo toxicity studies conducted on human nasal mucosal tissue show no adverse effect from exposure to either pure HG or the MF@pSi-HG formulation, even at the highest drug content of 0.5 wt%. Experiments on human nasal mucosal tissue show the MF@pSi-HG formulation deposits a quantity of MF into the tissues within 8 h that is >19 times greater than the MF@HG control (194 ± 7 μg of MF/g of tissue vs. <10 μg of MF/g of tissue, respectively).
Collapse
Affiliation(s)
- Shrishty Bakshi
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia
| | - Preeti Pandey
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia
| | - Yousuf Mohammed
- Therapeutics Research Group, Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Joanna Wang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, United States of America
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, United States of America
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia.
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, New South Wales 2052, Australia; Australian Centre for Nanomedicine, The University of New South Wales, New South Wales 2052, Australia.
| |
Collapse
|
9
|
Yathavan B, Chhibber T, Steinhauff D, Pulsipher A, Alt JA, Ghandehari H, Jafari P. Matrix-Mediated Delivery of Silver Nanoparticles for Prevention of Staphylococcus aureus and Pseudomonas aeruginosa Biofilm Formation in Chronic Rhinosinusitis. Pharmaceutics 2023; 15:2426. [PMID: 37896186 PMCID: PMC10610389 DOI: 10.3390/pharmaceutics15102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a chronic health condition affecting the sinonasal cavity. CRS-associated mucosal inflammation leads to sinonasal epithelial cell death and epithelial cell barrier disruption, which may result in recurrent bacterial infections and biofilm formation. For patients who fail medical management and elect endoscopic sinus surgery for disease control, bacterial biofilm formation is particularly detrimental, as it reduces the efficacy of surgical intervention. Effective treatments that prevent biofilm formation in post-operative patients in CRS are currently limited. To address this unmet need, we report the controlled release of silver nanoparticles (AgNps) with silk-elastinlike protein-based polymers (SELPs) to prevent bacterial biofilm formation in CRS. This polymeric network is liquid at room temperature and forms a hydrogel at body temperature, and is hence, capable of conforming to the sinonasal cavity upon administration. SELP hydrogels demonstrated sustained AgNp and silver ion release for the studied period of three days, potent in vitro antibacterial activity against Pseudomonas aeruginosa (**** p < 0.0001) and Staphylococcus aureus (**** p < 0.0001), two of the most commonly virulent bacterial strains observed in patients with post-operative CRS, and high cytocompatibility with human nasal epithelial cells. Antibacterial controlled release platform shows promise for treating patients suffering from prolonged sinonasal cavity infections due to biofilms.
Collapse
Affiliation(s)
- Bhuvanesh Yathavan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Tanya Chhibber
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Douglas Steinhauff
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Abigail Pulsipher
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Jeremiah A. Alt
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Paris Jafari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Yathavan B, Ellis A, Jedrzkiewicz J, Subrahmanyam N, Khurana N, Pulsipher A, Alt JA, Ghandehari H. Systemic administration of budesonide in pegylated liposomes for improved efficacy in chronic rhinosinusitis. J Control Release 2023; 360:274-284. [PMID: 37353160 PMCID: PMC11227746 DOI: 10.1016/j.jconrel.2023.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Chronic rhinosinusitis (CRS) is a chronic inflammatory condition affecting the nasal and paranasal sinuses of approximately 11.5% of the United States adult population. Oral corticosteroids are effective in controlling sinonasal inflammation in CRS, but the associated adverse effects limit their clinical use. Topical budesonide has demonstrated clinical efficacy in patients with CRS. Herein, we investigated the systemic delivery of liposomes tethered with poly(ethylene glycol) (PEG) and loaded with budesonide in a murine model of CRS. PEGylated liposomes encapsulated with budesonide phosphate (L-BudP) were administered via tail vein injection, and the feasibility of L-BudP to reduce sinonasal inflammation was compared to that of free budesonide phosphate (F-BudP) and topical budesonide phosphate (T-BudP) treatment over a 14-day study period. Compared to a single injection of F-BudP and repeat T-BudP administration, a single injection of L-BudP demonstrated increased and prolonged efficacy, resulting in the significant improvement of sinonasal tissue histopathological scores (p < 0.05) with decreased immune cell infiltration (p < 0.05). Toxicities associated with L-BudP and T-BudP treatment, assessed via body and organ weight, as well as peripheral blood liver enzyme and differential white blood cell analyses, were transient and comparable. These data suggest that systemic liposomal budesonide treatment results in improved efficacy over topical treatment.
Collapse
Affiliation(s)
- Bhuvanesh Yathavan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexa Ellis
- College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Nithya Subrahmanyam
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Nitish Khurana
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Abigail Pulsipher
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Jeremiah A Alt
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
11
|
Yeruva T, Yang S, Doski S, Duncan GA. Hydrogels for Mucosal Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:1684-1700. [PMID: 37126538 PMCID: PMC11966650 DOI: 10.1021/acsabm.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mucosal tissues are often a desirable site of drug action to treat disease and engage the immune system. However, systemically administered drugs suffer from limited bioavailability in mucosal tissues where technologies to enable direct, local delivery to these sites would prove useful. In this Spotlight on Applications article, we discuss hydrogels as an attractive means for local delivery of therapeutics to address a range of conditions affecting the eye, nose, oral cavity, gastrointestinal, urinary bladder, and vaginal tracts. Considering the barriers to effective mucosal delivery, we provide an overview of the key parameters in the use of hydrogels for these applications. Finally, we highlight recent work demonstrating their use for inflammatory and infectious diseases affecting these tissues.
Collapse
Affiliation(s)
- Taj Yeruva
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Shadin Doski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregg A. Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Gherardini L, Vetri Buratti V, Maturi M, Inzalaco G, Locatelli E, Sambri L, Gargiulo S, Barone V, Bonente D, Bertelli E, Tortorella S, Franci L, Fioravanti A, Comes Franchini M, Chiariello M. Loco-regional treatment with temozolomide-loaded thermogels prevents glioblastoma recurrences in orthotopic human xenograft models. Sci Rep 2023; 13:4630. [PMID: 36944737 PMCID: PMC10030813 DOI: 10.1038/s41598-023-31811-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system and the diagnosis is often dismal. GBM pharmacological treatment is strongly limited by its intracranial location beyond the blood-brain barrier (BBB). While Temozolomide (TMZ) exhibits the best clinical performance, still less than 20% crosses the BBB, therefore requiring administration of very high doses with resulting unnecessary systemic side effects. Here, we aimed at designing new negative temperature-responsive gel formulations able to locally release TMZ beyond the BBB. The biocompatibility of a chitosan-β-glycerophosphate-based thermogel (THG)-containing mesoporous SiO2 nanoparticles (THG@SiO2) or polycaprolactone microparticles (THG@PCL) was ascertained in vitro and in vivo by cell counting and histological examination. Next, we loaded TMZ into such matrices (THG@SiO2-TMZ and THG@PCL-TMZ) and tested their therapeutic potential both in vitro and in vivo, in a glioblastoma resection and recurrence mouse model based on orthotopic growth of human cancer cells. The two newly designed anticancer formulations, consisting in TMZ-silica (SiO2@TMZ) dispersed in the thermogel matrix (THG@SiO2-TMZ) and TMZ, spray-dried on PLC and incorporated into the thermogel (THG@PCL-TMZ), induced cell death in vitro. When applied intracranially to a resected U87-MG-Red-FLuc human GBM model, THG@SiO2-TMZ and THG@PCL-TMZ caused a significant reduction in the growth of tumor recurrences, when compared to untreated controls. THG@SiO2-TMZ and THG@PCL-TMZ are therefore new promising gel-based local therapy candidates for the treatment of GBM.
Collapse
Affiliation(s)
- Lisa Gherardini
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina, 53100, Siena, Italy
| | - Veronica Vetri Buratti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40126, Bologna, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40126, Bologna, Italy
| | - Giovanni Inzalaco
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina, 53100, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina 1, 53100, Siena, Italy
- University of Siena, Siena, Via Banchi di Sotto 55, 53100, Siena, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40126, Bologna, Italy
| | - Letizia Sambri
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40126, Bologna, Italy
| | - Sara Gargiulo
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina, 53100, Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Denise Bonente
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Silvia Tortorella
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40126, Bologna, Italy
| | - Lorenzo Franci
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina, 53100, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina 1, 53100, Siena, Italy
| | | | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40126, Bologna, Italy.
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina, 53100, Siena, Italy.
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina 1, 53100, Siena, Italy.
| |
Collapse
|
13
|
The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm 2023; 631:122484. [PMID: 36509221 DOI: 10.1016/j.ijpharm.2022.122484] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
To date, hydrogels have opened new prospects for potential applications for drug delivery. The thermo-sensitive hydrogels have the great potential to provide more effective and controllable release of therapeutic/bioactive agents in response to changes in temperature. PLGA is a safe FDA-approved copolymer with good biocompatibility and biodegradability. Recently, PLGA-based formulation have attracted a lot of interest for thermo-sensitive hydrogels. Thermo-sensitive PLGA-based hydrogels provide the delivery system with good spatial and temporal control, and have been widely applied in drug delivery. This review is focused on the recent progression of the thermo-sensitive and biodegradable PLGA-based hydrogels that have been reported for smart drug delivery to the different organs. Eventually, future perspectives and challenges of thermo-sensitive PLGA-based hydrogels are discussed briefly.
Collapse
|
14
|
Gutierrez AM, Frazar EM, X Klaus MV, Paul P, Hilt JZ. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare through Human and Environmental Treatment. Adv Healthc Mater 2022; 11:e2101820. [PMID: 34811960 PMCID: PMC8986592 DOI: 10.1002/adhm.202101820] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Humans are constantly exposed to exogenous chemicals throughout their life, which can lead to a multitude of negative health impacts. Advanced materials can play a key role in preventing or mitigating these impacts through a wide variety of applications. The tunable properties of hydrogels and hydrogel nanocomposites (e.g., swelling behavior, biocompatibility, stimuli responsiveness, functionality, etc.) have deemed them ideal platforms for removal of environmental contaminants, detoxification, and reduction of body burden from exogenous chemical exposures for prevention of disease initiation, and advanced treatment of chronic diseases, including cancer, diabetes, and cardiovascular disease. In this review, three main junctures where the use of hydrogel and hydrogel nanocomposite materials can intervene to positively impact human health are highlighted: 1) preventing exposures to environmental contaminants, 2) prophylactic treatments to prevent chronic disease initiation, and 3) treating chronic diseases after they have developed.
Collapse
Affiliation(s)
- Angela M Gutierrez
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Erin Molly Frazar
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Maria Victoria X Klaus
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Pranto Paul
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
15
|
Schilling AL, Cannon E, Fullerton-Shirey SK, Lee SE, Wang EW, Little SR. A ready-to-use, thermoresponsive, and extended-release delivery system for the paranasal sinuses. Drug Deliv Transl Res 2022; 12:708-719. [PMID: 34558028 DOI: 10.1007/s13346-021-01069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
A drug delivery system for the paranasal sinuses consisting of a freeze-dried thermoresponsive hydrogel with degradable microspheres, called FD-TEMPS (Freeze Dried-Thermogel, Extended-release Microsphere-based delivery to the Paranasal Sinuses), was developed. Glass transition temperatures (Tg') of the maximally freeze concentrated solutions consisting of poly(N-isopropylacrylamide) (pNIPAAm) and polyethylene glycol (PEG) were determined by differential scanning calorimetry, which informed optimization of the thermogel formulation. By replacing low molecular weight (MW) PEG (200 Da) with a higher MW PEG (2000 Da), the resulting freeze-dried gel exhibited a brittle texture, porous structure, and low residual moisture (< 3% measured by thermal gravimetric analysis). When combined with poly(lactic-co-glycolic acid) microspheres (PLGA MSs) and freeze dried, the complete system (FD-TEMPS) exhibited enhanced shelf-stability. Specifically, the smooth, spherical morphology of the MSs and initial release kinetics were maintained following 6 weeks of storage under ambient conditions. Furthermore, FD-TEMPS remained in place after application to a simulated mucosal surface, suggesting that it could be more uniformly distributed along the sinonasal mucosa in vivo. Freeze drying enables this delivery system to be stored as a ready-to-use product for better ease of clinical translation without compromising the thermoresponsive or sustained release characteristics that would enable local delivery of therapeutics to the sinonasal mucosa.
Collapse
Affiliation(s)
- Andrea L Schilling
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Erin Cannon
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Susan K Fullerton-Shirey
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Electrical and Computer Engineering, University of Pittsburgh, 1238 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Stella E Lee
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA, 15219, USA
| | - Eric W Wang
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA, 15219, USA
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA.
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA.
- Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA.
- Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
- Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
16
|
Schilling AL, Cannon E, Lee SE, Wang EW, Little SR. Advances in controlled drug delivery to the sinonasal mucosa. Biomaterials 2022; 282:121430. [DOI: 10.1016/j.biomaterials.2022.121430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/09/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
|
17
|
Bentley ER, Little SR. Local delivery strategies to restore immune homeostasis in the context of inflammation. Adv Drug Deliv Rev 2021; 178:113971. [PMID: 34530013 PMCID: PMC8556365 DOI: 10.1016/j.addr.2021.113971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
Immune homeostasis is maintained by a precise balance between effector immune cells and regulatory immune cells. Chronic deviations from immune homeostasis, driven by a greater ratio of effector to regulatory cues, can promote the development and propagation of inflammatory diseases/conditions (i.e., autoimmune diseases, transplant rejection, etc.). Current methods to treat chronic inflammation rely upon systemic administration of non-specific small molecules, resulting in broad immunosuppression with unwanted side effects. Consequently, recent studies have developed more localized and specific immunomodulatory approaches to treat inflammation through the use of local biomaterial-based delivery systems. In particular, this review focuses on (1) local biomaterial-based delivery systems, (2) common materials used for polymeric-delivery systems and (3) emerging immunomodulatory trends used to treat inflammation with increased specificity.
Collapse
Affiliation(s)
- Elizabeth R Bentley
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15260, United States.
| | - Steven R Little
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15260, United States; Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, United States; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, United States; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, United States; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, United States.
| |
Collapse
|
18
|
Schilling AL, Carcella AR, Moore J, Zahid M, Lo C, Wang EW, Lee SE, Little SR. Compatibility of a Thermoresponsive and Controlled Release System for Promoting Sinonasal Cilia Regeneration. Macromol Biosci 2021; 21:e2100277. [PMID: 34390164 DOI: 10.1002/mabi.202100277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Indexed: 11/11/2022]
Abstract
The current clinical goal for managing chronic rhinosinusitis (CRS), a heterogenous disease of the paranasal sinuses, is to control inflammation, yet adjunct therapies that promote mucosal regeneration can improve the long-term health of the upper airways. The small natural openings to the sinuses, however, limit the efficacy of traditional drug delivery methods (i.e., nasal sprays and irrigation). Accordingly, a conformable thermoresponsive and controlled release system ("TEMPS", Thermogel, Extended-release Microsphere-based delivery to the Paranasal Sinuses) is developed. The poly(lactic-co-glycolic acid) microsphere component enables the encapsulation of numerous therapeutics, such as retinoic acid (RA), an analog of vitamin A (VA). Studies in CRS patients and preclinical models have shown that aqueous RA or VA gels promoted the differentiation of ciliated cells and improved mucosal healing following repeat applications. In the present study, TEMPS is designed for the controlled release of RA such that a single dose of RA-TEMPS delivers bioactive drug for at least 30 days. Furthermore, as TEMPS will be in direct contact with sinonasal tissue, its compatibility with ciliated human nasal epithelium is explored. After ex vivo incubation in thermogel for 24 h, cilia motility is maintained, providing evidence that TEMPS can be compatible for application along the sinonasal epithelium.
Collapse
Affiliation(s)
- Andrea L Schilling
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Adam R Carcella
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - John Moore
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh Medical, Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA, 15219, USA
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 8112, Rangos Research Center, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 8112, Rangos Research Center, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Eric W Wang
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh Medical, Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA, 15219, USA
| | - Stella E Lee
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh Medical, Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA, 15219, USA
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA.,Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA.,Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA, 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA.,Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.,Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15213, USA
| |
Collapse
|