1
|
Li S, Wang Y, Li C, Zhou B, Zeng X, Zhu H. Supramolecular nanomedicine in the intelligent cancer therapy: recent advances and future. Front Pharmacol 2024; 15:1490139. [PMID: 39464634 PMCID: PMC11502448 DOI: 10.3389/fphar.2024.1490139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
In recent years, the incidence of cancer has been increasing year by year, and the burden of the disease and the economic burden caused by it has been worsening. Although chemotherapy, immunotherapy, targeted therapy and other therapeutic means continue to progress, they still inevitably have problems such as high toxicity and side effects, susceptibility to drug resistance, and high price. Photothermal therapy and photodynamic therapy have demonstrated considerable advantages in cancer imaging and treatment due to their minimally invasive and selective nature. However, their development has been constrained by challenges related to drug delivery. In recent times, drug delivery systems constructed based on supramolecular chemistry have been the subject of considerable interest, particularly in view of their compatibility with the high permeability and long retention effect of tumors. Furthermore, the advantage of dissociating the active ingredient under pH, light and other stimuli makes them unique in cancer therapy. This paper reviews the current status of supramolecular nanomedicines in cancer therapy, elucidating the challenges faced and providing a theoretical basis for the efficient and precise treatment of malignant tumors.
Collapse
Affiliation(s)
- Shuo Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yujiao Wang
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Binghao Zhou
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoxi Zeng
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Lai RY, Wong CK, Stenzel MH. Streamlined Formation and Manipulation of Charged Polymersomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310202. [PMID: 38822711 DOI: 10.1002/smll.202310202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Charged polymersomes are attractive for advanced material applications due to their versatile encapsulation capabilities and charge-induced functionality. Although desirable, the pH-sensitivity of charged block copolymers adds complexity to its self-assembly process, making it challenging to produce charged polymersomes in a reliable manner. In this work, a flow approach to control and strike a delicate balance between solvent composition and pH for self-assembly is used. This allows for the identification of a phase window to reliably produce of charged polymersomes. The utility of this approach to streamline downstream processes, such as morphological transformation or in-line purification is further demonstrated. As proof-of-concept, it is shown that the processed polymersomes can be used for surface modifications facilitated by charge complexation.
Collapse
Affiliation(s)
- Rebecca Y Lai
- School of Chemistry, University of New South Wales (UNSW), Sydney, 2052, Australia
| | - Chin Ken Wong
- School of Chemistry, University of New South Wales (UNSW), Sydney, 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales (UNSW), Sydney, 2052, Australia
| |
Collapse
|
3
|
Rosso AP, de Oliveira FA, Guégan P, Jager E, Giacomelli FC. Evaluation of polymersome permeability as a fundamental aspect towards the development of artificial cells and nanofactories. J Colloid Interface Sci 2024; 671:88-99. [PMID: 38795537 DOI: 10.1016/j.jcis.2024.05.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Polymersomes are synthetic vesicles with potential use in healthcare, chemical transformations in confined environment (nanofactories), and in the construction of artificial cells and organelles. In this framework, one of the most important features of such supramolecular structures is the permeability behavior allowing for selective control of mass exchange between the inner and outer compartments. The use of biological and synthetic nanopores in this regard is the most common strategy to impart permeability nevertheless, this typically requires fairly complex strategies to enable porosity. Yet, investigations concerning the permeability of polymer vesicles to different analytes still requires further exploration and, taking these considerations into account, we have detailed investigated the permeability behavior of a variety of polymersomes with regard to different analytes (water, protons, and rhodamine B) which were selected as models for solvents, ions, and small molecules. Polymersomes based on hydrophilic blocks of poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) or PEO (poly(ethylene oxide)) linked to the non-responsive blocks poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA) or poly(methyl methacrylate) (PMMA), or to the stimuli pH-responsive block poly[2-(diisopropylamino)ethyl methacrylate] (PDPA) have been investigated. Interestingly, the produced PEO-based vesicles are notably larger than the ones produced using PHPMA-containing block copolymers. The experimental results reveal that all the vesicles are inherently permeable to some extent with permeability behavior following exponential profiles. Nevertheless, polymersomes based on PMMA as the hydrophobic component were demonstrated to be the least permeable to the small molecule rhodamine B as well as to water. The synthetic vesicles based on the pH-responsive PDPA block exhibited restrictive and notably slow proton permeability as attributed to partial chain protonation upon acidification of the medium. The dye permeability was evidenced to be much slower than ion or solvent diffusion, and in the case of pH-responsive assemblies, it was demonstrated to also depend on the ionic strength of the environment. These findings are understood to be highly relevant towards polymer selection for the production of synthetic vesicles with selective and time-dependent permeability, and it may thus contribute in advancing biomimicry and nanomedicine.
Collapse
Affiliation(s)
- Anabella P Rosso
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | | | - Philippe Guégan
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire (UMR-CNRS 8232), Sorbonne Université, Paris, France
| | - Eliezer Jager
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
4
|
Wang G, Zhang M, Lai W, Gao Y, Liao S, Ning Q, Tang S. Tumor Microenvironment Responsive RNA Drug Delivery Systems: Intelligent Platforms for Sophisticated Release. Mol Pharm 2024; 21:4217-4237. [PMID: 39056442 DOI: 10.1021/acs.molpharmaceut.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Cancer is a significant health concern, increasingly showing insensitivity to traditional treatments, highlighting the urgent need for safer and more practical treatment options. Ribonucleic acid (RNA) gene therapy drugs have demonstrated promising potential in preclinical and clinical trials for antitumor therapy by regulating tumor-related gene expression. However, RNA's poor membrane permeability and stability restrict its effectiveness in entering and being utilized in cells. An appropriate delivery system is crucial for achieving targeted tumor effects. The tumor microenvironment (TME), characterized by acidity, hypoxia, enzyme overexpression, elevated glutathione (GSH) concentration, and excessive reactive oxygen species (ROS), is essential for tumor survival. Furthermore, these distinctive features can also be harnessed to develop intelligent drug delivery systems. Various nanocarriers that respond to the TME have been designed for RNA drug delivery, showing the advantages of tumor targeting and low toxicity. This Review discusses the abnormal changes of components in TME, therapeutic RNAs' roles, underlying mechanisms, and the latest developments in utilizing vectors that respond to microenvironments for treating tumors. We hope it provides insight into creating and optimizing RNA delivery vectors to improve their effectiveness.
Collapse
Affiliation(s)
- Guihua Wang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Mengxia Zhang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- Department of Histology and Embryology, Hunan University of Chinese Medicine, Changsha 410128, China
| | - Weiwei Lai
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yuan Gao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shuxian Liao
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shengsong Tang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Zhou J, Shen W, Feng W, Zhang X, Wu T, Zhou J, Su Z, Yin T. Temperature Self-Limited Intelligent Thermo-chemotherapeutic Lipid Nanosystem for P-gp Reversal Time Window Matched Pulse Treatment of MDR Tumor. NANO LETTERS 2024; 24:10631-10641. [PMID: 39150779 DOI: 10.1021/acs.nanolett.4c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Mild photothermal therapy (PTT) shows the potential for chemosensitization by tumor-localized P-glycoprotein (P-gp) modulation. However, conventional mild PTT struggles with real-time uniform temperature control, obscuring the temperature-performance relationship and resulting in thermal damage. Besides, the time-performance relationship and the underlying mechanism of mild PTT-mediated P-gp reversal remains elusive. Herein, we developed a temperature self-limiting lipid nanosystem (RFE@PD) that integrated a reversible organic heat generator (metal-phenolic complexes) and metal chelator (deferiprone, DFP) encapsulated phase change material. Upon NIR irradiation, RFE@PD released DFP for blocking ligand-metal charge transfer to self-limit temperature below 45 °C, and rapidly reduced P-gp within 3 h via Ubiquitin-proteasome degradation. Consequently, the DOX·HCl-loaded thermo-chemotherapeutic lipid nanosystem (RFE@PD-DOX) led to dramatically improved drug accumulation and 5-fold chemosensitization in MCF-7/ADR tumor models by synchronizing P-gp reversal and drug pulse liberation, achieving a tumor inhibition ratio of 82.42%. This lipid nanosystem integrated with "intrinsic temperature-control" and "temperature-responsive pulse release" casts new light on MDR tumor therapy.
Collapse
Affiliation(s)
- Jiyuan Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Weiyang Shen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Wenna Feng
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xin Zhang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tongyu Wu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Zhigui Su
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
6
|
Iqbal H, Razzaq A, Liu F, Zhang F, Tao J, Li T, Jiang Y, Zhao Z, Qin M, Lin X, Ke H, Chen H, Deng Y. A bioinspired doxorubicin-carried albumin Nanocage against aggressive Cancer via systemic targeting of tumor and lymph node metastasis. J Control Release 2024; 372:829-845. [PMID: 38964471 DOI: 10.1016/j.jconrel.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cancer metastasis and recurrence are obstacles to successful treatment of aggressive cancer. To address this challenge, chemotherapy is indispensable as an essential part of comprehensive cancer treatment, particularly for subsequent therapy after surgical resection. However, small-molecule drugs for chemotherapy always cause inadequate efficacy and severe side effects against cancer metastasis and recurrence caused by lymph node metastases. Here, we developed doxorubicin-carried albumin nanocages (Dox-AlbCages) with appropriate particle sizes and pH/enzyme-responsive drug release for tumor and lymph node dual-targeted therapy by exploiting the inborn transport properties of serum albumin. Inspired by the protein-templated biomineralization and remote loading of doxorubicin into liposomes, we demonstrated the controlled synthesis of Dox-AlbCages via the aggregation or crystallization of doxorubicin and ammonium sulfate within albumin nanocages using a biomineralization strategy. Dox-AlbCages allowed efficient encapsulation of Dox in the core protected by the albumin corona shell, exhibiting favorable properties for enhanced tumor and lymph node accumulation and preferable cellular uptake for tumor-specific chemotherapy. Intriguingly, Dox-AlbCages effectively inhibited tumor growth and metastasis in orthotopic 4T1 breast tumors and prevented postsurgical tumor recurrence and lung metastasis. At the same time, Dox-AlbCages had fewer side effects than free Dox. This nanoplatform provides a facile strategy for designing tumor- and lymph node-targeted nanomedicines for suppressing cancer metastasis and recurrence.
Collapse
Affiliation(s)
- Haroon Iqbal
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Anam Razzaq
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Fan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Fangrui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jing Tao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yingqian Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhenduo Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengting Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xuehua Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China.
| |
Collapse
|
7
|
Tetterton-Kellner J, Jensen BC, Nguyen J. Navigating cancer therapy induced cardiotoxicity: From pathophysiology to treatment innovations. Adv Drug Deliv Rev 2024; 211:115361. [PMID: 38901637 PMCID: PMC11534294 DOI: 10.1016/j.addr.2024.115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Every year, more than a million people in the United States undergo chemotherapy or radiation therapy for cancer, as estimated by the CDC. While chemotherapy has been an instrumental tool for treating cancer, it also causes severe adverse effects. The more commonly acknowledged adverse effects include hair loss, fatigue, and nausea, but a more severe and longer lasting side effect is cardiotoxicity. Cardiotoxicity, or heart damage, is a common complication of cancer treatments. It can range from mild to severe, and it can affect some patients temporarily or others permanently, even after they are cured of cancer. Dexrazoxane is the only FDA-approved drug for treating anthracycline induced cardiotoxicity, but it also has drawbacks and adverse effects. There is no other type of chemotherapy induced cardiotoxicity that has an approved treatment option. In this review, we discuss the pathophysiology of chemotherapeutic-induced cardiotoxicity, methods and guidelines of diagnosis, methods of treatment and mitigation, and current drug delivery approaches in therapeutic development.
Collapse
Affiliation(s)
- Jessica Tetterton-Kellner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Cardiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Jäger E, Černoch P, Vragovic M, Calumby Albuquerque LJ, Sincari V, Heizer T, Jäger A, Kučka J, Janoušková OŠ, Pavlova E, Šefc L, Giacomelli FC. Membrane Permeability and Responsiveness Drive Performance: Linking Structural Features with the Antitumor Effectiveness of Doxorubicin-Loaded Stimuli-Triggered Polymersomes. Biomacromolecules 2024; 25:4192-4202. [PMID: 38917475 PMCID: PMC11238342 DOI: 10.1021/acs.biomac.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The permeability and responsiveness of polymer membranes are absolutely relevant in the design of polymersomes for cargo delivery. Accordingly, we herein correlate the structural features, permeability, and responsiveness of doxorubicin-loaded (DOX-loaded) nonresponsive and stimuli-responsive polymersomes with their in vitro and in vivo antitumor performance. Polymer vesicles were produced using amphiphilic block copolymers containing a hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) segment linked to poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA, nonresponsive block), poly[4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)benzyl methacrylate] [PbAPE, reactive oxygen species (ROS)-responsive block], or poly[2-(diisopropylamino)ethyl methacrylate] (PDPA, pH-responsive block). The PDPA-based polymersomes demonstrated outstanding biological performance with antitumor activity notably enhanced compared to their counterparts. We attribute this behavior to a fast-triggered DOX release in acidic tumor environments as induced by pH-responsive polymersome disassembly at pH < 6.8. Possibly, an insufficient ROS concentration in the selected tumor model attenuates the rate of ROS-responsive vesicle degradation, whereas the nonresponsive nature of the PPPhA block remarkably impacts the performance of such potential nanomedicines.
Collapse
Affiliation(s)
- Eliézer Jäger
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Peter Černoch
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Martina Vragovic
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Lindomar Jose Calumby Albuquerque
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo Andre 09280-560, Brazil
| | - Vladimir Sincari
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Tomáš Heizer
- Center
for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague 120 00, Czech Republic
| | - Alessandro Jäger
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Jan Kučka
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | | | - Ewa Pavlova
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Prague 162 00, Czech Republic
| | - Luděk Šefc
- Center
for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague 120 00, Czech Republic
| | | |
Collapse
|
9
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
10
|
Maghsoudian S, Motasadizadeh H, Farhadnejad H, Fatahi Y, Fathian Nasab MH, Mahdieh A, Nouri Z, Abdollahi A, Amini M, Atyabi F, Dinarvand R. Targeted pH- and redox-responsive AuS/micelles with low CMC for highly efficient sonodynamic therapy of metastatic breast cancer. BIOMATERIALS ADVANCES 2024; 158:213771. [PMID: 38271801 DOI: 10.1016/j.bioadv.2024.213771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
The efficacy of injectable micellar carriers is hindered due to the disassembly of micelles into free surfactants in the body, resulting in their dilution below the critical micelle concentration (CMC). Copolymer micelles were developed to address this issue, containing a superhydrophilic zwitterionic block and a superhydrophobic block with a disulfide bond, which exhibited a CMC lower than conventional micellar carriers. Cleavable copolymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) zwitterion and polycaprolactone CHLZW as the shell, with gold nanoparticles as their core, were studied to deliver doxorubicin to tumor cells while reducing the side effect of the free cytotoxic agent. The research focused on the impact of gold nanoparticles present in targeted TMT-micelles core on stability and in vivo bioavailability and sonotoxicity of the nanoparticles, as well as their synergistic effect on targeted chemotherapy. The nanomicelles prepared in this study demonstrated excellent biocompatibility and responsiveness to stimuli. PCL-SS-MPC nanomicelles displayed drug release in response to GSH and pH, resulting in high DOX release at GSH 10 mM and pH 5. Our findings, supported by MTT, flow cytometry, and confocal laser scanning microscopy, demonstrated that AuS-PM-TMTM-DOX micelles effectively induced apoptosis and enhanced cellular uptake in MCF7 and MDA-MB231 cell lines. The cytotoxic effects of AuS-PM-DOX/US on cancer cells were approximately 38 % higher compared to AuS-PM-DOX samples at a concentration of IC50 0.68 nM. This increase in cellular toxicity was primarily attributed to the promotion of apoptosis. The introduction of disulfide linkages in AuSNPs resulted in increased ROS production when exposed to ultrasound stimulation, due to a reduction in GSH levels. Compared to other commercially available nanosensitizers such as titanium dioxide, exposure of AuS-PM to ultrasound radiation (1.0 W/cm, 2 min) significantly enhanced cavitation effects and resulted in 3 to 5 times higher ROS production. Furthermore, laboratory experiments using human breast cancer cells (MDA-MB-231, MCF7) demonstrated that the toxicity of AuS-PM in response to ultrasound waves is dose-dependent. The findings of this study suggest that this formulated nanocarrier holds great potential as a viable treatment option for breast cancer. It can induce apoptosis in cancer cells, reduce tumor size, and display notable therapeutic efficacy.
Collapse
Affiliation(s)
- Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Athar Mahdieh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alyeh Abdollahi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
11
|
Sharipov M, Kakhkhorov SA, Tawfik SM, Azizov S, Liu HG, Shin JH, Lee YI. Highly sensitive plasmonic paper substrate fabricated via amphiphilic polymer self-assembly in microdroplet for detection of emerging pharmaceutical pollutants. NANO CONVERGENCE 2024; 11:13. [PMID: 38551725 PMCID: PMC10980671 DOI: 10.1186/s40580-024-00420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/13/2024] [Indexed: 04/01/2024]
Abstract
We report an innovative and facile approach to fabricating an ultrasensitive plasmonic paper substrate for surface-enhanced Raman spectroscopy (SERS). The approach exploits the self-assembling capability of poly(styrene-b-2-vinyl pyridine) block copolymers to form a thin film at the air-liquid interface within the single microdroplet scale for the first time and the subsequent in situ growth of silver nanoparticles (AgNPs). The concentration of the block copolymer was found to play an essential role in stabilizing the droplets during the mass transfer phase and formation of silver nanoparticles, thus influencing the SERS signals. SEM analysis of the morphology of the plasmonic paper substrates revealed the formation of spherical AgNPs evenly distributed across the surface of the formed copolymer film with a size distribution of 47.5 nm. The resultant enhancement factor was calculated to be 1.2 × 107, and the detection limit of rhodamine 6G was as low as 48.9 pM. The nanohybridized plasmonic paper was successfully applied to detect two emerging pollutants-sildenafil and flibanserin-with LODs as low as 1.48 nM and 3.45 nM, respectively. Thus, this study offers new prospects for designing an affordable and readily available, yet highly sensitive, paper-based SERS substrate with the potential for development as a lab-on-a-chip device.
Collapse
Affiliation(s)
- Mirkomil Sharipov
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon, 51140, Republic of Korea
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sarvar A Kakhkhorov
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon, 51140, Republic of Korea
| | - Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
| | - Shavkatjon Azizov
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon, 51140, Republic of Korea
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent, 100084, Republic of Uzbekistan
| | - Hong-Guo Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan, 250100, PR China
| | - Joong Ho Shin
- Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yong-Ill Lee
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon, 51140, Republic of Korea.
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent, 100084, Republic of Uzbekistan.
| |
Collapse
|
12
|
Jäger E, Ilina O, Dölen Y, Valente M, van Dinther EA, Jäger A, Figdor CG, Verdoes M. pH and ROS Responsiveness of Polymersome Nanovaccines for Antigen and Adjuvant Codelivery: An In Vitro and In Vivo Comparison. Biomacromolecules 2024; 25:1749-1758. [PMID: 38236997 PMCID: PMC10934262 DOI: 10.1021/acs.biomac.3c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/12/2024]
Abstract
The antitumor immunity can be enhanced through the synchronized codelivery of antigens and immunostimulatory adjuvants to antigen-presenting cells, particularly dendritic cells (DCs), using nanovaccines (NVs). To study the influence of intracellular vaccine cargo release kinetics on the T cell activating capacities of DCs, we compared stimuli-responsive to nonresponsive polymersome NVs. To do so, we employed "AND gate" multiresponsive (MR) amphiphilic block copolymers that decompose only in response to the combination of chemical cues present in the environment of the intracellular compartments in antigen cross-presenting DCs: low pH and high reactive oxygen species (ROS) levels. After being unmasked by ROS, pH-responsive side chains are exposed and can undergo a charge shift within a relevant pH window of the intracellular compartments in antigen cross-presenting DCs. NVs containing the model antigen Ovalbumin (OVA) and the iNKT cell activating adjuvant α-Galactosylceramide (α-Galcer) were fabricated using microfluidics self-assembly. The MR NVs outperformed the nonresponsive NV in vitro, inducing enhanced classical- and cross-presentation of the OVA by DCs, effectively activating CD8+, CD4+ T cells, and iNKT cells. Interestingly, in vivo, the nonresponsive NVs outperformed the responsive vaccines. These differences in polymersome vaccine performance are likely linked to the kinetics of cargo release, highlighting the crucial chemical requirements for successful cancer nanovaccines.
Collapse
Affiliation(s)
- Eliézer Jäger
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Olga Ilina
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Yusuf Dölen
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Michael Valente
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Eric A.W. van Dinther
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Alessandro Jäger
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Carl G. Figdor
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Martijn Verdoes
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
13
|
Chen M, Yi Y, Chen B, Zhang H, Dong M, Yuan L, Zhou H, Jiang H, Ma Z. Metformin inhibits OCTN1- and OCTN2-mediated hepatic accumulation of doxorubicin and alleviates its hepatotoxicity in mice. Toxicology 2024; 503:153757. [PMID: 38364893 DOI: 10.1016/j.tox.2024.153757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Doxorubicin (DOX) is a widely used antitumor agent; however, its clinical application is limited by dose-related organ damage. Because organic cation/carnitine transporters (OCTN1 and OCTN2), which are critical for DOX uptake, are highly expressed in hepatocytes, we aimed to elucidate the role of these transporters in hepatic DOX uptake. The results indicated that inhibitors and RNA interference both significantly reduced DOX accumulation in HepG2 and HepaRG cells, suggesting that OCTN1/2 contribute substantially to DOX uptake by hepatocytes. To determine whether metformin (MET, an inhibitor of OCTN1 and OCTN2) ameliorates DOX-induced hepatotoxicity, we conducted in vitro and in vivo studies. MET (1-100 μM) inhibited DOX (500 nM) accumulation and cytotoxicity in vitro in a concentration-dependent manner. Furthermore, intravenous MET administration at 250 or 500 mg/kg or by gavage at 50, 100, or 200 mg/kg reduced DOX (8 mg/kg) accumulation in a dose-dependent manner in the mouse liver and attenuated the release of alanine aminotransferase, aspartate aminotransferase, and carboxylesterase 1. Additionally, MET reduced the distribution of DOX in the heart, liver, and kidney and enhanced the urinary elimination of DOX; however, it did not increase the nephric toxicity of DOX. In conclusion, our study demonstrated that MET alleviates DOX hepatotoxicity by inhibiting OCTN1- and OCTN2-mediated DOX uptake in vitro (mouse hepatocytes and HepaRG or HepG2 cells) and in mice.
Collapse
Affiliation(s)
- Mingyang Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yaodong Yi
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Hengbin Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minlei Dong
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Luexiang Yuan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Jinhua Institute of Zhejiang University, Jinhua, China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Jinhua Institute of Zhejiang University, Jinhua, China.
| | - Zhiyuan Ma
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
14
|
Elter JK, Liščáková V, Moravec O, Vragović M, Filipová M, Štěpánek P, Šácha P, Hrubý M. Solid-Phase Synthesis as a Tool to Create Exactly Defined, Branched Polymer Vectors for Cell Membrane Targeting. Macromolecules 2024; 57:1050-1071. [PMID: 38370914 PMCID: PMC10867888 DOI: 10.1021/acs.macromol.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024]
Abstract
Modern drug formulations often require, besides the active drug molecule, auxiliaries to enhance their pharmacological properties. Tailor-made, biocompatible polymers covalently connected to the drug molecule can fulfill this function by increasing its solubility, reducing its toxicity, and guiding it to a specific target. If targeting membrane-bound proteins, localization of the drug close to the cell membrane and its target is beneficial to increase drug efficiency and residence time. In this study, we present the synthesis of highly defined, branched polymeric structures with membrane-binding properties. One to three hydrophilic poly(ethylene oxide) or poly(2-ethyloxazoline) side chains were connected via a peptoid backbone using a two-step iterative protocol for solid-phase peptoid synthesis. Additional groups, e.g., a hydrophobic anchor for membrane attachment, were introduced. Due to the nature of solid-phase synthesis, the number and order of the side chains and additional units can be precisely defined. The method proved to be versatile for the generation of multifunctional, branched polymeric structures of molecular weights up to approximately 7000 g mol-1. The behavior of all compounds towards biological membranes and cells was investigated using liposomes as cell membrane models, HEK293 and U251-MG cell lines, and red blood cells, thereby demonstrating their potential value as drug auxiliaries with cell membrane affinity.
Collapse
Affiliation(s)
- Johanna K. Elter
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Veronika Liščáková
- Institute
of Organic Chemistry and Biochemistry, CAS Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
- First
Faculty of Medicine, Charles University
Kateřinská, 1660/32, 121 08, Praha 2, Czech Republic
| | - Oliver Moravec
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Martina Vragović
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Marcela Filipová
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Petr Štěpánek
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Pavel Šácha
- Institute
of Organic Chemistry and Biochemistry, CAS Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
| | - Martin Hrubý
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| |
Collapse
|
15
|
Tabandeh S, Ateeq T, Leon L. Drug Encapsulation via Peptide-Based Polyelectrolyte Complexes. Chembiochem 2024; 25:e202300440. [PMID: 37875787 DOI: 10.1002/cbic.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Peptide-based polyelectrolyte complexes are biocompatible materials that can encapsulate molecules with different polarities due to their ability to be precisely designed. Here we use UV-Vis spectroscopy, fluorescence microscopy, and infrared spectroscopy to investigate the encapsulation of model drugs, doxorubicin (DOX) and methylene blue (MB) using a series of rationally designed polypeptides. For both drugs, we find an overall higher encapsulation efficiency with sequences that have higher charge density, highlighting the importance of ionic interactions between the small molecules and the peptides. However, comparing molecules with the same charge density, illustrated that the most hydrophobic sequence pairs had the highest encapsulation of both DOX and MB molecules. The phase behavior and stability of DOX-containing complexes did not change compared to the complexes without drugs. However, MB encapsulation caused changes in the stabilities of the complexes. The sequence pair with the highest charge density and hydrophobicity had the most dramatic increase in stability, which coincided with a phase change from liquid to solid. This study illustrates how multiple types of molecular interactions are required for efficient encapsulation of poorly soluble drugs and provides insights into the molecular design of delivery carriers.
Collapse
Affiliation(s)
- Sara Tabandeh
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Tahoora Ateeq
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Lorraine Leon
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
- NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy #400, Orlando, FL-32826, USA
| |
Collapse
|
16
|
Wang L, Xu X, Chu L, Meng C, Xu L, Wang Y, Jiao Q, Huang T, Zhao Y, Liu X, Li J, Zhou B, Wang T. PEG-modified carbon-based nanoparticles as tumor-targeted drug delivery system reducing doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2023; 168:115836. [PMID: 37925938 DOI: 10.1016/j.biopha.2023.115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
Herein, a doxorubicin-loaded carbon-based drug delivery system, denoted as PC-DOX, composed of pH-responsive imine bond was developed for the tumor-targeted treatment. PC-DOX with a uniform particle size around 180 nm was synthesized by coating of as-synthesized hollow carbon-based nanoparticles (NPs) with dialdehyde PEG, which was used as carrier to attach DOX covalently through dynamic covalent bond. The unique structure endowed the advantages of specific tumor targeting and tumor microenvironment (TME) specific drug delivery capacity with PC-DOX. For the one hand, the tumor targeting caused by the enhanced permeability and retention (EPR) effect could significantly improve the tumor cellular uptake. For the other hand, the pH-responsiveness could realize the effective DOX accumulation in tumor tissues, avoiding the unwanted side effect to the normal tissues. As a result, PC-DOX with high DOX loading capacity (70.12%) and excellent biocompatibility, concurrently, presented a significant anti-tumor effect at a low mass concentration (DOX equivalent dose: 20 μg/mL). Another attractive characteristic of PC-DOX was the remarkable protective effect towards DOX-induced cardiotoxicity, which could be clearly observed from in vitro cellular, and animal assays. Compared with free DOX, the cardiomyocyte viability increased by average 30.58%, and the heart function was also significantly improved. This novel drug delivery nanoplatform provides a new method for the future clinical application of DOX in the cancer's therapeutics.
Collapse
Affiliation(s)
- Lide Wang
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China; School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Xiufeng Xu
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Lichao Chu
- The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261044, Shandong, PR China; School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Chun Meng
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Longwu Xu
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China; School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Yuying Wang
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China; School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Qiuhong Jiao
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Tao Huang
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Yudan Zhao
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Xiaohong Liu
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Jingtian Li
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China.
| | - Tao Wang
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China.
| |
Collapse
|
17
|
Yi Y, Zhang H, Chen M, Chen B, Chen Y, Li P, Zhou H, Ma Z, Jiang H. Inhibition of multiple uptake transporters in cardiomyocytes/mitochondria alleviates doxorubicin-induced cardiotoxicity. Chem Biol Interact 2023; 382:110627. [PMID: 37453608 DOI: 10.1016/j.cbi.2023.110627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Doxorubicin (DOX) has been widely used to treat various tumors; however, DOX-induced cardiotoxicity limits its utilization. Since high accumulation of DOX in cardiomyocytes/mitochondria is the key reason, we aimed to clarify the mechanisms of DOX uptake and explore whether selectively inhibiting DOX uptake transporters would attenuate DOX accumulation and cardiotoxicity. Our results demonstrated that OCTN1/OCTN2/PMAT (organic cation/carnitine transporter 1/2 or plasma membrane monoamine transporter), especially OCTN2, played crucial roles in DOX uptake in cardiomyocytes, while OCTN2 and OCTN1 contributed to DOX transmembrane transport in mitochondria. Metformin (1-100 μM) concentration-dependently reduced DOX (5 μM for accumulation, 500 nM for cytotoxicity) concentration and toxicity in cardiomyocytes/mitochondria via inhibition of OCTN1-, OCTN2- and PMAT-mediated DOX uptake but did not affect its efflux. Furthermore, metformin (iv: 250 and 500 mg/kg or ig: 50, 100 and 200 mg/kg) could dose-dependently reduce DOX (8 mg/kg) accumulation in mouse myocardium and attenuated its cardiotoxicity. In addition, metformin (1-100 μM) did not impair DOX efficacy in breast cancer or leukemia cells. In conclusion, our study clarified the role of multiple transporters, especially OCTN2, in DOX uptake in cardiomyocytes/mitochondria; metformin alleviated DOX-induced cardiotoxicity without compromising its antitumor efficacy by selective inhibition of multiple transporters mediated DOX accumulation in myocardium/mitochondria.
Collapse
Affiliation(s)
- Yaodong Yi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hengbin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mingyang Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Binxin Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yingchun Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ping Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Jinhua Institute of Zhejiang University, PR China
| | - Zhiyuan Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Jinhua Institute of Zhejiang University, PR China.
| |
Collapse
|
18
|
Phan H, Cavanagh R, Jacob P, Destouches D, Vacherot F, Brugnoli B, Howdle S, Taresco V, Couturaud B. Synthesis of Multifunctional Polymersomes Prepared by Polymerization-Induced Self-Assembly. Polymers (Basel) 2023; 15:3070. [PMID: 37514459 PMCID: PMC10383388 DOI: 10.3390/polym15143070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Polymersomes are an exciting modality for drug delivery due to their structural similarity to biological cells and their ability to encapsulate both hydrophilic and hydrophobic drugs. In this regard, the current work aimed to develop multifunctional polymersomes, integrating dye (with hydrophobic Nile red and hydrophilic sulfo-cyanine5-NHS ester as model drugs) encapsulation, stimulus responsiveness, and surface-ligand modifications. Polymersomes constituting poly(N-2-hydroxypropylmethacrylamide)-b-poly(N-(2-(methylthio)ethyl)acrylamide) (PHPMAm-b-PMTEAM) are prepared by aqueous dispersion RAFT-mediated polymerization-induced self-assembly (PISA). The hydrophilic block lengths have an effect on the obtained morphologies, with short chain P(HPMAm)16 affording spheres and long chain P(HPMAm)43 yielding vesicles. This further induces different responses to H2O2, with spheres fragmenting and vesicles aggregating. Folic acid (FA) is successfully conjugated to the P(HPMAm)43, which self-assembles into FA-functionalized P(HPMAm)43-b-P(MTEAM)300 polymersomes. The FA-functionalized P(HPMAm)43-b-P(MTEAM)300 polymersomes entrap both hydrophobic Nile red (NR) and hydrophilic Cy5 dye. The NR-loaded FA-linked polymersomes exhibit a controlled release of the encapsulated NR dye when exposed to 10 mM H2O2. All the polymersomes formed are stable in human plasma and well-tolerated in MCF-7 breast cancer cells. These preliminary results demonstrate that, with simple and scalable chemistry, PISA offers access to different shapes and opens up the possibility of the one-pot synthesis of multicompartmental and responsive polymersomes.
Collapse
Affiliation(s)
- Hien Phan
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS, University Paris Est Créteil, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Robert Cavanagh
- School of Medicine, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Philippa Jacob
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | - Benedetta Brugnoli
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Steve Howdle
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Benoit Couturaud
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS, University Paris Est Créteil, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
19
|
Kang NW, Visetvichaporn V, Nguyen DT, Shin EK, Kim D, Kim MJ, Yoo SY, Lee JY, Kim DD. Bone tumor-homing nanotherapeutics for prolonged retention in tumor microenvironment and facilitated apoptotic process via mevalonate pathway inhibition. Mater Today Bio 2023; 19:100591. [PMID: 36873733 PMCID: PMC9978036 DOI: 10.1016/j.mtbio.2023.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023] Open
Abstract
Bone malignancy features a mineralized extracellular matrix primarily composed of hydroxyapatite, which interferes with the distribution and activity of antineoplastic agents. Herein, we report bone tumor-homing polymeric nanotherapeutics consisting of alendronate-decorated chondroitin sulfate A-graft-poly(lactide-co-glycolide) and doxorubicin (DOX), named PLCSA-AD, which displayed a prolonged retention profile in the tumor microenvironment and augmented therapeutic efficacy via inhibition of the mevalonate pathway. PLCSA-AD exhibited a 1.72-fold lower IC50 value than free DOX and a higher affinity for hydroxyapatite than PLCSA in HOS/MNNG cell-based 2D bone tumor-mimicking models. The inhibition of the mevalonate pathway by PLCSA-AD in tumor cells was verified by investigating the cytosolic fraction of unprenylated proteins, where blank PLCSA-AD significantly increased the expression of cytosolic Ras and RhoA without changing their total cellular amounts. In a bone tumor-mimicking xenografted mouse model, AD-decorated nanotherapeutics significantly increased tumor accumulation (1.73-fold) compared with PLCSA, and higher adsorption to hydroxyapatites was observed in the histological analysis of the tumor. As a result, inhibition of the mevalonate pathway and improvement in tumor accumulation led to markedly enhanced therapeutic efficacy in vivo, suggesting that PLCSA-AD could be promising nanotherapeutics for bone tumor treatment.
Collapse
Affiliation(s)
- Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Voradanu Visetvichaporn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Duy-Thuc Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Kyung Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dahan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Jae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - So-Yeol Yoo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
20
|
Jiao Q, Liu B, Xu X, Huang T, Cao B, Wang L, Wang Q, Du A, Li J, Zhou B, Wang T. Biodegradable porous polymeric drug as a drug delivery system: alleviation of doxorubicin-induced cardiotoxicity via passive targeted release. RSC Adv 2023; 13:5444-5456. [PMID: 36793291 PMCID: PMC9923820 DOI: 10.1039/d2ra07410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug developed against a broad range of cancers, and its clinical applications are greatly restricted by the side effects of severe cardiotoxicity during tumour treatment. Herein, the DOX-loaded biodegradable porous polymeric drug, namely, Fc-Ma-DOX, which was stable in the circulation, but easy to compose in the acidic medium, was used as the drug delivery system avoiding the indiscriminate release of DOX. Fc-Ma was constructed via the copolymerization of 1,1'-ferrocenecarbaldehyde with d-mannitol (Ma) through the pH-sensitive acetal bonds. Echocardiography, biochemical parameters, pathological examination, and western blot results showed that DOX treatment caused increased myocardial injury and oxidative stress damage. In contrast, treatment with Fc-Ma-DOX significantly reduced myocardial injury and oxidative stress by DOX treatment. Notably, in the Fc-Ma-DOX treatment group, we observed a significant decrease in the uptake of DOX by H9C2 cells and a significant decrease in reactive oxygen species (ROS) production.
Collapse
Affiliation(s)
- Qiuhong Jiao
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Baoting Liu
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Xiufeng Xu
- Department of Geriatrics, Affiliated Hospital of Weifang Medical UniversityWeifang 261031ShandongChina
| | - Tao Huang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Bufan Cao
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Lide Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Qingguo Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Ailing Du
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Jingtian Li
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University Weifang 261031 Shandong China
| | - Tao Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| |
Collapse
|
21
|
Lee TY, Lu HH, Cheng HT, Huang HC, Tsai YJ, Chang IH, Tu CP, Chung CW, Lu TT, Peng CH, Chen Y. Delivery of nitric oxide with a pH-responsive nanocarrier for the treatment of renal fibrosis. J Control Release 2023; 354:417-428. [PMID: 36627025 DOI: 10.1016/j.jconrel.2022.12.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023]
Abstract
Fibrosis is an excessive accumulation of extracellular matrix (ECM) that may cause severe organ dysfunction. Nitric oxide (NO), a multifunctional gaseous signaling molecule, may inhibit fibrosis, and delivery of NO may serve as a potential antifibrotic strategy. However, major limitations in the application of NO to treat fibrotic diseases include its nonspecificity, short half-life and low availability in fibrotic tissue. Herein, we aimed to develop a stimuli-responsive drug carrier to deliver NO to halt kidney fibrosis. We manufactured a nanoparticle (NP) composed of pH-sensitive poly[2-(diisopropylamino)ethyl methacrylate (PDPA) polymers to encapsulate a NO donor, a dinitrosyl iron complex (DNIC; [Fe2(μ-SEt)2(NO)4]). The NPs were stable at physiological pH 7.4 but disintegrated at pH 4.0-6.0. The NPs showed significant cytotoxicity to cultured human myofibroblasts and were able to inhibit the activation of myofibroblasts, as indicated by a lower expression level of α-smooth muscle actin and the synthesis of a major ECM component, collagen I, in cultured human myofibroblasts. When given to mice treated with unilateral ureteral ligation/obstruction (UUO) to induce kidney fibrosis, these NPs remained in blood at a stable concentration for as long as 24 h and might enter the fibrotic kidneys to suppress myofibroblast activation and collagen I production, leading to a 70% reduction in the fibrotic area. In summary, our strategy to assemble a NO donor, the iron nitrosyl complex DNIC, into pH-responsive NPs proves effective in treating renal fibrosis and warrants further investigation for its therapeutic potential.
Collapse
Affiliation(s)
- Tsung-Ying Lee
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hung-Hsun Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hui-Teng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Zhu Bei City 302, Taiwan
| | - Hsi-Chien Huang
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Jen Tsai
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Hsiang Chang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chao-Peng Tu
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chi-How Peng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yunching Chen
- Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
22
|
Sincari V, Jäger E, Loureiro KC, Vragovic M, Hofmann E, Schlenk M, Filipová M, Rydvalová E, Štěpánek P, Hrubý M, Förster S, Jäger A. pH-Dependent disruption of giant polymer vesicles: a step towards biomimetic membranes. Polym Chem 2023. [DOI: 10.1039/d2py01229d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The spatiotemporal pH-triggered controlled release of a hydrophilic probe in a pH-responsive PGUV system demonstrates its potential as a biomimetic system for drug delivery, microreactors and artificial cell mimics.
Collapse
Affiliation(s)
- Vladimir Sincari
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | | | - Martina Vragovic
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Eddie Hofmann
- Department of Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Mathias Schlenk
- Department of Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Marcela Filipová
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Eliška Rydvalová
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Stephan Förster
- Department of Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
- JCNS-1/ICS-1, Forschungszentrum Jülich, 52425 Jülich, Germany
- Physical Chemistry, RWTH University, 52074 Aachen, Germany
| | - Alessandro Jäger
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
23
|
Wei R, Li Z, Kang B, Fu G, Zhang K, Xue M. Acid-triggered in vivo aggregation of Janus nanoparticles for enhanced imaging-guided photothermal therapy. NANOSCALE ADVANCES 2022; 5:268-276. [PMID: 36605805 PMCID: PMC9765530 DOI: 10.1039/d2na00622g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Poor tumor delivery efficiency remains a significant challenge for the integrated nanoplatform for diagnosis and treatment. Nanotherapeutics capable of aggregation in response to the tumor microenvironment has received considerable attention because of its ability to enhance tumor delivery efficiency and accumulation. We prepared smart Au-Fe3O4 Janus nanoparticles (GIJ NPs) modified with mixed-charged ligands (3,4-dihydroxyhydrocinnamic acid [DHCA] and trimethylammonium dopamine [TMAD]). The obtained GIJ@DHCA-TMAD could be stable at the pH of the blood and normal tissues, but aggregated into larger particles in response to the tumor acidic microenvironment, leading to greatly enhanced accumulation in cancer cells. The hydrodynamic diameters of GIJ@DHCA-TMAD increased from 28.2 to 105.7 nm when the pH decreased from 7.4 to 5.5. Meanwhile, the T 2 magnetic resonance imaging (MRI) contrast capability, photoacoustic imaging (PAI) performance, and photothermal conversion efficiency of GIJ@DHCA-TMAD were also enhanced with increasing diameter. Tumor-specific enhanced MRI and PAI can precisely locate tumor boundaries and can be used to perform preliminary photothermal tumor ablation therapy: the pH-sensitive GIJ@DHCA-TMAD can be used in dual-mode, tumor-specific imaging-guided photothermal therapy to better meet the multiple requirements for in vivo applications.
Collapse
Affiliation(s)
- Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University Zhengzhou 450052 Henan China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University Zhengzhou 450052 Henan China
| | - Bilun Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian China
| | - Gaoliang Fu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College Zhengzhou 450006 Henan China
| | - Ke Zhang
- Department of Interventional Medicine, Center for Interventional Medicine, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 Guangdong China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University Zhengzhou 450052 Henan China
| |
Collapse
|
24
|
Lukáš Petrova S, Sincari V, Konefał R, Pavlova E, Hrubý M, Pokorný V, Jäger E. Microwave Irradiation-Assisted Reversible Addition-Fragmentation Chain Transfer Polymerization-Induced Self-Assembly of pH-Responsive Diblock Copolymer Nanoparticles. ACS OMEGA 2022; 7:42711-42722. [PMID: 36467927 PMCID: PMC9713868 DOI: 10.1021/acsomega.2c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Herein, we present a versatile platform for the synthesis of pH-responsive poly([N-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer (PHPMA-b-PDPA) nanoparticles (NPs) obtained via microwave-assisted reversible addition-fragmentation chain transfer polymerization-induced self-assembly (MWI-PISA). The N-(2-hydroxypropyl) methacrylamide (HPMA) monomer was first polymerized to obtain a macrochain transfer agent with polymerization degrees (DPs) of 23 and 51. Subsequently, using mCTA and 2-(diisopropylamino)ethyl methacrylate (DPA) as monomers, we successfully conducted MWI-PISA emulsion polymerization in aqueous solution with a solid content of 10 wt %. The NPs were obtained with high monomer conversion and polymerization rates. The resulting diblock copolymer NPs were analyzed by dynamic light scattering (DLS) and cryogenic-transmission electron microscopy (cryo-TEM). cryo-TEM studies reveal the presence of only NPs with spherical morphology such as micelles and polymer vesicles known as polymersomes. Under the selected conditions, we were able to fine-tune the morphology from micelles to polymersomes, which may attract considerable attention in the drug-delivery field. The capability for drug encapsulation using the obtained in situ pH-responsive NPs, the polymersomes based on PHPMA23-b-PDPA100, and the micelles based on PHPMA51-b-PDPA100 was demonstrated using the hydrophobic agent and fluorescent dye as Nile red (NR). In addition, the NP disassembly in slightly acidic environments enables fast NR release.
Collapse
|
25
|
Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022; 189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.
Collapse
Affiliation(s)
- Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States.
| |
Collapse
|
26
|
Ma P, Lai X, Luo Z, Chen Y, Loh XJ, Ye E, Li Z, Wu C, Wu YL. Recent advances in mechanical force-responsive drug delivery systems. NANOSCALE ADVANCES 2022; 4:3462-3478. [PMID: 36134346 PMCID: PMC9400598 DOI: 10.1039/d2na00420h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Mechanical force responsive drug delivery systems (in terms of mechanical force induced chemical bond breakage or physical structure destabilization) have been recently explored to exhibit a controllable pharmaceutical release behaviour at a molecular level. In comparison with chemical or biological stimulus triggers, mechanical force is not only an external but also an internal stimulus which is closely related to the physiological status of patients. However, although this mechanical force stimulus might be one of the most promising and feasible sources to achieve on-demand pharmaceutical release, current research in this field is still limited. Hence, this tutorial review aims to comprehensively evaluate the recent advances in mechanical force-responsive drug delivery systems based on different types of mechanical force, in terms of direct stimulation by compressive, tensile, and shear force, or indirect/remote stimulation by ultrasound and a magnetic field. Furthermore, the exciting developments and current challenges in this field will also be discussed to provide a blueprint for potential clinical translational research of mechanical force-responsive drug delivery systems.
Collapse
Affiliation(s)
- Panqin Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Xiyu Lai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 138634 Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 138634 Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) Agency for Science, Technology, and Research (ASTAR) Singapore 138634 Singapore
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| |
Collapse
|
27
|
Redox-Responsive Polymersomes as Smart Doxorubicin Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14081724. [PMID: 36015350 PMCID: PMC9412847 DOI: 10.3390/pharmaceutics14081724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Stimuli-responsive polymersomes have emerged as smart drug delivery systems for programmed release of highly cytotoxic anticancer agents such as doxorubicin hydrochloride (Dox·HCl). Recently, a biodegradable redox-responsive triblock copolymer (mPEG–PDH–mPEG) was synthesized with a central hydrophobic block containing disulfide linkages and two hydrophilic segments of poly(ethylene glycol) methyl ether. Taking advantage of the self-assembly of this amphiphilic copolymer in aqueous solution, in the present investigation we introduce a solvent-exchange method that simultaneously achieves polymersome formation and drug loading in phosphate buffer saline (10 mM, pH 7.4). Blank and drug-loaded polymersomes (5 and 10 wt.% feeding ratios) were prepared and characterized for morphology, particle size, surface charge, encapsulation efficiency and drug release behavior. Spherical vesicles of uniform size (120–190 nm) and negative zeta potentials were obtained. Dox·HCl was encapsulated into polymersomes with a remarkably high efficiency (up to 98 wt.%). In vitro drug release studies demonstrated a prolonged and diffusion-driven release at physiological conditions (~34% after 48 h). Cleavage of the disulfide bonds in the presence of 50 mM glutathione (GSH) enhanced drug release (~77%) due to the contribution of the erosion mechanism. Therefore, the designed polymersomes are promising candidates for selective drug release in the reductive environment of cancer cells.
Collapse
|
28
|
Wang T, Qin J, Cheng J, Li C, Du J. Intelligent design of polymersomes for antibacterial and anticancer applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1822. [PMID: 35673991 DOI: 10.1002/wnan.1822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes (or polymer vesicles) have attracted much attention for biomedical applications in recent years because their lumen can be used for drug delivery and their coronas and membrane can be modified with a variety of functional groups. Thus, polymersomes are very suitable for improved antibacterial and anticancer therapy. This review mainly highlighted recent advances in the synthetic protocols and design principles of intelligent antibacterial and anticancer polymersomes. Antibacterial polymersomes are divided into three categories: polymersomes as antibiotic nanocarriers, intrinsically antibacterial polymersomes, and antibacterial polymersomes with supplementary means including photothermal and photodynamic therapy. Similarly, the anticancer polymersomes are divided into two categories: polymersomes-based delivery systems and anticancer polymersomes with supplementary means. In addition, the bilateral relationship between bacteria and cancer is addressed, since more and more evidences show that bacteria may cause cancer or promote cancer progression. Finally, prospective on next-generation antibacterial and anticancer polymersomes are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Tao Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Jinlong Qin
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajing Cheng
- Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Jain M, Kumar S, Aswal VK, Al-Ghamdi AA, Kumar Kailasa S, Malek NI. Amino Acid Induced Self-Assembled Vesicles of Choline Oleate: pH responsive Nano-carriers for Targeted and Localized Delivery of Doxorubicin for Breast Cancer. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Afrin H, Salazar CJ, Kazi M, Ahamad SR, Alharbi M, Nurunnabi M. Methods of screening, monitoring and management of cardiac toxicity induced by chemotherapeutics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Tang N, Ning Q, Wang Z, Tao Y, Zhao X, Tang S. Tumor microenvironment based stimuli-responsive CRISPR/Cas delivery systems: A viable platform for interventional approaches. Colloids Surf B Biointerfaces 2021; 210:112257. [PMID: 34894597 DOI: 10.1016/j.colsurfb.2021.112257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems have emerged as robust tools in cancer gene therapy due to their simplicity and versatility. Nevertheless, the genome editing efficiency in tumor sites and the clinical applications of CRISPR/Cas have been compromised by non-specific delivery and genotoxicity. Recently, intelligent delivery systems incorporating sensitive materials in response to endogenous stimuli of the tumor microenvironment (TME) have represented viable platforms for tumor-specific genome editing and reduced side effects of CRISPR/Cas. Spurred by this promising direction, this review first introduces the CRISPR/Cas systems widely employed in cancer therapeutic explorations. Various types of CRISPR/Cas delivery systems sensitive to the stimuli in TME and typical dual-/multiple-responsive CRISPR/Cas carriers are further discussed, emphasizing the correlations between sensitive components and spatiotemporal delivery mechanisms. The genome editing efficiencies of CRISPR/Cas-loaded stimuli-responsive carriers are also summarized both in vitro and in vivo. Collectively, stimuli-responsive CRISPR/Cas delivery systems hold great promise for potent cancer gene therapy.
Collapse
Affiliation(s)
- Nanyang Tang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Zewei Wang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| | - Yifang Tao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| | - Xuhong Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| | - Shengsong Tang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
32
|
Wang C, Wang Z, Chen S, Cui P, Qiu L, Zhou S, Jiang H, Jiang P, Wang J. Modulation of Aggregation-Caused Quenching to Aggregation-Induced Emission: Finding a Biocompatible Polymeric Theranostics Platform for Cancer Therapy. Macromol Rapid Commun 2021; 42:e2100264. [PMID: 34347315 DOI: 10.1002/marc.202100264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/05/2021] [Indexed: 01/18/2023]
Abstract
Dual intramolecular FRET polymers are synthesized via Suzuki coupling and their luminescence characteristics from aggregation-caused quenching (ACQ) to aggregation-induced emission (AIE) is modulated conveniently by adjusting the charged ratios. The finally obtained AIE polymer is further employed to construct doxorubicin loaded nanoparticles as a promising theranostics platform for cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Shaoqing Chen
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Hua Jiang
- Department of Oncology, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, 213003, P. R. China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| |
Collapse
|
33
|
Zhu J, Yang J, Zhao L, Zhao P, Yang J, Zhao J, Miao W. 131I-Labeled Multifunctional Polyethylenimine/Doxorubicin Complexes with pH-Controlled Cellular Uptake Property for Enhanced SPECT Imaging and Chemo/Radiotherapy of Tumors. Int J Nanomedicine 2021; 16:5167-5183. [PMID: 34354350 PMCID: PMC8331118 DOI: 10.2147/ijn.s312238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Smart theranostic nanosystems own a favorable potential to improve internalization within tumor while avoiding nonspecific interaction with normal tissues. However, development of this type of theranostic nanosystems is still a challenge. Methods In this study, we developed the iodine-131 (131I)-labeled multifunctional polyethylenimine (PEI)/doxorubicin (DOX) complexes with pH-controlled cellular uptake property for enhanced single-photon emission computed tomography (SPECT) imaging and chemo/radiotherapy of tumors. Alkoxyphenyl acylsulfonamide (APAS), a typical functional group that could achieve improved cellular uptake of its modified nanoparticles, was utilized to conjugate onto the functional PEI pre-modified with polyethylene glycol (PEG) with terminal groups of monomethyl ether and N-hydroxysuccinimide (mPEG-NHS), PEG with terminal groups of maleimide and succinimidyl valerate (MAL-PEG-SVA) through sulfydryl of APAS and MAL moiety of MAL-PEG-SVA. This was followed by conjugation with 3-(4’-hydroxyphenyl)propionic acid-OSu (HPAO), acetylating leftover amines of PEI, complexing DOX and labeling 131I to generate the theranostic nanosystems. Results The synthesized theranostic nanosystems exhibit favorable water solubility and stability. Every functional PEI can complex approximately 12.4 DOX, which could sustainably release of DOX following a pH-dependent manner. Remarkably, due to the surface modification of APAS, the constructed theranostic nanosystems own the capacity to achieve pH-responsive charge conversion and further lead to improved cellular uptake in cancer cells under slightly acidic condition. Above all, based on the coexistence of DOX and radioactive 131I in the single nanosystem, the synthesized nanohybrid system could afford enhanced SPECT imaging and chemo/radioactive combination therapy of cancer cells in vitro and xenografted tumor model in vivo. Discussion The developed smart nanohybrid system provides a novel strategy to improve the tumor theranostic efficiency and may be applied for different types of cancer.
Collapse
Affiliation(s)
- Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Junxing Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Pingping Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jiqin Yang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
34
|
Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210430] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|