1
|
Kedir WM, Li L, Tan YS, Bajalovic N, Loke DK. Nanomaterials and methods for cancer therapy: 2D materials, biomolecules, and molecular dynamics simulations. J Mater Chem B 2024; 12:12141-12173. [PMID: 39502031 DOI: 10.1039/d4tb01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This review explores the potential of biomolecule-based nanomaterials, i.e., protein, peptide, nucleic acid, and polysaccharide-based nanomaterials, in cancer nanomedicine. It highlights the wide range of design possibilities for creating multifunctional nanomedicines using these biomolecule-based nanomaterials. This review also analyzes the primary obstacles in cancer nanomedicine that can be resolved through the usage of nanomaterials based on biomolecules. It also examines the unique in vivo characteristics, programmability, and biological functionalities of these biomolecule-based nanomaterials. This summary outlines the most recent advancements in the development of two-dimensional semiconductor-based nanomaterials for cancer theranostic purposes. It focuses on the latest developments in molecular simulations and modelling to provide a clear understanding of important uses, techniques, and concepts of nanomaterials in drug delivery and synthesis processes. Finally, the review addresses the challenges in molecular simulations, and generating, analyzing, and developing biomolecule-based and two-dimensional semiconductor-based nanomaterials, and highlights the barriers that must be overcome to facilitate their application in clinical settings.
Collapse
Affiliation(s)
- Welela M Kedir
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
2
|
Kassie BB, Getahun MJ, Azanaw A, Ferede BT, Tassew DF. Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications. Int J Biol Macromol 2024; 282:136949. [PMID: 39490486 DOI: 10.1016/j.ijbiomac.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for sustainable and effective materials in biomedical and personal hygiene applications has driven the exploration of cellulose nanocrystals (CNCs) derived from biomass. These nanomaterials are highly valued for their exceptional mechanical properties, biocompatibility, and renewable nature. Researchers are exploring CNCs for advancing medical and hygiene products, but surface modification is often needed to maximize their benefits. Techniques such as chemical functionalization, physical coating, and hybridization can significantly enhance CNCs dispersibility, stability, and interaction with biological systems. This versatility makes CNCs suitable for a variety of applications, including drug delivery systems, wound dressings, and personal hygiene products. Despite their advantages, maintaining the inherent properties of CNCs while integrating new functionalities through modification poses a challenge. Understanding the impact of various modification techniques on CNC performance is crucial for optimizing their effectiveness. This review aimed to consolidate current knowledge on the surface modification of biomass-derived CNCs, offering insights into different methods and their implications for biomedical and personal hygiene applications. By highlighting advancements, challenges, and prospects, it served as a crucial resource for advancing the development and application of CNCs in these critical fields.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia; Medical Textile Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | | | - Aklilu Azanaw
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Bayu Teshome Ferede
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
3
|
Li Z, Wang X, Wan W, Zhang N, Zhang L, Wang X, Lin K, Yang J, Hao J, Tian F. Rational design of pH-responsive nano-delivery system with improved biocompatibility and targeting ability from cellulose nanocrystals via surface polymerization for intracellular drug delivery. Int J Biol Macromol 2024; 281:136435. [PMID: 39414191 DOI: 10.1016/j.ijbiomac.2024.136435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Cellulose nanocrystals (CNCs), derived from diverse sources and distinguished by their inherent biodegradability, excellent biocompatibility, and facile cellular engulfment due to their rod-like structure, hold great promise as carriers for the development of nano-delivery systems. In this work, highly efficient rod-like CNCs were employed as substrates for grafting glycidyl onto their surfaces through ring-opening polymerization, forming hyperbranched polymers with superior cell uptake properties. Subsequently, 4-vinylbenzeneboronic acid (VB) and poly (ethylene glycol) methyl ether methacrylate (PEGMA) were employed as monomers in the polymerization process to fabricate a pH-responsive targeted nano-delivery system, denoted as CNCs-VB-PEGMA, via single electron transfer reactive radical polymerization (SET-LRP) reaction. The CNCs-VB-PEGMA was successfully prepared and used for the loading of curcumin (Cur) to form a pH-responsive nano-delivery system (CNCs-VB-PEGMA-Cur), and the loading rate of Cur was as high as 70.0 %. Studies showed that this drug delivery system could actively targeting liver cancer cells with the 2D cells model and 3D tumor microsphere model, showing efficient liver cancer cell-killing ability. Collectively, the CNCs-VB-PEGMA drug delivery system has potential applications in liver cancer therapy as an actively targeting and pH-responsive drug delivery system.
Collapse
Affiliation(s)
- Ziqi Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Department of Pharmacy, Jiangxi Maternal and Child Health Hospital, Jiangxi 330103, PR China
| | - Xi Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Weimin Wan
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Na Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Limeng Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xiaoye Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kui Lin
- Analytical Instrumentation Centre, Tianjin University, Tianjin 300072, PR China
| | - Jian Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Jia Hao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Fei Tian
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
4
|
Casulli MA, Yan R, Takeuchi S, Cesari A, Mancin F, Hayashita T, Hashimoto T, Taurino I. Cyclodextrin-Based Nanogels for Stabilization and Sensing of Curcumin. ACS APPLIED NANO MATERIALS 2024; 7:20153-20162. [PMID: 39296865 PMCID: PMC11407302 DOI: 10.1021/acsanm.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024]
Abstract
Curcumin (CUR), a polyphenolic substance from turmeric, displays diverse medicinal properties. However, its instability poses challenges in detection. Cyclodextrin-based nanogels (CyDngs) offer a transformative solution, enhancing CUR's stability in aqueous solutions. Multisensing approaches involving fluorescence, electrochemistry, and NMR spectroscopy were employed, demonstrating CyDngs' pivotal role in CUR detection. Langmuir analysis revealed a binding constant of 1.4 × 104 M-1 for CyDngs, highlighting their effectiveness over native β-CyDs. The study emphasized CyDngs' superiority in stabilizing CUR and enabling reliable and sensitive detection with very diverse methods.
Collapse
Affiliation(s)
- Maria Antonietta Casulli
- Micro and Nano-Systems (MNS), Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven (KU Leuven), 3001 Leuven, Belgium
| | - Ruyu Yan
- Graduate School of Science and Technology, Department of Materals and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Satomi Takeuchi
- Graduate School of Science and Technology, Department of Materals and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Andrea Cesari
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Takashi Hayashita
- Graduate School of Science and Technology, Department of Materals and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Takeshi Hashimoto
- Graduate School of Science and Technology, Department of Materals and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Irene Taurino
- Micro and Nano-Systems (MNS), Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven (KU Leuven), 3001 Leuven, Belgium
- Semiconductor Physics (HF), Department of Physics and Astronomy, Katholieke Universiteit Leuven (KU Leuven), 3001 Leuven, Belgium
| |
Collapse
|
5
|
Babunagappan KV, Raj T, Seetharaman A, Ariraman S, Sudhakar S. Elucidating shape-mediated drug carrier mechanics of hematite nanomaterials for breast cancer therapeutics. J Mater Chem B 2024; 12:4843-4853. [PMID: 38444277 DOI: 10.1039/d4tb00052h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Metallic nanomaterials have gained significant attention in cancer therapy as potential nanocarriers due to their unique properties at the nanoscale. However, nanomaterials face several drawbacks, including biocompatibility, stability, and cellular uptake. Hematite (α-Fe2O3) nanoparticles are emerging as promising nano-carriers to reduce adverse outcomes of conventional chemotherapeutics. However, the shape-mediated drug carrier mechanics of hematite nanomaterials are not raveled. In this study, we tailored hematite nanoparticles in ellipsoidal (EHNP) and spherical (SHNP) shapes with excellent biocompatibility and efficient drug encapsulation and release. We elucidate that EHNP exhibits higher cellular uptake than SHNP. With effective cellular internalization, the cisplatin-loaded EHNP showed excellent cytotoxicity with an IC50 value of 200 nM compared to the cisplatin-loaded SHNP. The flow cytometry cell sorting (FACS) analysis showed a four-fold increase in cell death by arresting the cells at the G0/G1 and G1 phases for cis-EHNP compared to cis-SHNP. The results show that ellipsoidal-shaped hematite nanoparticles can act as attractive nanocarriers with improved therapeutic efficacy in cancer therapy.
Collapse
Affiliation(s)
| | - Thilak Raj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.
| | - Abirami Seetharaman
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.
| | - Subastri Ariraman
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.
| | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
6
|
Ding L, Agrawal P, Singh SK, Chhonker YS, Sun J, Murry DJ. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers (Basel) 2024; 16:843. [PMID: 38543448 PMCID: PMC10974363 DOI: 10.3390/polym16060843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
Chemotherapy together with surgery and/or radiotherapy are the most common therapeutic methods for treating cancer. However, the off-target effects of chemotherapy are known to produce side effects and dose-limiting toxicities. Novel delivery platforms based on natural and synthetic polymers with enhanced pharmacokinetic and therapeutic potential for the treatment of cancer have grown tremendously over the past 10 years. Polymers can facilitate selective targeting, enhance and prolong circulation, improve delivery, and provide the controlled release of cargos through various mechanisms, including physical adsorption, chemical conjugation, and/or internal loading. Notably, polymers that are biodegradable, biocompatible, and physicochemically stable are considered to be ideal delivery carriers. This biomimetic and bio-inspired system offers a bright future for effective drug delivery with the potential to overcome the obstacles encountered. This review focuses on the barriers that impact the success of chemotherapy drug delivery as well as the recent developments based on natural and synthetic polymers as platforms for improving drug delivery for treating cancer.
Collapse
Affiliation(s)
- Ling Ding
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Prachi Agrawal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
| | - Sandeep K. Singh
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Yashpal S. Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Jingjing Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Chu Y, Xi J, Sun Y, Zhang L, Xiao H, Wu W. In situ growth of Ag 2S quantum dots on cellulose nanocrystals and their near-infrared bioimaging performance. Int J Biol Macromol 2024; 257:128601. [PMID: 38056739 DOI: 10.1016/j.ijbiomac.2023.128601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/29/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Elongated nanoparticles show distinct advantages over spherical nanoparticles in bioimaging because of surface area-to-volume, rate of clearance from the body and elimination mechanism. In this work, we investigated the fluorescence emission properties of the hybrid system by decorating silver sulfide quantum dots (Ag2S QDs) in situ on the surface of cellulose nanocrystal (CNC) with unique rod shape, modifiability and biocompatibility. This water-dispersible fluorescent probe has both absorption and fluorescence in near-infrared (NIR) region. By varying the amount of surface ligands, uniformly dispersed Ag2S QDs with different crystalline states but similar sizes were prepared due to the anchoring effect of CNC. The fluorescence quantum yield of fluorescent probes can be improved up to 109-fold (from 0.04 % to 4.36 %). In addition, the CNC-restricted interparticle spacing of Ag2S QDs (< 10 nm), in combination with the overlap of wide fluorescence emission and ultraviolet absorption, significantly enhanced the 1070 nm emission in the NIR-II region via fluorescence resonance energy transfer (FRET). Further conjugation of these CNC probes with folic acid-polyethylene glycol-amino (FA-PEG-NH2) enables in vitro bioimaging of Hela cells, which are potentially applicable for in vivo cancer detection system. The synthetic strategy provides a new way for one-pot preparation of fluorescent probes with both high NIR-I absorption and NIR-II fluorescence.
Collapse
Affiliation(s)
- Youlu Chu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Sun
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Tang X, Wang Z, Wang M, Zhou S, Chen J, Xu S. Nanoarchitectonics of cellulose nanocrystal conjugated with a tetrasaccharide-glycoprobe for targeting oligodendrocyte precursor cells. Carbohydr Polym 2023; 317:121086. [PMID: 37364956 DOI: 10.1016/j.carbpol.2023.121086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Demyelination is a serious complication of neurological disorders, which can be reversed by oligodendrocyte precursor cell (OPC) as the available source of myelination. Chondroitin sulfate (CS) plays key roles in neurological disorders, which still attracted less attention on how CS modulates the fate of OPCs. Nanoparticle coupled with glycoprobe is a potential strategy for investigating the carbohydrate-protein interaction. However, there is lack of CS-based glycoprobe with enough chain length that interact with protein effectively. Herein, we designed a responsive delivery system, in which CS was the target molecule, and cellulose nanocrystal (CNC) was the penetrative nanocarrier. A coumarin derivative (B) was conjugated at the reducing end of an unanimal-sourced chondroitin tetrasaccharide (4mer). This glycoprobe (4B) was grafted to the surface of a rod-like nanocarrier, which had a crystalline core and a poly(ethylene glycol) shell. This glycosylated nanoparticle (N4B-P) displayed a uniform size, improved water-solubility, and responsive release of glycoprobe. N4B-P displayed strong green fluorescence and good cell-compatibility, which imaged well the neural cells including astrocytes and OPCs. Interestingly, both of glycoprobe and N4B-P were internalized selectively by OPCs when they were incubated in astrocytes/OPCs mixtures. This rod-like nanoparticle would be a potential probe for studying carbohydrate-protein interaction in OPCs.
Collapse
Affiliation(s)
- Xiaoli Tang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Zhuqun Wang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Maosen Wang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Shuyu Zhou
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Jinghua Chen
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Shuqin Xu
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
9
|
Biagiotti G, Toniolo G, Albino M, Severi M, Andreozzi P, Marelli M, Kokot H, Tria G, Guerri A, Sangregorio C, Rojo J, Berti D, Marradi M, Cicchi S, Urbančič I, van Kooyk Y, Chiodo F, Richichi B. Simple engineering of hybrid cellulose nanocrystal-gold nanoparticles results in a functional glyconanomaterial with biomolecular recognition properties. NANOSCALE HORIZONS 2023; 8:776-782. [PMID: 36951189 DOI: 10.1039/d3nh00063j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cellulose nanocrystal and gold nanoparticles are assembled, in a unique way, to yield a novel modular glyconanomaterial whose surface is then easily engineered with one or two different headgroups, by exploiting a robust click chemistry route. We demonstrate the potential of this approach by conjugating monosaccharide headgroups to the glyconanomaterial and show that the sugars retain their binding capability to C-type lectin receptors, as also directly visualized by cryo-TEM.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Gianluca Toniolo
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Martin Albino
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- ICCOM CNR via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy
| | - Mirko Severi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Patrizia Andreozzi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", SCITEC-CNR, Via G. Fantoli 16/15, 20138, Milano, Italy
| | - Hana Kokot
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova c. 39, 1000, Ljubljana, Slovenia
| | - Giancarlo Tria
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Annalisa Guerri
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | | | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville, 41092, Spain
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- Italian Center for Colloid and Surface Science (CSGI), 50019 Sesto Fiorentino (Firenze), Italy
| | - Marco Marradi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Stefano Cicchi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova c. 39, 1000, Ljubljana, Slovenia
| | - Yvette van Kooyk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
| | - Fabrizio Chiodo
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
- Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Napoli, Italy
| | - Barbara Richichi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (Firenze), Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| |
Collapse
|
10
|
Silant'ev VE, Shmelev ME, Belousov AS, Patlay AA, Shatilov RA, Farniev VM, Kumeiko VV. How to Develop Drug Delivery System Based on Carbohydrate Nanoparticles Targeted to Brain Tumors. Polymers (Basel) 2023; 15:polym15112516. [PMID: 37299315 DOI: 10.3390/polym15112516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Brain tumors are the most difficult to treat, not only because of the variety of their forms and the small number of effective chemotherapeutic agents capable of suppressing tumor cells, but also limited by poor drug transport across the blood-brain barrier (BBB). Nanoparticles are promising drug delivery solutions promoted by the expansion of nanotechnology, emerging in the creation and practical use of materials in the range from 1 to 500 nm. Carbohydrate-based nanoparticles is a unique platform for active molecular transport and targeted drug delivery, providing biocompatibility, biodegradability, and a reduction in toxic side effects. However, the design and fabrication of biopolymer colloidal nanomaterials have been and remain highly challenging to date. Our review is devoted to the description of carbohydrate nanoparticle synthesis and modification, with a brief overview of the biological and promising clinical outcomes. We also expect this manuscript to highlight the great potential of carbohydrate nanocarriers for drug delivery and targeted treatment of gliomas of various grades and glioblastomas, as the most aggressive of brain tumors.
Collapse
Affiliation(s)
- Vladimir E Silant'ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Laboratory of Electrochemical Processes, Institute of Chemistry, FEB RAS, 690022 Vladivostok, Russia
| | - Mikhail E Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Andrei S Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Aleksandra A Patlay
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Roman A Shatilov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Vladislav M Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Vadim V Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, 690041 Vladivostok, Russia
| |
Collapse
|
11
|
Ye X, Wang A, Zhang D, Zhou P, Zhu P. Light and pH dual-responsive spiropyran-based cellulose nanocrystals. RSC Adv 2023; 13:11495-11502. [PMID: 37063713 PMCID: PMC10093094 DOI: 10.1039/d3ra01637d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023] Open
Abstract
Reversibly light and pH dual-responsive spiropyran-based cellulose nanocrystals (SP-CNCs) is synthesized by the attachment of carboxyl-containing spiropyran (SP-COOH) onto cellulose nanocrystals (CNCs). The resulting structure and properties of SP-CNCs are examined by Fourier transform infrared spectroscopy (FT-IR), elemental analysis, transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic laser light scattering (DSL), ζ-potential measurements and ultraviolet-visible (UV-Vis) light absorption spectroscopy. SP-CNCs exhibit excellent photochromic and photoswitching properties. Spiropyran moieties on SP-CNCs can be switched between open-ring merocyanine (MC) and closed ring spiropyran (SP) forms under UV/Vis irradiation, leading to color changes. Moreover, SP-CNCs display improved photoresponsiveness, photoreversibility, fatigue resistance, and stability in DMSO than in H2O. We further investigate the pH-responsive behavior of SP-CNCs in H2O. SP-CNCs aqueous solution display different colors at different pH values, which can be directly observed by naked eye, indicating that SP-CNCs can function as a visual pH sensor. These results suggest that light and pH dual-responsive SP-CNCs possess great potential for applications in reversible data storage, sensing, optical switching and light-controlled nanomaterials.
Collapse
Affiliation(s)
- Xiu Ye
- Shenzhen Institutes of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China +86-755-26731946
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic Shenzhen 518055 China
| | - Anzhe Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology Nanjing 211167 China
| | - Dongyang Zhang
- Institute of Critical Materials for Integrated Circuits, Shenzhen Polytechnic Shenzhen 518055 China
| | - Peng Zhou
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic Shenzhen 518055 China
| | - Pengli Zhu
- Shenzhen Institutes of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China +86-755-26731946
| |
Collapse
|
12
|
Mahmoud SM, Ali SH, Omar MMA. Cationic cellulose nanocrystals as sustainable green material for multi biological applications via ξ potential. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-25. [PMID: 36752027 DOI: 10.1080/09205063.2023.2177474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The present study aims to disclose the activity of cationic cellulose nanocrystals (CNCs) as a promising multifunctional green nanomaterial with applications in biological aspects. The basic reason behind multifunctional behavior is zeta potential and size distribution of nano biopolymers; exhibit a remarkable physical and biological activity compared to normal molecules.The preliminary characterized studied using absorption spectral analysis showed strong absorption peak indicating that spectrum curves can be screen by UV spectra at wavelength range 200-400nm. Ultrastructural studies (SEM-EDS and TEM), manifest that CNCs are elliptical particles in shape. Also, TEM show CNCs are the ideal illustration of zero-dimensional (0-D) NPs, less than 5.1 nm in diameter with Cationic charge and similar results in size distribution by TEM. Nonetheless, developed as antioxidant activity IC50 was 1467 ± 25.9 µg/mL, antimicrobial activity tested G-ve strains, but not affected on tested G+ve strains and tested fungi. Evaluating toxicity effect of cationic CNCs against human blood erythrocytes (RBCs) and Lymphocyte Proliferation and the end point evaluate by comet assay, which proven no cytotoxic effect. Also, a high dose 500 µg/mL of CNCs highly significant (p < 0.05) reduction in cell viability of Caco-2 cancer cells after 24 h. incubation time, whereas the IC50 was 1884 ± 19.46 µg/mL. Moreover, genotoxic assay indicates Caco-2 cells cause apoptosis with no fragmentation in DNA. Undoubtedly, the obtained results brought about by the interaction of layers carrying opposing charges. Additionally, there is a balance between hydrophilic contact and electrostatic attraction. That emphasizes how the cationic CNCs have excellent potential for use as antioxidants, antimicrobials, and anticancer agents.
Collapse
Affiliation(s)
- Sara Mohamed Mahmoud
- Biotechnology Department, Faculty of Graduate Studies and Environmental Researches, Ain Shams University, Cairo, Egypt
| | - Safwat Hassan Ali
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohamed M A Omar
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Liu L, Zhang Y, Du Y, Li H, Wang M, Lv J. The therapeutic effect and targets of cellulose polysaccharide on coronary heart disease (CHD) and the construction of a prognostic signature based on network pharmacology. Front Nutr 2022; 9:986639. [PMID: 36299990 PMCID: PMC9592078 DOI: 10.3389/fnut.2022.986639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cellulose is the first rich biological polysaccharide in nature and has many excellent properties, so it is being developed as a variety of drug carriers. Moreover, applications in drug delivery, biosensors/bioanalysis, immobilization of enzymes and cells, stem cell therapy, and skin tissue repair are also highlighted by many studies. Coronary heart disease, as one of the diseases with the highest incidence, is urgent to enhance the survival outcome and life quality of patients with coronary heart disease, whereas the mechanism of cellulose's interaction with the human body remains unclear. However, the mechanism of cellulose's interaction with the human body remains unclear. We obtained 92 genes associated with cellulose and coronary heart disease through the intersection of different databases. Ten key genes were identified: HRAS, STAT3, HSP90AA1, FGF2, VEGFA, CXCR4, TERT, IL2, BCL2L1, and CDK1. Molecular docking of the 10 genes revealed their association with their respective receptors. Analysis by KEGG and GO has discovered that these related targets were more enriched in metabolic- and activation-related functions, which further confirmed that cellulose polysaccharides can also interact with cardiovascular diseases as molecules. In the end, we screened out six key genes that were more associated with the prognosis (CDK1, HSP90AA1, CXCR4, IL2, VEGFA, and TERT) and constructed a signature, which has a good predictive effect and has significant statistical significance. Our study is the first study to explore the interaction targets of cellulose and CHD and to construct a prognostic model. Our findings provide insights for future molecular design, drug development, and clinical trials.
Collapse
Affiliation(s)
- Lang Liu
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yundi Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Haoyue Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingzhao Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfeng Lv
- Department of Cardiology, Affiliated RenHe Hospital of China, Second Clinical Medical College, Three Gorges University, Yichang, China,*Correspondence: Jianfeng Lv
| |
Collapse
|
14
|
Kumar R, Chauhan S. Cellulose nanocrystals based delivery vehicles for anticancer agent curcumin. Int J Biol Macromol 2022; 221:842-864. [PMID: 36100000 DOI: 10.1016/j.ijbiomac.2022.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
Cancer is a complex disease that starts with genetic alterations and mutations in healthy cells. The past decade has witnessed a huge demand for new biocompatibility and high-performance intelligent drug delivery systems. Curcumin (CUR) is a bioactive stimulant with numerous medical benefits. However, because of its hydrophobic nature, it has low bioavailability. The utilization of many biobased materials has been found to improve the loading of hydrophobic drugs. Cellulose nanocrystals (CNCs) with exceptional qualities and a wide range of applications, feature strong hydrophilicity and lipophilicity, great emulsification stability, high crystallinity and outstanding mechanical attributes. In this review, numerous CNCs-based composites have been evaluated for involvement in the controlled release of CUR. The first part of the review deals with recent advancements in the extraction of CNCs from lignocellulose biomass. The second elaborates some recent developments in the post-processing of CNCs in conjunction with other materials like natural polymers, synthetic polymers, β-CD, and surfactants for CUR loading/encapsulation and controlled release. Furthermore, numerous CUR drug delivery systems, challenges, and techniques for effective loading/encapsulation of CUR on CNCs-based composites have been presented. Finally, conclusions and future outlooks are also explored.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Jagdish Chandra DAV College, Dasuya, Punjab 144205, India.
| | - Sandeep Chauhan
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| |
Collapse
|
15
|
Lugoloobi I, Yuanhao W, Marriam I, Hu J, Tebyetekerwa M, Ramakrishna S. Electrospun Biomedical Nanofibers and their Future as Intelligent Biomaterials. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Xu L, Xie L, Fang C, Lou W, Jiang T. New progress in tumor treatment based on nanoparticles combined with irreversible electroporation. NANO SELECT 2022. [DOI: 10.1002/nano.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lei Xu
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Department of Ultrasound Medicine Affiliated Jinhua Hospital Zhejiang University School of Medicine Jinhua Zhejiang 321000 P.R. China
| | - Liting Xie
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
| | - ChengYu Fang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - WenJing Lou
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - Tianan Jiang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province Hangzhou Zhejiang 310000 P.R. China
| |
Collapse
|
17
|
Li Q, Xue X, Wang J, Ye Y, Li J, Ren Y, Wang D, Liu B, Li Y, Zhao L, Xu Q. Tumor-Targeting NIRF/MR Dual-Modal Molecular Imaging Probe for Surgery Navigation. Anal Chem 2022; 94:11255-11263. [PMID: 35921653 DOI: 10.1021/acs.analchem.2c01790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multimodality imaging recognized as a promising monitoring strategy can serve the needs of accurate diagnosis and treatment of cancer by providing molecular and anatomic information about tumor sites. However, the probes based on multiple imaging modalities for surgery navigation remain limited due to poor biocompatibility and tumor targeting specificity. Herein, we present a small-molecule near-infrared fluorescence/magnetic resonance (NIRF/MR) imaging probe, Gd-NMC-3, covalently coupled with DCDSTCY and Gd-DOTA via butane diamine, for precise detection and intraoperative visualization. The in vitro and in vivo studies demonstrated that Gd-NMC-3 could be effectively accumulated in tumor sites as a bimodal imaging molecule exhibiting significant fluorescence accumulation and reasonable relaxation property in tumors with low cytotoxicity and good biocompatibility. Furthermore, Gd-NMC-3 was successfully applied to provide real-time visual navigation in LM3 orthotopic and subcutaneous tumor models to guide the resection of tumors. Importantly, no more fluorescence was observed in mice after operation, implying the total removal of tumor tissues. In conclusion, Gd-NMC-3 has great potential to be applied in the clinic based on its high resolution and sensitivity in tumor imaging.
Collapse
Affiliation(s)
- Qiyi Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Xin Xue
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Jintao Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Yuting Ye
- Pathology and PDX Efficacy Center, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Jia Li
- Pathology and PDX Efficacy Center, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Yanwei Ren
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Dandan Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Bing Liu
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Yuyan Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Qingxiang Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated to Medical College of Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
18
|
You C, Ning L, Zhang Z, Wu H, Qu Q, Wang F, Xiong R, Huang C. Toxic reactive oxygen species enhanced chemodynamic therapy by copper metal-nanocellulose based nanocatalysts. Carbohydr Polym 2022; 289:119432. [DOI: 10.1016/j.carbpol.2022.119432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
|
19
|
Vodyashkin AA, Kezimana P, Vetcher AA, Stanishevskiy YM. Biopolymeric Nanoparticles-Multifunctional Materials of the Future. Polymers (Basel) 2022; 14:2287. [PMID: 35683959 PMCID: PMC9182720 DOI: 10.3390/polym14112287] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas-especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| |
Collapse
|
20
|
Zhang M, Lu X, Zhang G, Liao X, Wang J, Zhang N, Yu C, Zeng G. Novel Cellulose Nanocrystals-Based Polyurethane: Synthesis, Characterization and Antibacterial Activity. Polymers (Basel) 2022; 14:polym14112197. [PMID: 35683870 PMCID: PMC9182890 DOI: 10.3390/polym14112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
As a new type of polymer, water-driven polyurethane (PU) has attracted increasing attention of researchers; however, with the popularization of its application, the following infection problems limit their applications, especially in the biomedical field. Herein, a series of novel cellulose nanocrystals (CNCs)-based PUs were first synthesized by chemical cross-linking CNCs with triblock copolymer polylactide–poly (ethylene glycol)–polylactide (CNC-PU). After covalent binding with tannic acid (TA-CNC-PU), the silver nanoparticles (Ag NPs) were further introduced into the material by a reduction reaction (Ag/TA-CNC-PU). Finally, the prepared serial CNCs-based PU nanocomposites were fully characterized, including the microstructure, water contact angle, water uptake, thermal properties as well as antibacterial activity. Compared with CNC-PU, the obtained TA-CNC-PU and Ag/TA-CNC-PU were capable of lower glass transition temperatures and improved thermal stability. In addition, we found that the introduction of tannic acid and Ag NPs clearly increased the material hydrophobicity and antibacterial activity. In particular, the Ag/TA-CNC-PU had a better antibacterial effect on E. coli, while TA-CNC-PU had better inhibitory effect on S. aureus over a 24 h time period. Therefore, these novel CNCs-based PUs may be more beneficial for thermal processing and could potentially be developed into a new class of smart biomaterial material with good antibacterial properties by adjusting the ratio of TA or Ag NPs in their structures.
Collapse
Affiliation(s)
- Maolan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (X.L.); (G.Z.); (X.L.); (J.W.); (N.Z.)
| | - Xiujuan Lu
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (X.L.); (G.Z.); (X.L.); (J.W.); (N.Z.)
| | - Guiping Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (X.L.); (G.Z.); (X.L.); (J.W.); (N.Z.)
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (X.L.); (G.Z.); (X.L.); (J.W.); (N.Z.)
| | - Jiale Wang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (X.L.); (G.Z.); (X.L.); (J.W.); (N.Z.)
| | - Na Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (X.L.); (G.Z.); (X.L.); (J.W.); (N.Z.)
| | - Chunyi Yu
- Department of Construction Management and Real Estate, Chongqing Jianzhu College, Chongqing 400072, China
- Correspondence: (C.Y.); (G.Z.); Tel./Fax: +86-178-3086-2118 (C.Y.); +86-139-9647-1404 (G.Z.)
| | - Guoming Zeng
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China
- Correspondence: (C.Y.); (G.Z.); Tel./Fax: +86-178-3086-2118 (C.Y.); +86-139-9647-1404 (G.Z.)
| |
Collapse
|
21
|
Martínez-Guerra J, Palomar-Pardavé M, Romero-Romo M, Corona-Avendaño S, Guzmán-Hernández DS, Rojas-Hernández A, Ramírez-Silva MT. On the curcumin and β‐cyclodextrin interaction in aqueous media. Spectrophotometric and electrochemical study. ChemElectroChem 2022. [DOI: 10.1002/celc.202101534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jorge Martínez-Guerra
- Metropolitan Autonomous University Iztapalapa: Universidad Autonoma Metropolitana Iztapalapa Chemistry Av. San Rafael Atlixco #186Col. Vicentina, CDMXIztapalapa 09340 CDMX MEXICO
| | - Manuel Palomar-Pardavé
- Metropolitan Autonomous University Azcapotzalco: Universidad Autonoma Metropolitana Azcapotzalco Materiales Av. San Pablo180Col. Reynosa-Tamaulipas 02200 México MEXICO
| | - Mario Romero-Romo
- Metropolitan Autonomous University Azcapotzalco: Universidad Autonoma Metropolitana Azcapotzalco Materiales Av. San Pablo 180Col. Reynosa-TamaulipasAzcapotzalco 02200 CDMX MEXICO
| | - Silvia Corona-Avendaño
- Metropolitan Autonomous University Azcapotzalco: Universidad Autonoma Metropolitana Azcapotzalco Materiales Av. San Pablo 180Col. Reynosa-TamaulipasAzcapotzalco 02200 CDMX MEXICO
| | - Dafne-Sarahia Guzmán-Hernández
- Metropolitan Autonomous University Iztapalapa: Universidad Autonoma Metropolitana Iztapalapa Chemistry Av. San Rafael Atlixco #186Col. VicentinaIztapalapa 09340 CDMX MEXICO
| | - Alberto Rojas-Hernández
- Metropolitan Autonomous University Iztapalapa: Universidad Autonoma Metropolitana Iztapalapa Chemistry Av. San Rafael Atlixco #186Col. VicentinaIztapalapa 09340 CDMX MEXICO
| | - María Teresa Ramírez-Silva
- Metropolitan Autonomous University Iztapalapa: Universidad Autonoma Metropolitana Iztapalapa Chemistry Av. San Rafael Atlixco #186Col. VicentinaIztapalapa 09340 CDMX MEXICO
| |
Collapse
|
22
|
Lugoloobi I, Wang Y, Zhao L, Li X, Wang B, Mao Z, Sui X, Feng X. Rigid and conductive lightweight regenerated cellulose/carbon nanotubes/acrylonitrile–butadiene–styrene nanocomposites constructed via a Pickering emulsion process. J Appl Polym Sci 2021. [DOI: 10.1002/app.51964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ishaq Lugoloobi
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- National Engineering Research Center for Dyeing and Finishing of Textiles Donghua University Shanghai China
| | - Yating Wang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Lunyu Zhao
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Xiang Li
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- National Engineering Research Center for Dyeing and Finishing of Textiles Donghua University Shanghai China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- National Engineering Research Center for Dyeing and Finishing of Textiles Donghua University Shanghai China
| |
Collapse
|
23
|
Xie L, Zhang Y, Huang A, Zhou J, Lin N, Lu X. Electrostatic Adsorption and Cytotoxity of Cellulose Nanocrystals with Loading Trace Metal Elements. Macromol Biosci 2021; 22:e2100318. [PMID: 34773451 DOI: 10.1002/mabi.202100318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/27/2021] [Indexed: 01/12/2023]
Abstract
Cellulose nanocrystal (CNC) is the rod-like nano-object derived from natural cellulose with the features of low toxicity and good biocompatibility, widely used as the functional additive and nanomaterial in the biomedicine. Two negatively charged cellulose nanocrystals, CNC and TO-CNC (surface oxidized CNC), are prepared by the sulfuric acid hydrolysis and further surface oxidization. Based on electrostatic adsorption, five trace metal elements (TMEs) including cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), and cadmium (Cd) are loaded on the surface of two nanocrystals as the biocompatible nanocarriers. The adsorbed contents of TMEs on two nanocrystals are affected by their surface charge densities and the complexes can keep stability under three varied pH conditions. Two cell lines, viz. human nasopharyngeal cancer cell and normal human bronchial epithelial cell, are selected for the investigation of cytotoxity of these TME-loaded nanocrystals at the concentration range of 0.1-500 µg mL-1 . The high concentrations of TME-loaded nanocrystals will induce the inhibition of cells activity and proliferation, particularly for Pb2+ - and Cd2+ -loaded nanocrystals. The cancer cell generally exhibits more sensitivity of cytotoxity to these metal elements than the normal cell, which may be potentially used as the activity inhibitor for specific cells in the future study.
Collapse
Affiliation(s)
- Li Xie
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Yue Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ao Huang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Ji Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiang Lu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| |
Collapse
|