1
|
Yin G, Liang H, Cheng Y, Chen S, Zhang X, Meng D, Yu W, Liu H, Song C, Zhang F. Diosgenin attenuates nonalcoholic fatty liver disease through mTOR-mediated inhibition of lipid accumulation and inflammation. Chem Biol Interact 2025; 405:111306. [PMID: 39536891 DOI: 10.1016/j.cbi.2024.111306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Excessive hepatic lipid accumulation and inflammatory injury are significant pathological manifestations of nonalcoholic fatty liver disease (NAFLD). Our previous research discovered that diosgenin, a natural steroidal saponin derived from Chinese herbs, can reduce hepatic lipid accumulation and steatosis; however, the exact mechanism remains unclear. This study aimed to investigate the protective mechanisms of diosgenin against NAFLD. We utilized network pharmacology and molecular docking approaches to identify the pathways through which diosgenin improves NAFLD. In high-fat diet (HFD)-fed rats, we measured biochemical markers in the serum and liver. Liver histopathology was assessed using HE and oil-red O staining. In free fatty acids (FFAs)-induced HepG2 cells, we employed the cell transfection overexpression method to verify the regulatory relationship of the identified pathways. The mechanisms in vitro and in vivo were examined using quantitative polymerase chain reaction and Western blot analyses. Bioinformatics analysis indicated that the mTOR-FASN/HIF-1α/RELA/VEGFA pathway may be the target pathway for diosgenin in alleviating NAFLD. Diosgenin inhibited hepatic lipid accumulation and pro-inflammatory cytokines in HFD-fed rats, and reduced intracellular lipid accumulation as well as TG, TC, IL-1β, and TNF-α levels in FFAs-induced HepG2 cells. Mechanistically, diosgenin downregulated the expression of p-mTOR, FASN, HIF-1α, RELA, and VEGFA, which are associated with lipid synthesis and inflammation. Overexpression of mTOR abolished the beneficial effects of diosgenin on lipid reduction and inflammation, as well as its inhibitory effects on the expression of FASN, HIF-1α, RELA, and VEGFA. In conclusion, diosgenin alleviates NAFLD through mTOR-mediated inhibition of lipid accumulation and inflammation.
Collapse
Affiliation(s)
- Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Hongyi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Yiran Cheng
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Suwen Chen
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Xin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Decheng Meng
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Wenfei Yu
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Hongshuai Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Chaoyuan Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250011, China; Department of Neurology, Zibo Central Hospital, Zibo, 255000, China.
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| |
Collapse
|
2
|
Chen S, Huang W, Huang T, Fang C, Zhao K, Zhang Y, Li H, Wu C. Highly sensitive near-infrared fluorescent probe for monitoring peroxynitrite in nonalcoholic fatty liver disease: Toward early diagnosis and therapeutic evaluation. Talanta 2025; 281:126865. [PMID: 39265422 DOI: 10.1016/j.talanta.2024.126865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) poses a significant global health concern, necessitating precise diagnostic tools and effective treatment strategies. Peroxynitrite (ONOO-), a reactive oxygen species, plays a pivotal role in NAFLD pathogenesis, highlighting its potential as a biomarker for disease diagnosis and therapeutic evaluation. This study reports on the development of a near-infrared (NIR) fluorescent probe, designated DRP-O, for the selective detection of ONOO- with high sensitivity and photostability. DRP-O exhibits rapid response kinetics (within 2 min) and an impressive detection limit of 2.3 nM, enabling real-time monitoring of ONOO- dynamics in living cells. Notably, DRP-O demonstrates excellent photostability under continuous laser irradiation, ensuring reliable long-term monitoring in complex biological systems. We apply DRP-O to visualize endogenous ONOO- in living cells, demonstrating its potential for diagnosing and monitoring NAFLD-related oxidative stress. Furthermore, DRP-O effectively evaluates the efficacy of therapeutic drugs in NAFLD cell models, underscoring its potential utility in drug screening studies. Moreover, we confirm DRP-O to enable selective identification of fatty liver tissues in a mouse model of NAFLD, indicating its potential for the early diagnosis of NAFLD. Collectively, DRP-O represents a valuable tool for studying ONOO- dynamics, evaluating drug efficacy, and diagnosing NAFLD, offering insights into novel therapeutic strategies for this prevalent liver disorder.
Collapse
Affiliation(s)
- Shiying Chen
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Wei Huang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Ting Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Cong Fang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Kuicheng Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Cuiyan Wu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
3
|
Liu T, Sui M, Tian M, Wu N, Zhao S, Wang Y, Yang Y, Ma S, Jiao D, Wang L, Feng Y, Zhang Y, Qin C, Liu C, Qi J, Zhu Q. Sulfonated albumin from hepatocytes accelerates liver fibrosis in nonalcoholic fatty liver disease through endoplasmic reticulum stress. Free Radic Biol Med 2024; 228:150-162. [PMID: 39743026 DOI: 10.1016/j.freeradbiomed.2024.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Posttranslational modifications (PTM) of albumin occur in liver diseases; however, little is known about the source and function of sulfonated albumin, a significant modification of albumin occurring in nonalcoholic fatty liver disease (NAFLD). We aimed to investigate the mechanism underlying sulfonated albumin production and its role in the progression of NAFLD-related liver fibrosis. METHODS Serum samples from healthy controls and patients with NAFLD were used to measure the proportion of sulfonated albumin. Mice models with NAFLD fed with high-fat diet (HFD) and methionine choline-deficient diet (MCD) were constructed. RNA sequencing, KEGG analysis, and GSEA were used to explore the mechanism of sulfonated albumin production and its mechanism of activating hepatic stellate cells (HSCs) and promoting the progression of liver fibrosis in NAFLD. RESULTS Sulfonated albumin levels increased significantly in both human and mouse NAFLD serum samples. In vivo studies in mice have shown that the intraperitoneal injection of sulfonated albumin promotes inflammation, hepatic steatosis, and liver fibrosis in NAFLD. In addition, autophagy has been verified as a key mechanism in the regulation of sulfonated albumin production. We also demonstrated that reactive oxygen species (ROS) production depends on the accumulation of damaged mitochondria and affects the production of sulfonated albumin under the regulation of autophagy. Hepatocyte-derived sulfonated albumin activates HSCs through the GAL3 receptor, thereby activating the endoplasmic reticulum (ER) stress pathway and promoting profibrotic activation of HSCs. CONCLUSIONS Our study demonstrated that sulfonated albumin activated HSCs through GAL3, thereby accelerating NAFLD-related liver fibrosis. Serum sulfonated albumin may be a potential diagnostic marker for liver fibrosis and an important target for the treatment of NAFLD-related liver fibrosis.
Collapse
Affiliation(s)
- Tiantian Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Minghao Sui
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Miaomiao Tian
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Nijin Wu
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Songbo Zhao
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yingchun Wang
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yinuo Yang
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shujun Ma
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Deyan Jiao
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Le Wang
- Department of Health Care Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yuemin Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chengyong Qin
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chenxi Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Jianni Qi
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Qiang Zhu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
4
|
Aimuzi R, Xie Z, Qu Y, Luo K, Jiang Y. Proteomic signatures of ambient air pollution and risk of non-alcoholic fatty liver disease: A prospective cohort study in the UK Biobank. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177529. [PMID: 39547383 DOI: 10.1016/j.scitotenv.2024.177529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/13/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Air pollution has been linked with non-alcoholic fatty liver disease (NAFLD), but the underlying mechanisms characterized by perturbations in the circulating proteome profile are largely unknown. Therefore, we included 51,357 participants from the UK Biobank with 2941 plasma proteins measured in blood samples collected between 2006 and 2010, measurements of annual fine particular matter <2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2), and follow-up data on NAFLD (743 incident cases occurred over a median follow-up of 13.6 years). Multiple linear regression was used to identify proteins associated with PM2.5 and NO2. Cox proportional hazards models were applied to assess associations of PM2.5 and NO2 and identified proteins with incident NAFLD. Mediation analyses were conducted to explore the mediation role of proteins in the associations between air pollution and incident NAFLD. After adjusting for selected covariates, PM2.5 (hazard ratio [HR] = 2.57, 95%CI:1.27, 5.21, per ln increase) and NO2 (HR = 1.43, 95%CI: 1.10, 1.84, per ln increase) were positively associated with incident NAFLD. We identified 138 proteins associated with PM2.5 (92 positively, 46 inversely, FDR <0.05) and 143 with NO2 (100 positively, 43 inversely). Of the proteins that were significantly associated with both PM2.5 and NO2, 93 (79 positively, 14 inversely) and 79 (69 positively, 10 inversely) were significantly associated with incident NAFLD. Furthermore, 84 PM2.5-associated proteins and 66 NO2-associated proteins significantly mediated the corresponding association between air pollutants and incident NAFLD, with the proportion of mediation effects ranging from 3.2 % to 27.3 % for PM2.5 and 2.6 % to 20.8 % for NO2, respectively. Of note, the majority of significant mediating proteins were enriched in pathways of cytokine-cytokine receptor interaction, viral protein interaction with cytokine and cytokine receptor. Our findings suggested that long-term exposure to PM2.5 and NO2 was associated with an increased risk of NAFLD partially by perturbating circulating proteins involved in pathways of inflammation and immunity responses.
Collapse
Affiliation(s)
- Ruxianguli Aimuzi
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zhilan Xie
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yimin Qu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
5
|
Samant V, Prabhu A. Exercise, exerkines and exercise mimetic drugs: Molecular mechanisms and therapeutics. Life Sci 2024; 359:123225. [PMID: 39522716 DOI: 10.1016/j.lfs.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Chronic diseases linked with sedentary lifestyles and poor dietary habits are increasingly common in modern society. Exercise is widely acknowledged to have a plethora of health benefits, including its role in primary prevention of various chronic conditions like type 2 diabetes mellitus, obesity, cardiovascular disease, and several musculoskeletal as well as degenerative disorders. Regular physical activity induces numerous physiological adaptations that contribute to these positive effects, primarily observed in skeletal muscle but also impacting other tissues. There is a growing interest among researchers in developing pharmaceutical interventions that mimic the beneficial effects of exercise for therapeutic applications. Exercise mimetic medications have the potential to be helpful aids in enhancing functional outcomes for patients with metabolic dysfunction, neuromuscular and musculoskeletal disorders. Some of the potential targets for exercise mimetics include pathways involved in metabolism, mitochondrial function, inflammation, and tissue regeneration. The present review aims to provide an exhaustive overview of the current understanding of exercise physiology, the role of exerkines and biomolecular pathways, and the potential applications of exercise mimetic drugs for the treatment of several diseases.
Collapse
Affiliation(s)
- Vedant Samant
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
6
|
Xu Y, Michalowski CB, Koehler J, Darwish T, Guccio N, Alcaino C, Domingues I, Zhang W, Marotti V, Van Hul M, Paone P, Koutsoviti M, Boyd BJ, Drucker DJ, Cani PD, Reimann F, Gribble FM, Beloqui A. Smart control lipid-based nanocarriers for fine-tuning gut hormone secretion. SCIENCE ADVANCES 2024; 10:eadq9909. [PMID: 39671480 PMCID: PMC11641013 DOI: 10.1126/sciadv.adq9909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Modulating the endogenous stores of gastrointestinal hormones is considered a promising strategy to mimic gut endocrine function, improving metabolic dysfunction. Here, we exploit mouse and human knock-in and knockout intestinal organoids and show that agents used as commercial lipid excipients can activate nutrient-sensitive receptors on enteroendocrine cells (EECs) and, when formulated as lipid nanocarriers, can bestow biological effects through the release of GLP-1, GIP, and PYY from K and L cells. Studies in wild-type, dysglycemic, and gut Gcg knockout mice demonstrated that the effect exerted by lipid nanocarriers could be modulated by varying the excipients (e.g., nature and quantities), the formulation methodology, and their physiochemical properties (e.g., size and composition). This study demonstrates the therapeutic potential of using nanotechnology to modulate release of multiple endogenous hormones from the enteroendocrine system through a patient-friendly, inexpensive, and noninvasive manner.
Collapse
Affiliation(s)
- Yining Xu
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Cécilia Bohns Michalowski
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Jackie Koehler
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Tamana Darwish
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Nunzio Guccio
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Constanza Alcaino
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Inês Domingues
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Wunan Zhang
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Valentina Marotti
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Matthias Van Hul
- Louvain Drug Research Institute, Metabolism and Nutrition Group, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Paola Paone
- Louvain Drug Research Institute, Metabolism and Nutrition Group, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Melitini Koutsoviti
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
- Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Ben J. Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Patrice D. Cani
- Louvain Drug Research Institute, Metabolism and Nutrition Group, Université catholique de Louvain, 1200 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, 1200 Brussels, Belgium
| | - Frank Reimann
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fiona M. Gribble
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ana Beloqui
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| |
Collapse
|
7
|
Geng Y, Li Y, Liu G, Jiao J. Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics analysis and machine learning. Sci Rep 2024; 14:29463. [PMID: 39604470 PMCID: PMC11603146 DOI: 10.1038/s41598-024-81120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Colorectal polyps are precursors of colorectal cancer. Metabolic dysfunction associated steatohepatitis (MASH) is one of metabolic dysfunction associated fatty liver disease (MAFLD) phenotypic manifestations. Much evidence has suggested an association between MASH and polyps. This study investigated the biomarkers of MASH and colorectal polyps, and the prediction of targeted drugs using an integrated bioinformatics analysis method. Differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA) were performed on GSE89632 and GSE41258 datasets, 49 shared genes revealed after intersection. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses depicted they were mainly enriched in apoptosis, proliferation and infection pathways. Machine learning algorithms identified S100P, FOXO1, and LPAR1 were biomarkers for colorectal polyps and MASH, ROC curve and violin plot showed ideal AUC and stable expression patterns in both the discovery and validation sets. GSEA analysis showed significant enrichment of bile acid and fatty acid pathways when grouped by the expression levels of the three candidate biomarkers. Immune infiltration analysis showed a significant infiltration of M0 macrophages and Treg cells in the colorectal polyps group. A total of 9 small molecule compounds were considered as potential chemoprevention agents in MASH and colorectal polyps by using the CMap website. Using integrated bioinformatics analysis, the molecular mechanism between MASH and colorectal polyps has been further explored.
Collapse
Affiliation(s)
- Ying Geng
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Yifang Li
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Ge Liu
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Jian Jiao
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| |
Collapse
|
8
|
Zhang Z, Liu Y, Li G, Chen X, Lei M, Zhou Y, Long H, Chen Q, Hou J, Wu W. An economically viable stable isotope-enhanced multiple reaction monitoring method for total fatty acid analysis in a mouse model of non-alcoholic fatty liver disease. J Chromatogr A 2024; 1736:465406. [PMID: 39378619 DOI: 10.1016/j.chroma.2024.465406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
The complex pathological mechanisms of non-alcoholic fatty liver disease (NAFLD) are closely related to dysregulated lipid metabolism, and the therapeutic effects of the traditional Chinese medicine Zexie-Baizhu Decoction (AA) on NAFLD have been gaining increasing attention. However, research into altered lipid metabolism, especially fatty acids, in NAFLD and the intervention of AA faces technical challenges, especially in the precise quantitative analysis of fatty acids in biological samples. The high complexity of biological matrices, particularly after drug intervention, greatly increases the difficulty of detection. Therefore, this study innovatively developed a simple and economical stable isotope derivatization technique by synthesizing d6N,N-dimethylethylenediamine (d6-DMED) in the laboratory, establishing a simple and economical method for fatty acid quantification. This method employs a chemical reaction under low-temperature conditions to ensure the efficient synthesis of d6-DMED. Using ultra-high performance liquid chromatography-triple quadrupole mass spectrometry technique (UHPLC-MS/MS), combined with optimized chromatographic separation conditions and dynamic multiple reaction monitoring mode, the study established a highly sensitive detection method for 35 fatty acid derivatives. Methodological evaluation showed that the limits of quantification ranged from 0.002 to 0.060 μM, with high linearity of R² > 0.995. Additionally, the relative recovery rates were between 93.14% and 106.63%. To further demonstrate the feasibility of this method for fatty acid quantification, it was applied to measure fatty acids in multiple tissues in a mouse NAFLD model, as well as the effects of AA intervention on fatty acid metabolism. This rapid, simple, and cost-effective detection method not only enhances the understanding of NAFLD mechanisms but also provides a new strategy for evaluating the biological complex system after drug intervention.
Collapse
Affiliation(s)
- Zijia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawen Liu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaohan Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Xiaoling Chen
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huali Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong 518101, China
| | - Jinjun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wanying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
9
|
Zhang J, Zhang H, Chen Y, Chen S, Liu H. Dendrobine alleviates oleic acid-induced lipid accumulation by inhibiting FOS/METTL14 pathway. J Mol Histol 2024; 55:995-1007. [PMID: 39136847 DOI: 10.1007/s10735-024-10246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Dendrobine (DDB), an alkaloid isolated from the Chinese herb Dendrobium, has antioxidant and anti-inflammatory effects; however, whether DDB reduces oleic acid (OA)-induced lipid accumulation remains unclear. OA-induced lipid accumulation model of HepG2 cells were treated with DDB. Cellular lipid deposition was assessed by Oil Red O (ORO) staining and triglyceride and total cholesterol detection. RNA-Sequencing (RNA-seq), biological function analysis, and transcription factor (TFs) prediction were combined to identify key TF in the DDB-treated OA model. Finally, the roles of FOS and METTL14 were examined using a DDB-induced lipid accumulation model. DDB inhibited OA-induced lipid accumulation. We identified 895 differentially expressed genes (DEGs) that were mainly enriched in various biological processes of lipid synthesis and transport. Four transcription factors (SOX9, MLXIPL, FOS, and JUN) associated with lipid metabolism and FOS levels in the OA-induced lipid accumulation model after DDB treatment had the greatest changes in expression change. Overexpression of FOS alleviates the inhibitory effect of DDB on OA-induced lipid accumulation. METTL14 is a target gene of FOS, and simultaneous interference with METTL14 in cells with high FOS expression restored the alleviating effect of DDB on lipid accumulation. DDB alleviated OA-induced lipid accumulation by inhibiting the FOS/METTL14 pathway.
Collapse
Affiliation(s)
- Junpei Zhang
- Department of Gastroenterology, Minhang Hospital of Fudan University, 170 Shensong Road, Shanghai, 201100, China
| | - Hongyun Zhang
- Department of Gastroenterology, Minhang Hospital of Fudan University, 170 Shensong Road, Shanghai, 201100, China
| | - Ying Chen
- Department of Gastroenterology, Minhang Hospital of Fudan University, 170 Shensong Road, Shanghai, 201100, China
| | - Shiyao Chen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Hailing Liu
- Department of Gastroenterology, Minhang Hospital of Fudan University, 170 Shensong Road, Shanghai, 201100, China.
| |
Collapse
|
10
|
Domingues I, Yagoubi H, Zhang W, Marotti V, Kambale EK, Vints K, Sliwinska MA, Leclercq IA, Beloqui A. Effects of semaglutide-loaded lipid nanocapsules on metabolic dysfunction-associated steatotic liver disease. Drug Deliv Transl Res 2024; 14:2917-2929. [PMID: 38615156 PMCID: PMC11385015 DOI: 10.1007/s13346-024-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent chronic liver disease that can progress to end-stage conditions with life-threatening complications, but no pharmacologic therapy has been approved. Drug delivery systems such as lipid nanocapsules (LNC) are very versatile platforms that are easy to produce and can induce the secretion of the native glucagon-like peptide 1 (GLP-1) when orally administered. GLP-1 analogs are currently being studied in clinical trials in the context of MASLD. Our nanosystem provides with increased levels of the native GLP-1 and increased plasmatic absorption of the encapsulated GLP-1 analog (semaglutide). Our goal was to use our strategy to demonstrate a better outcome and a greater impact on the metabolic syndrome associated with MASLD and on liver disease progression with our strategy compared with the oral marketed version of semaglutide, Rybelsus®. Therefore, we studied the effect of our nanocarriers on a dietary mouse model of MASLD, the Western diet model, during a daily chronic treatment of 4 weeks. Overall, the results showed a positive impact of semaglutide-loaded lipid nanocapsules towards the normalization of glucose homeostasis and insulin resistance. In the liver, there were no significant changes in lipid accumulation, but an improvement in markers related to inflammation was observed. Overall, our strategy had a positive trend on the metabolic syndrome and at reducing inflammation, mitigating the progression of the disease. Oral administration of the nanosystem was more efficient at preventing the progression of the disease to more severe states when compared to the administration of Rybelsus®, as a suspension.
Collapse
Affiliation(s)
- Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200, Brussels, Belgium
| | - Hafsa Yagoubi
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200, Brussels, Belgium
| | - Wunan Zhang
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200, Brussels, Belgium
| | - Valentina Marotti
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200, Brussels, Belgium
| | - Espoir K Kambale
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200, Brussels, Belgium
| | - Katlijn Vints
- EM-platform, VIB Bio Imaging Core, KU Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium
| | | | - Isabelle A Leclercq
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Avenue Emmanuel Mounier 53, 1200, Brussels, Belgium.
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200, Brussels, Belgium.
- WEL Research Institute, WELBIO Department, Avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
11
|
Książek E, Goluch Z, Bochniak M. Vaccinium spp. Berries in the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease: A Comprehensive Update of Preclinical and Clinical Research. Nutrients 2024; 16:2940. [PMID: 39275255 PMCID: PMC11396909 DOI: 10.3390/nu16172940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disorder marked by the buildup of triacylglycerols (TGs) in the liver. It includes a range of conditions, from simple steatosis to more severe forms like non-alcoholic steatohepatitis (NASH), which can advance to fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD's prevalence is rising globally, estimated between 10% and 50%. The disease is linked to comorbidities such as obesity, type 2 diabetes, insulin resistance, and cardiovascular diseases and currently lacks effective treatment options. Therefore, researchers are focusing on evaluating the impact of adjunctive herbal therapies in individuals with NAFLD. One herbal therapy showing positive results in animal models and clinical studies is fruits from the Vaccinium spp. genus. This review presents an overview of the association between consuming fruits, juices, and extracts from Vaccinium spp. and NAFLD. The search used the following keywords: ((Vaccinium OR blueberry OR bilberry OR cranberry) AND ("non-alcoholic fatty liver disease" OR "non-alcoholic steatohepatitis")). Exclusion criteria included reviews, research notes, book chapters, case studies, and grants. The review included 20 studies: 2 clinical trials and 18 studies on animals and cell lines. The findings indicate that juices and extracts from Vaccinium fruits and leaves have significant potential in addressing NAFLD by improving lipid and glucose metabolism and boosting antioxidant and anti-inflammatory responses. In conclusion, blueberries appear to have the potential to alleviate NAFLD, but more clinical trials are needed to confirm these benefits.
Collapse
Affiliation(s)
- Ewelina Książek
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| | - Zuzanna Goluch
- Department of Food Technology and Nutrition, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| | - Marta Bochniak
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| |
Collapse
|
12
|
Beloqui A. Gut hormone stimulation as a therapeutic approach in oral peptide delivery. J Control Release 2024; 373:31-37. [PMID: 38971429 PMCID: PMC11413617 DOI: 10.1016/j.jconrel.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
In this contribution to the Orations - New Horizons of the Journal of Controlled Release, I discuss the research that we have conducted on gut hormone stimulation as a therapeutic strategy in oral peptide delivery. One of the greatest challenges in oral drug delivery involves the development of new drug delivery systems that enable the absorption of therapeutic peptides into the systemic circulation at therapeutically relevant concentrations. This scenario is especially challenging in the treatment of chronic diseases (such as type 2 diabetes mellitus), wherein daily injections are often needed. However, for certain peptides, there may be an alternative in drug delivery to meet the need for increased peptide bioavailability; this is the case for gut hormone mimetics (including glucagon-like peptide (GLP)-1 or GLP-2). One plausible alternative for improved oral delivery of these peptides is the co-stimulation of the endogenous secretion of the hormone to reach therapeutic levels of the peptide. This oration will be focused on studies conducted on the stimulation of gut hormones secreted from enteroendocrine L cells in the treatment of gastrointestinal disorders, including a critical discussion of the limitations and future perspectives of implementing this approach in the clinical setting.
Collapse
Affiliation(s)
- Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
13
|
Bai Y, Nan Y, Wu T, Zhu A, Xie X, Sun Y, Deng Y, Dou Z, Hu X, Zhou R, Xu S, Zhang Y, Fan J, Ju D. Lipid Nanoparticle-Mediated Delivery of CRISPR-Cas9 Against Rubicon Ameliorates NAFLD by Modulating CD36 Along with Glycerophospholipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400493. [PMID: 38894572 PMCID: PMC11336963 DOI: 10.1002/advs.202400493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prominent cause of various chronic metabolic hepatic diseases with limited therapeutics. Rubicon, an essential regulator in lysosomal degradation, is reported to exacerbate hepatic steatosis in NAFLD mice and patients, indicating its probability of being a therapeutic target for NAFLD treatment. In this study, the therapeutic potential of Rubicon blockage is investigated. Lipid nanoparticles carrying Rubicon-specific CRISPR-Cas9 components exhibited liver accumulation, cell internalization, and Rubicon knockdown. A single administration of the nanoparticles results in attenuated lipid deposition and hepatic steatosis, with lower circulating lipid levels and decreased adipocyte size in NAFLD mice. Furthermore, the increase of phosphatidylcholine and phosphatidylethanolamine levels can be observed in the NAFLD mice livers after Rubicon silencing, along with regulatory effects on metabolism-related genes such as CD36, Gpcpd1, Chka, and Lpin2. The results indicate that knockdown of Rubicon improves glycerophospholipid metabolism and thereby ameliorates the NAFLD progression, which provides a potential strategy for NAFLD therapy via the restoration of Rubicon.
Collapse
Affiliation(s)
- Yu Bai
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Tao Wu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - An Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Xinlei Xie
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Yun Sun
- Department of Research and DevelopmentShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai201321P. R. China
| | - Yong Deng
- Department of Research and DevelopmentShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai201321P. R. China
| | - Zihan Dou
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Rongrui Zhou
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Shuwen Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Yuanzhen Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
- Fudan Zhangjiang InstituteShanghai201203P. R. China
- Shanghai Hailu Biological Technology Co., Ltd.Shanghai201200P. R. China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
- Fudan Zhangjiang InstituteShanghai201203P. R. China
| |
Collapse
|
14
|
Jiang Y, Yusoff NM, Du J, Moses EJ, Lin JT. Current perspectives on mesenchymal stem cells as a potential therapeutic strategy for non-alcoholic fatty liver disease. World J Stem Cells 2024; 16:760-772. [PMID: 39086561 PMCID: PMC11287429 DOI: 10.4252/wjsc.v16.i7.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant health challenge, characterized by its widespread prevalence, intricate natural progression and multifaceted pathogenesis. Although NAFLD initially presents as benign fat accumulation, it may progress to steatosis, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Mesenchymal stem cells (MSCs) are recognized for their intrinsic self-renewal, superior biocompatibility, and minimal immunogenicity, positioning them as a therapeutic innovation for liver diseases. Therefore, this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways, including glycolipid metabolism, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics, and support the development of MSC-based therapy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yan Jiang
- School of Nursing, Xinxiang Medical University, Xinxiang 453000, Henan Province, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Jiang Du
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Emmanuel Jairaj Moses
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Jun-Tang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453000, Henan Province, China.
| |
Collapse
|
15
|
Wang J, Li H, Wang X, Shi R, Hu J, Zeng X, Luo H, Yang P, Luo H, Cao Y, Cai X, Chen S, Wang D. Association between triglyceride to high-density lipoprotein cholesterol ratio and nonalcoholic fatty liver disease and liver fibrosis in American adults: an observational study from the National Health and Nutrition Examination Survey 2017-2020. Front Endocrinol (Lausanne) 2024; 15:1362396. [PMID: 39081791 PMCID: PMC11286417 DOI: 10.3389/fendo.2024.1362396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This study investigated the link between triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and nonalcoholic fatty liver disease (NAFLD) and liver fibrosis in American adults. Methods Information for 6495 participants from the National Health and Nutrition Examination Survey (NHANES) 2017-2020.03 was used for this cross-sectional study. The link between TG/HDL-C ratios and NAFLD and liver fibrosis was assessed by multiple linear regression before evaluating nonlinear correlations based on smoothed curve fitting models. Stratification analysis was then applied to confirm whether the dependent and independent variables displayed a stable association across populations. Results TG/HDL-C ratios were positively correlated with NAFLD, with higher ratios being linked to increased prevalence of NAFLD. After adjusting for potential confounders, the odds ratios (OR) for NAFLD patients in the fourth TG/HDL-C quartile were 3.61 (95% confidence interval [CI], 2.94-4.38) (P for trend < 0.001) in comparison with those in the first quartile after adjusting for clinical variables. However, no statistical significance was noted for the ratio for liver fibrosis after adjusting for potential confounders (P for trend = 0.07). A nonlinear correlation between TG/HDL-C ratios and NAFLD was observed based on smoothed curve fitting models. However, a nonlinear relationship between the ratios and liver fibrosis was not established. In subgroup analyses, there was an interaction between smoking status and TG/HDL-C ratio in relation to the prevalence of liver fibrosis (P for interaction < 0.001). Conclusions Among American adults, the TG/HDL-C ratio was noted to be nonlinearly positively associated with the prevalence of NAFLD; however, this relationship was not present in liver fibrosis.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Han Li
- Department of Cardiology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Xiaoyi Wang
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Ruizi Shi
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Junchao Hu
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xintao Zeng
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Hua Luo
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Pei Yang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Huiwen Luo
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuan Cao
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xianfu Cai
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Sirui Chen
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Decai Wang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
16
|
Wang J, Fang Y, Luo Z, Wang J, Zhao Y. Emerging mRNA Technology for Liver Disease Therapy. ACS NANO 2024; 18:17378-17406. [PMID: 38916747 DOI: 10.1021/acsnano.4c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Liver diseases have consistently posed substantial challenges to global health. It is crucial to find innovative methods to effectively prevent and treat these diseases. In recent times, there has been an increasing interest in the use of mRNA formulations that accumulate in liver tissue for the treatment of hepatic diseases. In this review, we start by providing a detailed introduction to the mRNA technology. Afterward, we highlight types of liver diseases, discussing their causes, risks, and common therapeutic strategies. Additionally, we summarize the latest advancements in mRNA technology for the treatment of liver diseases. This includes systems based on hepatocyte growth factor, hepatitis B virus antibody, left-right determination factor 1, human hepatocyte nuclear factor α, interleukin-12, methylmalonyl-coenzyme A mutase, etc. Lastly, we provide an outlook on the potential of mRNA technology for the treatment of liver diseases, while also highlighting the various technical challenges that need to be addressed. Despite these difficulties, mRNA-based therapeutic strategies may change traditional treatment methods, bringing hope to patients with liver diseases.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yile Fang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
17
|
Lu K, Zhou Y, He L, Li Y, Shahzad M, Li D. Coprococcus protects against high-fat diet-induced nonalcoholic fatty liver disease in mice. J Appl Microbiol 2024; 135:lxae125. [PMID: 38830802 DOI: 10.1093/jambio/lxae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/21/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
AIMS The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing annually, leading to substantial medical and health burdens. Numerous studies have demonstrated the potential effectiveness of intestinal probiotics as a treatment strategy for NAFLD. Therefore, the objective of this study is to identify a probiotic for the treatment of NAFLD. METHODS AND RESULTS In this study, blood and fecal samples were collected from 41 healthy volunteers and 44 patients diagnosed with NAFLD. Analysis of the 16S rDNA sequencing data and quantitative real-time PCR (RT-qPCR) revealed a significant reduction in the abundance of Coprococcus in NAFLD patients. Subsequent animal experiments demonstrated that Coprococcus was able to effectively reverse liver lipid accumulation, inflammation, and fibrosis induced by a high-fat diet (HFD) in mice. CONCLUSIONS This study provides the first in vivo evidence that Coprococcus is a beneficial bacterium capable of preventing NAFLD and has the same probiotic effect in mice as Lactobacillus GG (LGG), a positive control. Therefore, Coprococcus has the potential to serve as a probiotic for the prevention and treatment of NAFLD in humans.
Collapse
Affiliation(s)
- Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi 710061, China
| | - Yimeng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi 710061, China
- Department of Planned Immunization, Xi'an Center for Disease Control and Prevention, No. 599 Xiying Road, Yanta District, Xi'an 710054 Shaanxi, China
| | - Lei He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi 710061, China
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center of China, Beijing 100034, China
| | - Ya Li
- Department of Clinical Laboratory, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaan Xi 710061, China
| |
Collapse
|
18
|
Lin R, Zhou J, Sun Q, Xin X, Hu Y, Zheng M, Feng Q. Meta-analysis: Efficacy and safety of fibroblast growth factor 21 analogues for the treatment of non-alcoholic steatohepatitis and non-alcoholic steatohepatitis-related fibrosis. Aliment Pharmacol Ther 2024; 59:802-811. [PMID: 38297816 DOI: 10.1111/apt.17889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) analogues have emerged as promising therapeutic targets for non-alcoholic steatohepatitis (NASH). However, the effects and safety of these analogues on NASH and NASH-related fibrosis remain unexplored. AIMS To estimate the efficacy and safety of FGF21 analogues for treating NASH and NASH-related fibrosis. METHODS PubMed, Embase, and the Cochrane Library were searched for relevant studies up to 11 October 2023. Primary outcomes were defined as the fibrosis improvement ≥1 stage without worsening of NASH and NASH resolution without worsening fibrosis. Secondary outcomes included biomarkers of fibrosis, liver injury, and metabolism. Treatment-related adverse events were also analysed. RESULTS Nine studies, including 1054 patients with biopsy-proven NASH and stage F1-F4 fibrosis, were identified. Seven studies reported histological outcomes. The relative risk (RR) for obtaining fibrosis improvement ≥1 stage efficacy was 1.79 (95% CI 1.29-2.48, I2 = 37%, p < 0.001) with FGF21 analogues relative to placebo. Although no statistically significant difference was observed between FGF21 analogues in NASH resolution, sensitivity analyses and fragility index suggest that this result is unstable. The drugs improved hepatic fat fraction (HFF), along with other biomarkers of fibrosis, liver injury, and metabolism (MRE, LSM, Pro-C3, ELF, ALT, AST, TG, HDL-C, and LDL-C). Additionally, no significant difference in serious adverse event incidence rate was observed (RR = 1.26, 95% CI 0.82-1.94, I2 = 24%, p = 0.3). CONCLUSIONS FGF21 analogues appear as promising agents for the treatment of NASH and NASH-related fibrosis, and they generally seem to be safe and well tolerated.
Collapse
Affiliation(s)
- Rutao Lin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianghua Zhou
- Department of Cardiovascular Medicine, the Heart Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinmei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|