1
|
Xu T, Zeng X, He C, Wu B, Ren B, Chen Y, Zhang B, Khusnutdinov IS, Zhang Y. Low-carbon treatment and remediation of oil sludge in mid-to-high latitude regions: A coupled approach of freeze-thaw and supercritical CO 2 extraction. ENVIRONMENTAL RESEARCH 2024; 263:120010. [PMID: 39307221 DOI: 10.1016/j.envres.2024.120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
The oil sludge produced while extracting large oil and gas fields in the middle and high latitude regions has caused serious pollution to the surrounding soil. The key to solving this problem in the future is to unify the remediation of soil and the treatment of oil sludge. This study uses supercritical carbon dioxide(scCO2) technology to construct a low-carbon method, providing a new approach to achieve this goal. The study determines the optimal extraction conditions for black calcareous soil with 15% oil content to be 55 °C, 25 MPa, and 90 min through single factor and response surface experiments. Experiments on the scCO2 extraction coupled with freeze-thaw cycles show that oil sludge with a water content of 10% can improve the extraction efficiency of scCO2 by about 2.69% after less than five freeze-thaw cycles. The study also compares the extraction efficiency of the four soils, with a difference of 6.03% observed under the same conditions. Additionally, we analyze the impact of the extraction process on changes in the properties of the oil and soil in the oil sludge. Comprehensive tests, including scanning electron microscope (SEM), nutrient detection, X-ray powder diffractometer (XRD), fourier transform infrared spectroscopy (FTIR), and Gas Chromatography (GC), have been conducted. Results show that standalone scCO2 extraction can remove up to 98.2% of petroleum hydrocarbons from the oil sludge, while simultaneously causing small changes to the soil microstructure and the crystal structure of the oil sludge. Furthermore, this process does not lead to a significant depletion of key nutrients or the generation of new pollutants.
Collapse
Affiliation(s)
- Tiefu Xu
- School of Civil Engineering, Heilongjiang University, Harbin, 150006, China
| | - Xu Zeng
- School of Civil Engineering, Heilongjiang University, Harbin, 150006, China
| | - Chuan He
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518052, China
| | - Boxiao Wu
- School of Civil Engineering, Heilongjiang University, Harbin, 150006, China
| | - Binqiao Ren
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150009, China.
| | - Yuejia Chen
- School of Civil Engineering, Heilongjiang University, Harbin, 150006, China
| | - Bo Zhang
- School of Civil Engineering, Heilongjiang University, Harbin, 150006, China
| | | | - Yuying Zhang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150009, China.
| |
Collapse
|
2
|
Geng Y, Zheng Y, Zhou R, Ma M. Effect of supercritical carbon dioxide on protein structure modification and antimicrobial peptides production of Mongolian cheese and its in vitro digestion. Food Res Int 2024; 191:114714. [PMID: 39059962 DOI: 10.1016/j.foodres.2024.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The aim of this research was to investigate the effects of supercritical carbon dioxide (SC-CO2) treatment on protein structure in Mongolian cheese. The peptides during the digestive process of the SC-CO2 treated cheese were also studied. SC-CO2 technology was utilized to treat Mongolian cheese at three temperatures (45, 55 and 65 °C) and three pressures (7.5, 12.5 and 17.5 MPa). The results of fluorescence, ultraviolet-visible, Fourier transform infrared spectroscopy and free sulfhydryl groups showed that SC-CO2, particularly at 65 °C and 17.5 MPa, modified the protein structure in Mongolian cheese effectively. The data of LC-MS/MS-based peptidomics showed that the content of antimicrobial peptides found in the SC-CO2 treated Mongolian cheese was 1.55 times that of the untreated Mongolian cheese; the content of unique antimicrobial peptides in the digested SC-CO2 treated Mongolian cheese was 1.46 times that of the digested untreated Mongolian cheese, which proved that SC-CO2 could help produce antimicrobial peptides in cheese not only during the process of SC-CO2 treatment but during subsequent simulated gastrointestinal digestion as well. In conclusion, SC-CO2 could be considered a promising method to develop cheese products with potential health benefits.
Collapse
Affiliation(s)
- Yawen Geng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Ran Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Quality Supervision, Inspection and Testing Center for Cold Storage and Refrigeration Equipment, Ministry of Agriculture, Shanghai, China.
| | - Ming Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Veiga GCD, Mafaldo ÍM, Barão CE, Baú TR, Magnani M, Pimentel TC. Supercritical carbon dioxide technology in food processing: Insightful comprehension of the mechanisms of microbial inactivation and impacts on quality and safety aspects. Compr Rev Food Sci Food Saf 2024; 23:e13345. [PMID: 38638070 DOI: 10.1111/1541-4337.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Supercritical carbon dioxide (SC-CO2) has emerged as a nonthermal technology to guarantee food safety. This review addresses the potential of SC-CO2 technology in food preservation, discussing the microbial inactivation mechanisms and the impact on food products' quality parameters and bioactive compounds. Furthermore, the main advantages and gaps are denoted. SC-CO2 technology application causes adequate microbial reductions (>5 log cfu/mL) of spoilage and pathogenic microorganisms, enzyme inactivation, and improvements in the storage stability in fruit and vegetable products (mainly fruit juices), meat products, and dairy derivatives. SC-CO2-treated products maintain the physicochemical, technological, and sensory properties, bioactive compound concentrations, and biological activity (antioxidant and angiotensin-converting enzyme-inhibitory activities) similar to the untreated products. The optimization of processing parameters (temperature, pressure, CO2 volume, and processing times) is mandatory for achieving the desired results. Further studies should consider the expansion to different food matrices, shelf-life evaluation, bioaccessibility of bioactive compounds, and in vitro and in vivo studies to prove the benefits of using SC-CO2 technology. Moreover, the impact on sensory characteristics and, mainly, the consumer perception of SC-CO2-treated foods need to be elucidated. We highlight the opportunity for studies in postbiotic production. In conclusion, SC-CO2 technology may be used for microbial inactivation to ensure food safety without losing the quality parameters.
Collapse
Affiliation(s)
- Géssica Cristina da Veiga
- Department of Food Science and Technology, Post-Graduation Program in Food Science, State University of Londrina, Londrina, Brazil
| | - Ísis Meireles Mafaldo
- Department of Food Engineering, Laboratory of Microbial Process in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Tahis Regina Baú
- Food Technology Coordination, Federal Institute of Santa Catarina, São Miguel do Oeste, Santa Catarina, Brazil
| | - Marciane Magnani
- Department of Food Engineering, Laboratory of Microbial Process in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatiana Colombo Pimentel
- Department of Food Science and Technology, Post-Graduation Program in Food Science, State University of Londrina, Londrina, Brazil
- Federal Institute of Paraná (IFPR), Campus Paranavaí, Paranavaí, Paraná, Brazil
| |
Collapse
|
4
|
Khan S, Abdo AAA, Shu Y, Zhang Z, Liang T. The Extraction and Impact of Essential Oils on Bioactive Films and Food Preservation, with Emphasis on Antioxidant and Antibacterial Activities-A Review. Foods 2023; 12:4169. [PMID: 38002226 PMCID: PMC10670266 DOI: 10.3390/foods12224169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Essential oils, consisting of volatile compounds, are derived from various plant parts and possess antibacterial and antioxidant properties. Certain essential oils are utilized for medicinal purposes and can serve as natural preservatives in food products, replacing synthetic ones. This review describes how essential oils can promote the performance of bioactive films and preserve food through their antioxidant and antibacterial properties. Further, this article emphasizes the antibacterial efficacy of essential oil composite films for food preservation and analyzes their manufacturing processes. These films could be an attractive delivery strategy for improving phenolic stability in foods and the shelf-life of consumable food items. Moreover, this article presents an overview of current knowledge of the extraction of essential oils, their effects on bioactive films and food preservation, as well as the benefits and drawbacks of using them to preserve food products.
Collapse
Affiliation(s)
- Sohail Khan
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Abdullah A. A. Abdo
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Tieqiang Liang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| |
Collapse
|
5
|
Leitgeb M, Knez Ž, Hojnik Podrepšek G. Effect of Green Food Processing Technology on the Enzyme Activity in Spelt Flour. Foods 2022; 11:foods11233832. [PMID: 36496639 PMCID: PMC9737601 DOI: 10.3390/foods11233832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In this research, a new approach to enzyme inactivation in flour was presented by supercritical technology, considered a sustainable technology with lower energy consumption compared to other technologies that use ultra-high temperature processing. Total protein concentration and the activity of enzymes α-amylase, lipase, peroxidase, polyphenol oxidase, and protease were determined in flour pre-treated with scCO2. During the study, it was observed that the activity of enzymes such as lipase and polyphenol oxidase, was significantly reduced under certain conditions of scCO2 treatment, while the enzymes α-amylase and protease show better stability. In particular, polyphenol oxidase was effectively inactivated below the 60% of preserved activity at 200 bar and 3 h, whereas α-amylase under the same conditions retained its activity. Additionally, the moisture content of the scCO2-treated spelt flour was reduced by 5%, and the fat content was reduced by 58%, while the quality of scCO2-treated flour was maintained. In this regard, the sustainable scCO2 process could be a valuable tool for controlling the enzymatic activity of spelt flour since the use of scCO2 technology has a positive effect on the quality of flour, which was verified by the baking performance of spelt flour with the baked spelt bread as an indicator of quality.
Collapse
Affiliation(s)
- Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-2294-462
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| | - Gordana Hojnik Podrepšek
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
6
|
Kobayashi F, Odake S. Determination of the Lethal Injury on the Inactivation of Saccharomyces pastorianus Cells by Low-pressure Carbon Dioxide Microbubbles. Curr Microbiol 2022; 79:120. [PMID: 35235071 DOI: 10.1007/s00284-022-02817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022]
Abstract
To clarify the lethal injury related to the inactivation of Saccharomyces pastorianus cells by low-pressure carbon dioxide microbubble (CO2MB) treatment, surviving number, leakage of nucleic acids and proteins, fluorescence polarisation (FP) of the cell membrane, activity of alkaline phosphatase (AP), intracellular pH (pHin), mitochondrial membrane potential (MMP), cell surface hydrophobicity (CSH) and oxidative stress of S. pastorianus treated with CO2MB at various temperatures were measured. The number of surviving S. pastorianus cells decreased below the detection limit after CO2MB treatment at temperatures of 40, 45 and 50 ℃, inducing a 2-log reduction at 35 ℃. The S. pastorianus cells treated with CO2MB at temperatures above 40 ℃ showed an increase in FP and leakage of nucleic acids and proteins. The AP in S. pastorianus cells treated with CO2MB at a temperature of 35 ℃ was also activated but inactivated at temperatures above 40 ℃. Furthermore, the decrease in pHin and MMP and the increase in CSH of S. pastorianus were caused by CO2MB treatment at temperatures above 35 ℃. Oxidative stress in S. pastorianus cells was also increased by CO2MB treatment without warming but decreased at temperatures above 35 ℃. Our results lead us to infer that the type of cell injury in S. pastorianus induced by CO2MB treatment differed from that caused by the treatment temperature and that the lethal injury was enzyme inactivation.
Collapse
Affiliation(s)
- Fumiyuki Kobayashi
- Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan.
| | - Sachiko Odake
- Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| |
Collapse
|
7
|
Calahorrano-Moreno MB, Ordoñez-Bailon JJ, Baquerizo-Crespo RJ, Dueñas-Rivadeneira AA, B. S. M. Montenegro MC, Rodríguez-Díaz JM. Contaminants in the cow's milk we consume? Pasteurization and other technologies in the elimination of contaminants. F1000Res 2022; 11:91. [PMID: 35186276 PMCID: PMC8822143 DOI: 10.12688/f1000research.108779.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cow's milk is currently the most consumed product worldwide. However, due to various direct and indirect contamination sources, different chemical and microbiological contaminants have been found in cow's milk. This review details the main contaminants found in cow's milk, referring to the sources of contamination and their impact on human health. A comparative approach highlights the poor efficacy and effects of the pasteurization process with other methods used in the treatment of cow's milk. Despite pasteurization and related techniques being the most widely applied to date, they have not demonstrated efficacy in eliminating contaminants. New technologies have appeared as alternative treatments to pasteurization. However, in addition to causing physicochemical changes in the raw material, their efficacy is not total in eliminating chemical contaminants, suggesting the need for new research to find a solution that contributes to improving food safety.
Collapse
Affiliation(s)
- Micaela Belen Calahorrano-Moreno
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Jonathan Jerry Ordoñez-Bailon
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Ricardo José Baquerizo-Crespo
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | | | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| |
Collapse
|
8
|
Gomez-Gomez A, Brito-de la Fuente E, Gallegos C, Garcia-Perez JV, Benedito J. Combination of supercritical CO 2 and high-power ultrasound for the inactivation of fungal and bacterial spores in lipid emulsions. ULTRASONICS SONOCHEMISTRY 2021; 76:105636. [PMID: 34192660 PMCID: PMC8254120 DOI: 10.1016/j.ultsonch.2021.105636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 05/28/2023]
Abstract
For the first time, this study addresses the intensification of supercritical carbon dioxide (SC-CO2) treatments using high-power ultrasound (HPU) for the inactivation of fungal (Aspergillus niger) and bacterial (Clostridium butyricum) spores in oil-in-water emulsions. The inactivation kinetics were analyzed at different pressures (100, 350 and 550 bar) and temperatures (50, 60, 70, 80, 85 °C), depending on the microorganism, and compared to the conventional thermal treatment. The inactivation kinetics were satisfactorily described using the Weibull model. Experimental results showed that SC-CO2 enhanced the inactivation level of both spores when compared to thermal treatments. Bacterial spores (C.butyricum) were found to be more resistant to SC-CO2 + HPU, than fungal (A.niger) ones, as also observed in the thermal and SC-CO2 treatments. The application of HPU intensified the SC-CO2 inactivation of C.butyricum spores, e.g. shortening the total inactivation time from 10 to 3 min at 85 °C. However, HPU did not affect the SC-CO2 inactivation of A.niger spores. The study into the effect of a combined SC-CO2 + HPU treatment has to be necessarily extended to other fungal and bacterial spores, and future studies should elucidate the impact of HPU application on the emulsion's stability.
Collapse
Affiliation(s)
- Angela Gomez-Gomez
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain
| | - Edmundo Brito-de la Fuente
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Pharmaceuticals & Device Division, Bad Homburg, Germany
| | - Críspulo Gallegos
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Pharmaceuticals & Device Division, Bad Homburg, Germany
| | - Jose V Garcia-Perez
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain
| | - Jose Benedito
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain.
| |
Collapse
|
9
|
|
10
|
Abstract
The demand for safe, high-quality food has greatly increased, in recent times. As traditional thermal pasteurization can significantly impact the nutritional value and the color of fresh food, an increasing number of nonthermal pasteurization technologies have attracted attention. The bactericidal effect of high-pressure carbon dioxide has been known for many years, and its effect on food-related enzymes has been studied. This novel technology has many merits, owing to its use of relatively low pressures and temperatures, which make it a potentially valuable future method for nonthermal pasteurization. For example, the inactivation of polyphenol oxidase can be achieved with relatively low temperature and pressure, and this can contribute to food quality and better preserve nutrients, such as vitamin C. However, this novel technology has yet to be developed on an industrial scale due to insufficient test data. In order to support the further development of this application, on an industrial scale, we have reviewed the existing information on high-pressure carbon dioxide pasteurization technology. We include its bactericidal effects and its influence on food quality. We also pave the way for future studies, by highlighting key areas.
Collapse
|
11
|
Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of freshly fruit and vegetable juices. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Monhemi H, Dolatabadi S. Molecular dynamics simulation of high-pressure CO2 pasteurization reveals the interfacial denaturation of proteins at CO2/water interface. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Non-thermal processing of inulin-enriched soursop whey beverage using supercritical carbon dioxide technology. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Liao H, Zhong K, Hu X, Liao X. Effect of high pressure carbon dioxide on alkaline phosphatase activity and quality characteristics of raw bovine milk. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
|
16
|
Dense phase carbon dioxide treatment of tomato juice: effect on physico‐chemical properties, phenolic composition, lycopene isomerisation and
in vitro
bioaccessibility. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
de Matos KHO, Lerin LA, Soares D, Soares LS, de Lima M, Monteiro AR, Vladimir Oliveira J. Effect of supercritical carbon dioxide processing on Vibrio parahaemolyticus in nutrient broth and in oysters ( Crassostrea gigas). Journal of Food Science and Technology 2018; 55:4090-4098. [PMID: 30228407 DOI: 10.1007/s13197-018-3335-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/14/2018] [Accepted: 07/03/2018] [Indexed: 12/01/2022]
Abstract
This study aimed to evaluate the technical feasibility of supercritical carbon dioxide (sc-CO2) treatment for Vibrio parahaemolyticus inactivation in oysters (Crassostrea gigas) and in nutrient broth. For this purpose, a variable-volume reactor was used as experimental system and a 23 factorial design was adopted considering the mass ratio between carbon dioxide and the product, pressurization and depressurization rate and pressurization cycles. Through statistical analysis of the experimental data, the mass ratio of 1:0.8 (product:carbon dioxide), depressurization rate of 10.0 MPa/min and one cycle of pressurization was determined as the best process condition to eliminate V. parahaemolyticus, and this was the condition used for the inactivation kinetic analysis. Comparison between the inactivation kinetics of V. parahaemolyticus showed that the behavior of this microorganism inactivation depends on the environment in which it operates and its initial count. The results confirm that the supercritical carbon dioxide is effective in inactivating microorganisms in oysters, including pathogenic V. parahaemolyticus, demonstrating the potential of this technology in the food industry.
Collapse
Affiliation(s)
- Katherine H O de Matos
- 1Department of Chemical and Food Engineering - EQA, Federal University of Santa Catarina - UFSC, C.P. 476, Florianópolis, CEP 88040-900 Brazil.,Department of Innovation and Technology, SENAI Santa Catarina, Florianópolis, CEP 88034-001 Brazil
| | - Lindomar A Lerin
- 1Department of Chemical and Food Engineering - EQA, Federal University of Santa Catarina - UFSC, C.P. 476, Florianópolis, CEP 88040-900 Brazil
| | - Douglas Soares
- 1Department of Chemical and Food Engineering - EQA, Federal University of Santa Catarina - UFSC, C.P. 476, Florianópolis, CEP 88040-900 Brazil
| | - Lenilton Santos Soares
- 1Department of Chemical and Food Engineering - EQA, Federal University of Santa Catarina - UFSC, C.P. 476, Florianópolis, CEP 88040-900 Brazil
| | - Marieli de Lima
- 1Department of Chemical and Food Engineering - EQA, Federal University of Santa Catarina - UFSC, C.P. 476, Florianópolis, CEP 88040-900 Brazil
| | - Alcilene R Monteiro
- 1Department of Chemical and Food Engineering - EQA, Federal University of Santa Catarina - UFSC, C.P. 476, Florianópolis, CEP 88040-900 Brazil
| | - J Vladimir Oliveira
- 1Department of Chemical and Food Engineering - EQA, Federal University of Santa Catarina - UFSC, C.P. 476, Florianópolis, CEP 88040-900 Brazil
| |
Collapse
|
18
|
Silva EK, Alvarenga VO, Bargas MA, Sant'Ana AS, Meireles MAA. Non-thermal microbial inactivation by using supercritical carbon dioxide: Synergic effect of process parameters. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Whey-grape juice drink processed by supercritical carbon dioxide technology: Physical properties and sensory acceptance. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Omar AM, Tengku Norsalwani T, Asmah M, Badrulhisham Z, Easa AM, Omar FM, Hossain MS, Zuknik M, Nik Norulaini N. Implementation of the supercritical carbon dioxide technology in oil palm fresh fruits bunch sterilization: A review. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Berenhauser AC, Soares D, Komora N, De Dea Lindner J, Schwinden Prudêncio E, Oliveira JV, Block JM. Effect of high-pressure carbon dioxide processing on the inactivation of aerobic mesophilic bacteria and Escherichia coli in human milk. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1345983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Douglas Soares
- Department of Chemical and Food Engineering, UFSC, Florianópolis, Brazil
| | - Norton Komora
- Department of Food Science and Technology, UFSC, Florianópolis, Brazil
| | | | | | | | - Jane Mara Block
- Department of Food Science and Technology, UFSC, Florianópolis, Brazil
| |
Collapse
|
22
|
Amaral GV, Silva EK, Cavalcanti RN, Martins CPC, Andrade LGZS, Moraes J, Alvarenga VO, Guimarães JT, Esmerino EA, Freitas MQ, Silva MC, Raices RSL, Sant' Ana AS, Meireles MAA, Cruz AG. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile. Food Chem 2017; 239:697-703. [PMID: 28873624 DOI: 10.1016/j.foodchem.2017.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
The effect of supercritical carbon dioxide technology (SCCD, 14, 16, and 18MPa at 35±2°C for 10min) on whey-grape juice drink characteristics was investigated. Physicochemical characterization (pH, titratable acidity, total soluble solids), bioactive compounds (phenolic compounds, anthocyanin, DPPH and ACE activity) and the volatile compounds were performed. Absence of differences were found among treatments for pH, titratable acidity, soluble solids, total anthocyanin and DPPH activity (p-value>0.05). A direct relationship between SCCD pressure and ACE inhibitory activity was observed, with 34.63, 38.75, and 44.31% (14, 16, and 18MPa, respectively). Regards the volatile compounds, it was noted few differences except by the presence of ketones. The findings confirm the SCCD processing as a potential promising technology to the conventional thermal treatment.
Collapse
Affiliation(s)
- Gabriela V Amaral
- Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Tecnologia (IT), 23890-000, Seropédica, Rio de Janeiro, Brazil
| | - Eric Keven Silva
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), 13083862 Campinas, Brazil
| | - Rodrigo N Cavalcanti
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), 13083862 Campinas, Brazil
| | - Carolina P C Martins
- Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Tecnologia (IT), 23890-000, Seropédica, Rio de Janeiro, Brazil
| | - Luiz Guilherme Z S Andrade
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil
| | - Jeremias Moraes
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil
| | - Verônica O Alvarenga
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), 13083862 Campinas, Brazil
| | - Jonas T Guimarães
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária, 24230-340 Niterói, Rio de Janeiro, Brazil
| | - Erick A Esmerino
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária, 24230-340 Niterói, Rio de Janeiro, Brazil
| | - Mônica Q Freitas
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária, 24230-340 Niterói, Rio de Janeiro, Brazil
| | - Márcia C Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil
| | - Renata S L Raices
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil
| | - Anderson S Sant' Ana
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), 13083862 Campinas, Brazil
| | - M Angela A Meireles
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), 13083862 Campinas, Brazil
| | - Adriano G Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Amaral GV, Silva EK, Cavalcanti RN, Cappato LP, Guimaraes JT, Alvarenga VO, Esmerino EA, Portela JB, Sant’ Ana AS, Freitas MQ, Silva MC, Raices RS, Meireles MAA, Cruz AG. Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Čolnik M, Primožič M, Knez Ž, Leitgeb M. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts. Front Bioeng Biotechnol 2016; 4:33. [PMID: 27148527 PMCID: PMC4831980 DOI: 10.3389/fbioe.2016.00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV–Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions.
Collapse
Affiliation(s)
- Maja Čolnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor , Maribor , Slovenia
| | - Mateja Primožič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor , Maribor , Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor , Maribor , Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor , Maribor , Slovenia
| |
Collapse
|