1
|
Wei J, Abdurexit A, Jamal R, Abdiryim T, You J, Li Z, Shang J, Cheng Q. Carbon Fiber Reinforced Recycled Polypropylene/Polyolefin Elastomer Composites with High Mechanical Properties. Polymers (Basel) 2024; 16:972. [PMID: 38611230 PMCID: PMC11013364 DOI: 10.3390/polym16070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The treatment of waste plastics has gradually become a hot topic in the current scientific community. In response to the needs for high-impact performance R-PP-based composites, carbon fiber (CF)-reinforced polyolefin elastomer (POE)/recycled polypropylene (R-PP) composite (CF/POE/R-PP) was prepared by the mechanical blending method, and its mechanical and thermal properties were systematically studied. It was found that the CF could effectively improve the bending and notch impact strength as well as enhance the thermal stability of POE/R-PP. Furthermore, a stable and dispersed composite interface formed by the combination of maleic anhydride-grafted polypropylene (PP-g-MAH) with the surface of CF and the fusion alkyl chains in R-PP and POE further enhanced the CF's reinforcing effect. As a result, the addition of 9 wt.% CF successfully improved the heat resistance of the composite material, and the residual carbon content increased by 97.84% after sintering. The composite toughening of POE and CF effectively improved the impact strength of the composite material, with a maximum increase of over 1000%. This study ultimately resulted in a high-impact-resistant composite material.
Collapse
Affiliation(s)
- Jin Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (J.W.); (J.Y.); (J.S.); (Q.C.)
| | - Abdukeyum Abdurexit
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, State Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, College of Chemical Engineering Technology, Xinjiang University, Urumqi 830017, China; (A.A.); (R.J.); (Z.L.)
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, State Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, College of Chemical Engineering Technology, Xinjiang University, Urumqi 830017, China; (A.A.); (R.J.); (Z.L.)
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (J.W.); (J.Y.); (J.S.); (Q.C.)
| | - Jiangan You
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (J.W.); (J.Y.); (J.S.); (Q.C.)
| | - Zhiwei Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, State Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, College of Chemical Engineering Technology, Xinjiang University, Urumqi 830017, China; (A.A.); (R.J.); (Z.L.)
| | - Jin Shang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (J.W.); (J.Y.); (J.S.); (Q.C.)
| | - Qian Cheng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (J.W.); (J.Y.); (J.S.); (Q.C.)
| |
Collapse
|
2
|
Enayati M, Mohammadi S, Bouldo MG. Sustainable PET Waste Recycling: Labels from PET Water Bottles Used as a Catalyst for the Chemical Recycling of the Same Bottles. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:16618-16626. [PMID: 38028403 PMCID: PMC10664144 DOI: 10.1021/acssuschemeng.3c04997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
We report using a waste material, poly(ethylene terephthalate) (PET) water bottle labels, for the chemical recycling of the same PET water bottles. The solid fillers used for the manufacturing of the packaging labels were recovered by thermolysis in an electrical furnace at 600, 800, and 1000 °C with 13.5, 12.0, and 10.4 wt % recovery. Characterization of the solid residue showed the presence of calcium carbonate, calcium oxide, and titanium dioxide, which are typical fillers used for packaging film manufacturing, such as water bottle labels. These solid residues were then used as a catalyst for PET depolymerization by glycolysis, in which the catalyst recovered from bottle labels and shredded PET reacted in the presence of excess ethylene glycol at 200 °C. The reaction mixtures were analyzed for PET conversion and the yield of the bis(2-hydroxyethyl)terephthalate (BHET) monomer as the final product of the glycolysis reaction to determine the efficiency of the catalyst. Our results show that the catalyst prepared at 800 °C (Cat-800) has the best performance and provides a 100% PET conversion with a 95.8% BHET yield with a 1.0 wt % loading in 1.5 h. The catalyst from the PET water bottle labels is nontoxic, readily available, cost-effective, environmentally friendly, and can be used as a model for the self-sufficient chemical recycling of PET via glycolysis.
Collapse
Affiliation(s)
- Mojtaba Enayati
- Center for Materials and
Manufacturing Sciences, Departments of Chemistry and Physics, Troy University, Troy, Alabama 36082, United States
| | - Somayeh Mohammadi
- Center for Materials and
Manufacturing Sciences, Departments of Chemistry and Physics, Troy University, Troy, Alabama 36082, United States
| | - Martin G. Bouldo
- Center for Materials and
Manufacturing Sciences, Departments of Chemistry and Physics, Troy University, Troy, Alabama 36082, United States
| |
Collapse
|
3
|
Vaiano V, De Marco I. Removal of Azo Dyes from Wastewater through Heterogeneous Photocatalysis and Supercritical Water Oxidation. SEPARATIONS 2023. [DOI: 10.3390/separations10040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Azo dyes are synthetic organic dyes used in the textile, leather, and paper industries. They pose environmental problems due to their toxic and persistent nature. The toxicity is due to the presence of azo groups in the dye molecule that can break down into aromatic amines, which are highly toxic to aquatic organisms and humans. Various treatment methods have been developed to remove azo dyes from wastewater. Conventional wastewater treatments have some drawbacks, such as high operating costs, long processing times, generation of sludge, and the formation of toxic by-products. For these reasons, a valid alternative is constituted by advanced oxidation processes. Good results have been obtained using heterogeneous photocatalysis and supercritical water oxidation. In the former method, a photocatalyst is in contact with wastewater, a suitable light activates the catalyst, and generated reactive oxygen species that react with pollutants through oxidative reactions to their complete mineralization; the latter involves pressurizing and heating wastewater to supercritical conditions in a reactor vessel, adding an oxidizing agent to the supercritical water, and allowing the mixture to react. In this review paper, works in the literature that deal with processing wastewater containing azo dyes through photocatalysts immobilized on macroscopic supports (structured photocatalysts) and the supercritical water oxidation technique have been critically analyzed. In particular, advancement in the formulation of structured photocatalysts for the degradation of azo dyes has been shown, underlying different important features, such as the type of support for the photoactive phase, reactor configuration, and photocatalytic efficiency in terms of dye degradation and photocatalyst stability. In the case of supercritical water oxidation, the main results regarding COD and TOC removal from wastewater containing azo dyes have been reported, taking into account the reactor type, operating pressure, and temperature, as well as the reaction time.
Collapse
|
4
|
Supercritical Fluid Extraction from Zataria multiflora Boiss and Impregnation of Bioactive Compounds in PLA for the Development of Materials with Antibacterial Properties. Processes (Basel) 2022. [DOI: 10.3390/pr10091787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this research, the extraction with supercritical carbon dioxide (SC-CO2) and the subsequent impregnation of the extracted bioactive compounds from Zataria multiflora Boiss (Z. multiflora) into polylactic acid (PLA) films was investigated. The effects of temperature (318 and 338 K), pressure (15 and 25 MPa) and cosolvent presence (0 and 3 mol%) on the extraction yield were studied. The SC-CO2 assisted impregnation runs were carried out in a discontinuous mode at different pressure (15 and 25 MPa), temperature (318 and 328 K), and time (2 and 8 h) values, using 0.5 MPa min−1 as a constant value of depressurization rate. ANOVA results confirmed that pressure, temperature, and time influenced the extraction yield. Moreover, antioxidant activities of extracts of Z. multiflora were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. In addition, the antibacterial activities of the extracts were screened against standard strains of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The results of this investigation indicated that extracts obtained from the aerial parts of Z. multiflora possessed antioxidant and antibacterial properties. The impregnated samples presented strong antibacterial activity against the selected microorganisms.
Collapse
|
5
|
Role of supercritical CO2 impregnation variables on β-carotene loading into corn starch aerogel particles. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Fathi M, Sodeifian G, Sajadian SA. Experimental study of ketoconazole impregnation into polyvinyl pyrrolidone and hydroxyl propyl methyl cellulose using supercritical carbon dioxide: Process optimization. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Oxygen Scavenger and Antioxidant LDPE/EVOH/PET-Based Films Containing β-Carotene Intended for Fried Peanuts (Arachis hypogaea L.) Packaging: Pilot Scale Processing and Validation Studies. Polymers (Basel) 2022; 14:polym14173550. [PMID: 36080624 PMCID: PMC9460629 DOI: 10.3390/polym14173550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to develop an oxygen scavenger and antioxidant active packaging material for fried peanuts. The packaging solution, which has been made at the laboratory previously, has been developed by cast film extrusion and is composed of low-density polyethylene-ethylene vinyl alcohol-polyethylene terephthalate (LDPE/EVOH/PET)-based films containing β-carotene (CAR). In comparison with film without additive, developed film presented an orange colouring (higher L* and b* values and lower a* values) and an increase in oxygen induction time (OIt) from 4.5 to 14.1 min. The incorporation of β-carotene to the formulation also brings about a significant effect on the thermal stability as maximum degradation temperatures increased around 1%. Regarding the oxygen absorption capacity of the films, values of 1.39 ± 0.10 mL O2 per g of film at laboratory scale and 1.7 ± 0.3 mL O2 per g of multilayer (ML)/LDPE_CAR were obtained, respectively, after 3 days, proving the suitability of the packaging solutions as oxygen absorbers. To validate the packaging solution, the oxidative stability of fried peanuts packed in fabricated multilayer β-carotene bags was evaluated for 3 months at 40 °C. The hexanal content remained constant during this period. Meanwhile, peanuts packed in ML without β-carotene increased their hexanal content to 294%. This fact indicated a lower extent of oxidation in fried peanuts compared to food samples packaged in control films, suggesting the potential of ML/LDPE_CAR films as sustainable and antioxidant food packaging systems to offer protection against lipid oxidation in foods. Sensory evaluation confirmed that ML/LDPE_CAR films provided the peanut samples with an extra aroma due to the volatile degradation products of β-carotene (such as β-cyclocitral or 6-methyl-5-hepten-2-ol).
Collapse
|
8
|
Preparation of ROS-responsive drug-loaded hydrogels applied in wound dressings using supercritical solvent impregnation. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Azevedo AG, Barros C, Miranda S, Machado AV, Castro O, Silva B, Saraiva M, Silva AS, Pastrana L, Carneiro OS, Cerqueira MA. Active Flexible Films for Food Packaging: A Review. Polymers (Basel) 2022; 14:2442. [PMID: 35746023 PMCID: PMC9228407 DOI: 10.3390/polym14122442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Active food packaging is a dynamic area where the scientific community and industry have been trying to find new strategies to produce innovative packaging that is economically viable and compatible with conventional production processes. The materials used to develop active packaging can be organized into scavenging and emitting materials, and based on organic and inorganic materials. However, the incorporation of these materials in polymer-based flexible packaging is not always straightforward. The challenges to be faced are mainly related to active agents' sensitivity to high temperatures or difficulties in dispersing them in the high viscosity polymer matrix. This review provides an overview of methodologies and processes used in the production of active packaging, particularly for the production of active flexible films at the industrial level. The direct incorporation of active agents in polymer films is presented, focusing on the processing conditions and their effect on the active agent, and final application of the packaging material. Moreover, the incorporation of active agents by coating technologies and supercritical impregnation are presented. Finally, the use of carriers to help the incorporation of active agents and several methodologies is discussed. This review aims to guide academic and industrial researchers in the development of active flexible packaging, namely in the selection of the materials, methodologies, and process conditions.
Collapse
Affiliation(s)
- Ana G. Azevedo
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.G.A.); (L.P.)
| | - Carolina Barros
- IPC—Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (C.B.); (A.V.M.); (O.S.C.)
| | - Sónia Miranda
- PIEP—Centre for Innovation in Polymer Engineering, University of Minho, Campus de Azurém, Edifício 15, 4800-058 Guimarães, Portugal; (S.M.); (B.S.)
| | - Ana Vera Machado
- IPC—Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (C.B.); (A.V.M.); (O.S.C.)
| | - Olga Castro
- Vizelpas—Flexible Films, S.A., Rua da Fundição, 8, Vilarinho, 4795-791 Santo Tirso, Portugal;
| | - Bruno Silva
- PIEP—Centre for Innovation in Polymer Engineering, University of Minho, Campus de Azurém, Edifício 15, 4800-058 Guimarães, Portugal; (S.M.); (B.S.)
| | - Margarida Saraiva
- INSA—National Institute of Health Doutor Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal;
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research I.P., Portugal and CECA-Center for Study in Animal Science, ICETA, University of Porto, Vairão, 4099-002 Vila do Conde, Portugal;
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.G.A.); (L.P.)
| | - Olga Sousa Carneiro
- IPC—Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (C.B.); (A.V.M.); (O.S.C.)
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.G.A.); (L.P.)
| |
Collapse
|
10
|
Alias A, Wan MK, Sarbon N. Emerging materials and technologies of multi-layer film for food packaging application: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Application of the Integrated Supercritical Fluid Extraction–Impregnation Process (SFE-SSI) for Development of Materials with Antiviral Properties. Processes (Basel) 2022. [DOI: 10.3390/pr10040680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The integrated supercritical fluid extraction–impregnation process (SFE-SSI) was performed to fabricate material with antiviral properties against the herpes simplex virus (HSV). Cotton gauze and starch/chitosan polymer films (SCF) were impregnated with components extracted from Melissa officinalis at 10 MPa and 40 °C using a green medium, supercritical carbon dioxide (scCO2). The influences of the processing mode regarding the flow of the supercritical fluid through the system, and the mass ratio of the plant material and the solid carrier, on the impregnation yield of M. officinalis extract were studied. The results revealed that the introduction of a fresh amount of CO2 into the system enabled the highest impregnation yield of 2.24% for cotton gauze and 8.71% for SCF. The presence of M. officinalis extract on the surface of both impregnated cotton gaze and SCF was confirmed by FTIR and GC analyses after the re-extraction of the impregnated samples. The M. officinalis impregnated materials showed a strong inhibitory effect against Bovine herpesvirus type 1 (BHV-1).
Collapse
|
12
|
|
13
|
Carvalho VS, Dias ALB, Rodrigues KP, Hatami T, Mei LHI, Martínez J, Viganó J. Supercritical fluid adsorption of natural extracts: Technical, practical, and theoretical aspects. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Drago E, Franco P, Campardelli R, De Marco I, Perego P. Zein electrospun fibers purification and vanillin impregnation in a one-step supercritical process to produce safe active packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Mass Transfer and Optical Properties of Active PET/PP Food-Grade Films Impregnated with Olive Leaf Extract. Polymers (Basel) 2021; 14:polym14010084. [PMID: 35012107 PMCID: PMC8747531 DOI: 10.3390/polym14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/19/2022] Open
Abstract
A supercritical solvent impregnation (SSI) technique was employed to incorporate, by batch- and semicontinuous-modes, bioactive olive leaf extract (OLE) into a food-grade multilayer polyethylene terephthalate/polypropylene (PET/PP) film for active food packaging applications. The inclusion of OLE in the polymer surfaces significantly modified the colour properties of the film. A correlation of 87.06% between the CIELAB colour parameters and the amount of the OLE impregnated in the film was obtained which suggests that colour determination can be used as a rapid, non-destructive technique to estimate the OLE loading in the impregnated matrices. The UV barrier and water permeability properties of the films were not significantly modified by the incorporation of OLE. The migration of OLE into a 50% (v/v) ethanol food simulant demonstrated faster release of OLE from the PP surface than from the PET surface which may be due to the different interactions between OLE and each polymer.
Collapse
|
16
|
Optimization of PCL Polymeric Films as Potential Matrices for the Loading of Alpha-Tocopherol by a Combination of Innovative Green Processes. Processes (Basel) 2021. [DOI: 10.3390/pr9122244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Active food packaging represents an innovative way to conceive food packages. The innovation lies in using natural-based and biodegradable materials to produce a system intended to interact with the food product to preserve its quality and shelf-life. Compared to traditional plastics, active packaging is designed and regulated to release substances in a controlled manner, mainly antimicrobial and antioxidant compounds. Conventional technologies are not suitable for treating these natural substances; therefore, the research for innovative and green techniques represents a challenge in this field. The aim of this work is to compare two different polymeric structures: nanofibrous films obtained by electrospinning and continuous films obtained by solvent casting, to identify the best solution and process conditions for subjecting the samples to the supercritical fluids impregnation process (SFI). The supports optimized were functionalized by impregnating alpha-tocopherol using the SFI process. In particular, the different morphologies of the samples both before and after the supercritical impregnation process were initially studied, identifying the limits and possible solutions to obtain an optimization of the constructs to be impregnated with this innovative green technology in the packaging field.
Collapse
|
17
|
Masek A, Cichosz S, Piotrowska M. Comparison of Aging Resistance and Antimicrobial Properties of Ethylene-Norbornene Copolymer and Poly(Lactic Acid) Impregnated with Phytochemicals Embodied in Thyme ( Thymus vulgaris) and Clove ( Syzygium aromaticum). Int J Mol Sci 2021; 22:13025. [PMID: 34884831 PMCID: PMC8657585 DOI: 10.3390/ijms222313025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The effects of plant-based extracts on the solar aging and antimicrobial properties of impregnated ethylene-norbornene (EN) copolymer and poly(lactic acid) (PLA) were investigated. In this study, the impregnation yield of polyolefin, lacking in active centers capable of phytochemical bonding, and polyester, abundant in active sides, was measured. Moreover, two different extracts plentiful in phytochemicals-thyme (TE) and clove (CE)-were employed in the solvent-based impregnation process. The effect of thymol and eugenol, the two main compounds embodied in the extracts, was studied as well. Interestingly, oxidation induction times (OIT) for the impregnation of EN with thyme and clove extracts were established to be, respectively, 27.7 and 39.02 min, which are higher than for thymol (18.4 min) and eugenol (21.1 min). Therefore, an aging experiment, mimicking the full spectrum of sunlight, was carried out to investigate the resistance to common radiation of materials impregnated with antioxidative substances. As expected, the experiment revealed that the natural extracts increased the shelf-life of the polymer matrix by inhibiting the degradation processes. The aging resistance was assessed based on detected changes in the materials' behavior and structure that were examined with Fourier-transform infrared spectroscopy, contact angle measurements, color quantification, tensile tests, and hardness investigation. Such broad results of solar aging regarding materials impregnated with thyme and clove extracts have not been reported to date. Moreover, CE was found to be the most effective modifying agent for enabling material with antimicrobial activity against Escherichia coli to be obtained.
Collapse
Affiliation(s)
- Anna Masek
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland;
| | - Stefan Cichosz
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland;
| | - Małgorzata Piotrowska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 71/173, 90-924 Lodz, Poland;
| |
Collapse
|
18
|
Valor D, Montes A, García-Casas I, Pereyra C, Martínez de la Ossa E. Supercritical solvent impregnation of alginate wound dressings with mango leaves extract. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Kuai L, Liu F, Chiou BS, Avena-Bustillos RJ, McHugh TH, Zhong F. Controlled release of antioxidants from active food packaging: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Maraveas C, Bayer IS, Bartzanas T. Recent Advances in Antioxidant Polymers: From Sustainable and Natural Monomers to Synthesis and Applications. Polymers (Basel) 2021; 13:polym13152465. [PMID: 34372069 PMCID: PMC8347842 DOI: 10.3390/polym13152465] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Advances in technology have led to the production of sustainable antioxidants and natural monomers for food packaging and targeted drug delivery applications. Of particular importance is the synthesis of lignin polymers, and graft polymers, dopamine, and polydopamine, inulin, quercetin, limonene, and vitamins, due to their free radical scavenging ability, chemical potency, ideal functional groups for polymerization, abundance in the natural environment, ease of production, and activation of biological mechanisms such as the inhibition of the cellular activation of various signaling pathways, including NF-κB and MAPK. The radical oxygen species are responsible for oxidative damage and increased susceptibility to cancer, cardiovascular, degenerative musculoskeletal, and neurodegenerative conditions and diabetes; such biological mechanisms are inhibited by both synthetic and naturally occurring antioxidants. The orientation of macromolecules in the presence of the plasticizing agent increases the suitability of quercetin in food packaging, while the commercial viability of terpenes in the replacement of existing non-renewable polymers is reinforced by the recyclability of the precursors (thyme, cannabis, and lemon, orange, mandarin) and marginal ecological effect and antioxidant properties. Emerging antioxidant nanoparticle polymers have a broad range of applications in tumor-targeted drug delivery, food fortification, biodegradation of synthetic polymers, and antimicrobial treatment and corrosion inhibition. The aim of the review is to present state-of-the-art polymers with intrinsic antioxidant properties, including synthesis scavenging activity, potential applications, and future directions. This review is distinct from other works given that it integrates different advances in antioxidant polymer synthesis and applications such as inulin, quercetin polymers, their conjugates, antioxidant-graft-polysaccharides, and polymerization vitamins and essential oils. One of the most comprehensive reviews of antioxidant polymers was published by Cirillo and Iemma in 2012. Since then, significant progress has been made in improving the synthesis, techniques, properties, and applications. The review builds upon existing research by presenting new findings that were excluded from previous reviews.
Collapse
Affiliation(s)
- Chrysanthos Maraveas
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece;
- Correspondence: (C.M.); (I.S.B.)
| | - Ilker S. Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Correspondence: (C.M.); (I.S.B.)
| | - Thomas Bartzanas
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece;
| |
Collapse
|
21
|
Supercritical Impregnation of PLA Filaments with Mango Leaf Extract to Manufacture Functionalized Biomedical Devices by 3D Printing. Polymers (Basel) 2021; 13:polym13132125. [PMID: 34203556 PMCID: PMC8271598 DOI: 10.3390/polym13132125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Polylactic Acid (PLA) filaments impregnated with ethanolic mango leaves extract (MLE) with pharmacological properties were obtained by supercritical impregnation. The effects of pressure, temperature and amount of extract on the response variables, i.e., swelling, extract loading and bioactivity of the PLA filaments, were determined. The analysis of the filaments biocapacities revealed that impregnated PLA filaments showed 11.07% antidenaturant capacity and 88.13% antioxidant activity, which after a 9-day incubation shifted to 30.10% and 9.90%, respectively. Subsequently, the same tests were conducted on printed samples. Before their incubation, the printed samples showed 79.09% antioxidant activity and no antidenaturant capacity was detected. However, after their incubation, the antioxidant activity went down to only 2.50%, while the antidenaturant capacity raised up to 23.50%. The persistence of the bioactive properties after printing opens the possibility of using the functionalized PLA filaments as the feed for a three-dimensional (3D) printer.
Collapse
|
22
|
Lai WH, Hong CY, Tseng HH, Wey MY. Fabrication of waterproof gas separation membrane from plastic waste for CO 2 separation. ENVIRONMENTAL RESEARCH 2021; 195:110760. [PMID: 33493535 DOI: 10.1016/j.envres.2021.110760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
In this study, waste polystyrene (wPS) plastic was used to prepare gas-separation membranes with hot-pressing technology to reduce the accumulation of plastic waste. Polystyrene is a commonly used polymer for the production of plastic products, and it is also used in the synthesis of membranes for gas separation. Compared to the traditional synthesis process, hot-pressing is environmentally friendly because it does not require organic solvents. The mobility of the polymer chain and the integrity and free volume of the membrane are affected by the temperature, pressure, duration, and annealing environment of the hot-pressing process, thereby altering the performance of the membrane. Additionally, when the wPS contained polybutadiene, the gas separation membranes showed a selectivity of 17.14 for CO2/N2. The membranes also exhibited ideal waterproof performance when the membranes were operated under water pressures of 1-5 bar. Therefore, membranes derived from wPS through hot pressing are waterproof and can be used for gas separation. Furthermore, they are expected to maintain their separation performance in complex environments.
Collapse
Affiliation(s)
- Wen-Hsiung Lai
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Chen-Yao Hong
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Hui-Hsin Tseng
- School of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan, ROC; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan, ROC.
| | - Ming-Yen Wey
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan, ROC.
| |
Collapse
|
23
|
Franco P, De Marco I. Formation of Rutin-β-Cyclodextrin Inclusion Complexes by Supercritical Antisolvent Precipitation. Polymers (Basel) 2021; 13:polym13020246. [PMID: 33450873 PMCID: PMC7828341 DOI: 10.3390/polym13020246] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, rutin (RUT)–β-cyclodextrin (β-CD) inclusion complexes are prepared by Supercritical AntiSolvent (SAS) precipitation. Well-defined composite microparticles are obtained at guest:host ratios equal to 1:2 and 1:1 mol:mol. The dimensions of composite particles range between 1.45 ± 0.88 µm and 7.94 ± 2.12 µm. The formation of RUT–β-CD inclusion complexes has been proved by different analyses, including Fourier transform infrared spectroscopy, Differential Scanning Calorimetry, X-ray diffraction, and UV-vis spectroscopy. The dissolution tests reveal a significant improvement in the release rate of RUT from inclusion complexes. Indeed, compared to the unprocessed RUT, the dissolution rate is about 3.9 and 2.4 times faster in the case of the complexes RUT–β-CD 1:2 and 1:1 mol:mol, respectively. From a pharmaceutical/nutraceutical point of view, CD-based inclusion complexes allow the reduction of the polymer amount in the SAS composite formulations.
Collapse
Affiliation(s)
- Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
24
|
Sodeifian G, Sajadian SA. Antioxidant capacity, physicochemical properties, thermal behavior, and oxidative stability of nectarine (
Prunus persica var. nucipersica
) kernel oil. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Gholamhossein Sodeifian
- Department of Chemical Engineering Faculty of Engineering University of Kashan Kashan Iran
- Laboratory of Supercritical Fluids and Nanotechnology University of Kashan Kashan Iran
| | - Seyed Ali Sajadian
- Department of Chemical Engineering Faculty of Engineering University of Kashan Kashan Iran
- Laboratory of Supercritical Fluids and Nanotechnology University of Kashan Kashan Iran
- South Zagros Oil and Gas Production National Iranian Oil Company Shiraz Iran
| |
Collapse
|
25
|
Effect of fluid field on the eco-friendly utilization and recycling of CO2 and dyes in the waterless dyeing. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Mosquera JE, Goñi ML, Martini RE, Gañán NA. Mass transfer kinetics of CO2 and eugenol in the supercritical impregnation of polyamide fibers: Experimental data and modeling. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.105030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Figueroa-Lopez KJ, Torres-Giner S, Angulo I, Pardo-Figuerez M, Escuin JM, Bourbon AI, Cabedo L, Nevo Y, Cerqueira MA, Lagaron JM. Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2356. [PMID: 33260904 PMCID: PMC7761208 DOI: 10.3390/nano10122356] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022]
Abstract
Active multilayer films based on polyhydroxyalkanoates (PHAs) with and without high barrier coatings of cellulose nanocrystals (CNCs) were herein successfully developed. To this end, an electrospun antimicrobial hot-tack layer made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cheese whey, a by-product from the dairy industry, was deposited on a previously manufactured blown film of commercial food contact PHA-based resin. A hybrid combination of oregano essential oil (OEO) and zinc oxide nanoparticles (ZnONPs) were incorporated during the electrospinning process into the PHBV nanofibers at 2.5 and 2.25 wt%, respectively, in order to provide antimicrobial properties. A barrier CNC coating was also applied by casting from an aqueous solution of nanocellulose at 2 wt% using a rod at 1m/min. The whole multilayer structure was thereafter assembled in a pilot roll-to-roll laminating system, where the blown PHA-based film was located as the outer layers while the electrospun antimicrobial hot-tack PHBV layer and the barrier CNC coating were placed as interlayers. The resultant multilayer films, having a final thickness in the 130-150 µm range, were characterized to ascertain their potential in biodegradable food packaging. The multilayers showed contact transparency, interlayer adhesion, improved barrier to water and limonene vapors, and intermediate mechanical performance. Moreover, the films presented high antimicrobial and antioxidant activities in both open and closed systems for up to 15 days. Finally, the food safety of the multilayers was assessed by migration and cytotoxicity tests, demonstrating that the films are safe to use in both alcoholic and acid food simulants and they are also not cytotoxic for Caco-2 cells.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
| | - Inmaculada Angulo
- Gaiker Technological Centre, Department of Plastics and Composites, Parque Tecnológico Edificio 202, 48170 Zamudio, Spain;
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
- Bioinicia R&D, Bioinicia S.L., Calle Algepser 65, Nave 3, 46980 Paterna, Valencia, Spain
| | - Jose Manuel Escuin
- Tecnopackaging S.L., Poligono Industrial Empresarium, Calle Romero 12, 50720 Zaragoza, Spain;
| | - Ana Isabel Bourbon
- Food Processing and Nutrition Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.A.C.)
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), School of Technology and Experimental Sciences, Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain;
| | - Yuval Nevo
- Melodea Bio-Based Solutions, Faculty of Agriculture-Hebrew University, Rehovot 76100, Israel;
| | - Miguel A. Cerqueira
- Food Processing and Nutrition Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.A.C.)
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
| |
Collapse
|
28
|
Drago E, Campardelli R, Pettinato M, Perego P. Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods 2020; 9:E1628. [PMID: 33171881 PMCID: PMC7695158 DOI: 10.3390/foods9111628] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/21/2023] Open
Abstract
Innovation in food packaging is mainly represented by the development of active and intelligent packing technologies, which offer to deliver safer and high-quality food products. Active packaging refers to the incorporation of active component into the package with the aim of maintaining or extending the product quality and shelf-life. The intelligent systems are able to monitor the condition of packaged food in order to provide information about the quality of the product during transportation and storage. These packaging technologies can also work synergistically to yield a multipurpose food packaging system. This review is a critical and up-dated analysis of the results reported in the literature about this fascinating and growing field of research. Several aspects are considered and organized going from the definitions and the regulations, to the specific functions and the technological aspects regarding the manufacturing technologies, in order to have a complete overlook on the overall topic.
Collapse
Affiliation(s)
| | | | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering (DICCA), Polytechnique School, University of Genoa, Via Opera Pia 15, 16145 Genova, Italy; (E.D.); (R.C.); (P.P.)
| | | |
Collapse
|
29
|
Lansoprazole loading of polymers by supercritical carbon dioxide impregnation: Impacts of process parameters. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104892] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Franco P, De Marco I. Supercritical CO2 adsorption of non-steroidal anti-inflammatory drugs into biopolymer aerogels. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|